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Detailed theoretical analyses are presented of the projectile-energy dependence as well as the tar-
get dependence of the electron-detachment collision processes, H™ +T—H(n =2)+T*+e".
These analyses are illustrated by calculations of both projectile-frame and laboratory-frame doubly
differential cross sections (DDCS’s) for 0.5-, 1.0-, and 1.5-MeV H™ collisions with He targets and
for 0.5-MeV H™ collisions with Ne, Ar, Kr, and Xe targets; in addition, we present laboratory
frame DDCS’s for 0.1-MeV H™ collisions with Xe targets. Comparisons with available experimen-

tal data are given.

I. INTRODUCTION

The cross section for fast H™ detachment collisions,
particularly that differential in the energy and angle of
the detached electron, has been shown to depend sensi-
tively on the low-energy states of the fundamental H-e ~
three-body system."? 1In particular, projectile detach-
ment plus excitation has been shown? to be a major con-
tributor to the equal-velocity peak in the detached-
electron doubly differential cross section (DDCS) seen ex-
perimentally® at and near 0° in the laboratory for the case
of 0.5 MeV H™ on He. In this work we extend our
analysis of the DDCS’s for fast H™ detachment collisions
by examining their dependence on the incident projectile
energy as well as on the target atom.

Specifically we present here calculations of the DDCS’s
for the following detachment processes:

H +T—H(1s)+T*+e ", (1)
H +T->Hn=2)+T*+e . (2)

In Egs. (1) and (2) the symbol T indicates the target atom;
on the right-hand side, the asterisk on T indicates that
the target may be either in an excited state, bound or con-
tinuum, or in the unexcited ground state. In Sec. IT we
present the Born approximation formulas for the DDCS’s
for processes (1) and (2). In Sec. III we examine the
dependence of these DDCS’s on the incident projectile
energy, and we present specific results for processes (1)
and (2) for 0.5-, 1.0-, and 1.5-MeV H™ projectiles on He
atom targets. For electrons detached at 0.7° in the labo-
ratory frame, we compare our calculated laboratory-
frame DDCS’s with the experimental measurements of
Menendez and Duncan given in Ref. 4. In Sec. IV we ex-
amine the dependence of these DDCS’s on the target
atom, and we present DDCS’s for processes (1) and (2) for
0.5-MeV H™ projectiles on He, Ne, Ar, Kr, and Xe tar-
get atoms. In addition, we compare our laboratory-frame
DDCS’s for 0.5-MeV H™ on Ar with the experimental
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measurements of Duncan and Menendez’ and our
laboratory-frame DDCS’s for 0.1-MeV H™ on Xe with
experimental measurements of Andersen, Bangsgaard,
and Sdrensen.® Finally, we discuss our results and
present some conclusions in Sec. V.

II. FIRST-ORDER BORN EXPRESSION
FOR THE DDCS

For the case of He targets, detailed theoretical descrip-
tions of our calculational procedures for the DDCS’s for
processes (1) and (2) have been presented elsewhere.!>7:8
Here, therefore, we restrict ourselves to presenting the
first-order Born approximation result for the DDCS for
processes (1) and (2). The Born approximation result for
the DDCS for electron detachment following collision of
the projectile ion H™ with a target atom of atomic num-
ber Z may be expressed in terms of the atomic form fac-
tor e%(K) and the incoherent-scattering function SZ.(K)
for the target as’

do
dwdE

where

=k3%(kp,0p) , 3)

3% (kp,0p)

=B (% Kk 0p) B K)— Z -k
viz K"mm(m nl »Rp>,YVp/1C00 K3
87 K:_lax(fz) Z 1
+U_12 K'r;lm(iz)JnI(K’kP’GP)SinC(K)FdK .

(4)

In Eq. (3), k is the momentum, dw is the solid angle, and
E is the energy of the detached electron in any con-
venient inertial reference frame. 3% (kp,0p) is a
Galilean-invariant cross section'® calculated in the
center-of-mass frame and is dependent on the detached
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42 DOUBLY DIFFERENTIAL DETACHMENT CROSS SECTIONS . . .

electron’s momentum kp relative to the H atom, as well
as on the angle 8, that k, makes with the axis defined by
the incident projectile (P);nl denotes the final state of the
H atom. 3¢ (kp,0p) is defined by Eq. (4), where v; is the
relative velocity of the projectile with respect to the tar-
get; K is the momentum transfer:

K=k —k,, 5)

where k; and k, are the initial and final momenta of the
projectile in the center-of-mass frame; K, ,(0) and
K7 ..(0) are the appropriate minimum and maximum
values for the momentum transfer for the case in which
the target remains unexcited, while I, in K7, (I,) and
K. (I;)implies that these latter are computed for some
appropriate average excitation energy I, for the target.

Specifically,

Kii,(0)=—, (6)

_ ki
L Iy AL,
min (/)= " ; (7)

1]

where I, is the binding energy of the H™ ion (0.0277 51
a.u.), 1k} is the kinetic energy of the detached electron in
the projectile frame, and A, is the excitation energy of
the nth level of H above the H(1s) ground-state energy.
The use of T, and the closure approximation substitutes
for an explicit summation over each of the excited states
of the target.'!

In this paper we have employed the explicit values for
the atomic form factors and the incoherent-scattering
functions given by Hubbell et al.!* Finally, the function
Jo(K,kp,0p) is defined by

1 2 -
Tl K kg, 0p)=5 - [ 3 lesin (Kokp)'ds . (®)
In Eq. (8) the transition form factor is defined by

2
> exp(iK-r;)

i=1

el (K kp)= <¢;,,,,kp ¢0> 9)

and corresponds to a transition from the ground state of
H™ to the final state of the H-e ™ system, in which the
electron is detached with momentum k, relative to the H
atom and the H atom is left in the state H(n/m). The
ground state of H™ is described by the wave function v,
and the final state of the H-e ~ system is described by the
wave function ¥,y ,, where the minus superscript indi-

cates that it satisfies incoming-wave boundary conditions.
Equation (8) contains a summation over the magnetic
sublevels of the H(nl) state, as well as an integration over
the azimuthal angle ¢ of the scattered projectile in the
center-of-mass frame. This latter integration makes J,,
independent of the azimuthal angle ¢, of the detached
electron.

The DDCS in any convenient inertial reference frame
is expressed in Eq. (3) in terms of the Galilean-invariant
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DDCS 28 (kp,0p), which is calculated according to Eq.
(4) in the center-of-mass frame. In particular, the labora-
tory (L) -frame DDCS is given by

do
dwdE

=kLESI(kP(kL’9L)’6P(kL’9L)) ’ (10)
L

where k; and 6, are the magnitude and polar angle of
the detached electron’s momentum in the laboratory, and
where kp and 6, are expressed as functions of k; and 6; .
For fast H™ projectiles, the so-called projectile reference
frame'® '3 is approximately an inertial reference frame.'*
In this approximation one may write

k; =v,+kp . an

Furthermore, one may then define a projectile (P) -frame
DDCS as!%13

do
dwdE

=kp2G(kp,0p) . (12)
P

The low-energy dynamics of the H-e ~ system is clearly
exhibited in the projectile-frame DDCS in Eq. (12), and
the simple relation (11) facilitates the subsequent inter-
pretation of the laboratory-frame DDCS defined in Eq.
(10).

The calculation of the H™ transition form factor,
defined in Eq. (9), and of the function J,; defined in Eq.
(8), are discussed in detail in Refs. 2 and 7. The pro-
cedures described in these references are employed in the
present calculations.® In particular, we have employed
an adiabatic hyperspherical'>~!7 representation for both
the initial- and final-state wave functions of the H-e ~ sys-
tem. For the low-energy states of the H-e ~ system in the
projectile frame that are important for the description of
the H™ -detachment collisions considered here, the adia-
batic hyperspherical approximation has proved to be
highly effective in representing the relevant three-body
correlation effects.!"%’

III. PROJECTILE ENERGY
DEPENDENCE OF THE DDCS

We examine here the projectile-energy dependence of
the process,

H™ +He—>H(n=1,2)+He*t+e , (13)

for incident H™ energies of 0.5, 1.0, and 1.5 MeV. We
have selected this process since the experimental data of
Menendez and Duncan* exist for these incident projectile
energies for the related process,

H™ +He—H*+He*+e™ . (14)

That is, the experimental data* include all final states of
excitation of the H atom. The experimental measure-
ments were made for electrons detached at 0.7° in the
laboratory.

Our calculated laboratory-frame DDCS’s, as well as
the experimentally measured DDCS’s, are shown in Fig.
1. In order to compare the DDCS’s for different H™ pro-
jectile energies conveniently, we plot the results versus
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FIG. 1. Laboratory-frame DDCS’s for H +He—H*
+He* +e ™ for detached electrons detected in the laboratory at
0.7° with respect to the incident H™ beam direction and for 0.5-
MeV, 1.0-MeV, and 1.5-MeV H~ projectile energies. (a)
Present calculated DDCS’s for H(1s) final states. (b) Present
calculated DDCS’s for H(n =2) final states. (c) Sum of present
calculated results for H(1s) and H(n =2) final states. (d) Exper-
imental results of Macek, Menendez, and Duncan for all possi-
ble H final states (from Ref. 4).
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the ratio of the detached-electron kinetic energy E to the
kinetic energy E;, at which the detached electron has the
same velocity as the projectile (i.e., zero kinetic energy in
the projectile frame), as is done in Ref. 4. Figure 1(a)
shows our calculated laboratory-frame DDCS for the
part of process (13) in which the H atom is left in the
n =1 state. We see that the magnitudes of the DDCS’s
are not sensitive to the projectile energy in the energy
range 0.5-1.5 MeV. We see also in Fig. 1(a) that the
magnitude of the interference “window” in the DDCS in
the laboratory frame is decreasing with increasing projec-
tile energy.

Figure 1(b) shows our calculated laboratory-frame
DDCS for the part of process (13) in which the H atom is
left in the n =2 state. Clearly, there is a rapid decrease of
this equal-velocity peak with increasing projectile energy.
Figure 1(c) shows the sum of our results in Figs. 1(a) and
1(b) for comparison with the experimental data* for pro-
cess (14), shown in Fig. 1(d). Comparison of Figs. 1(c)
and 1(d) shows qualitative agreement of theory and ex-
periment, indicating that excited states of H with n >2
are not significant contributors to process (14) in compar-
ison with the H(1ls) and H(n =2) states, at least for
6, =0.7".

The laboratory-frame theoretical and experimental
data in Fig. 1 may be understood by an examination of
the DDCS’s for processes (1) and (2) in the projectile
frame together with an analysis of the kinematic transfor-
mation from the projectile to the laboratory frame. The
kinematics embodied in Eq. (11) that is relevant for elec-
trons detached at 0.7° in the laboratory frame is shown
graphically in Fig. 2. Figure 2 shows the locus of points
0p (k;,0;, =0.7°) and kp (k;,0; =0.7°) traced out coun-
terclockwise in the 6p-kp plane as k; increases from
small to large values. Two features of Fig. 2 should be
noted. First, as the incident projectile energy increases,
the minimum value of kp increases. Second, as the in-
cident projectile energy increases, the two allowed values
of 8, for a fixed value of kp become closer together.

While the kinematics of the transformation from the
projectile to the laboratory frame determines which parts
of the projectile-frame DDCS contribute to the
laboratory-frame DDCS, the DDCS’s themselves depend
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FIG. 2. Trajectories relating laboratory-frame electron mo-
menta k; =(k;,0;, =0.7°) to projectile-frame electron momenta
kp=(kp,08p) according to Eq. (11) for the three incident projec-
tile energies, 0.5, 1.0, and 1.5 MeV.
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on the incident projectile energy. From Eq. (4) we see
that the Galilean-invariant DDCS depends inversely on
the incident projectile energy. This dependence is com-
pensated, however, by a decrease of K, with increasing
projectile velocity [cf. Eqgs. (6) and (7)]. This decrease of
K., leads to a significant increase in the value of the in-
tegral in Eq. (4) for the invariant DDCS since the in-
tegrand is largest for small values of K. For the processes
of interest in this work, only small values of k, are of in-
terest. Thus, from Eq. (11), k; is almost proportional to
the incident projectile velocity, which therefore affects
the laboratory-frame DDCS’s dependence on the projec-
tile energy. In conclusion then, Eq. (12) shows that the
projectile-frame DDCS, like the Galilean-invariant

FIG. 3. Galilean-invariant DDCS’s for process (1) for He tar-
gets plotted vs kp=(kp,0p). The solid-line trajectory on each
surface maps the locus of points k; =(k;,0; =0.7°) that con-
tribute to the laboratory-frame DDCS’s for 6, =0.7° [cf. Fig.
1(a)]. (a)—(c) Results for three values of the incident H™ energy,
0.5, 1.0, and 1.5 MeV, respectively.
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DDCS, has a factor v;” 2 dependence on the projectile ve-
locity, which is compensated by the proportionality of

n. tov, !. The laboratory-frame DDCS defined in Eq.
(10), on the other hand, has a factor k; /v}~v;,”! depen-
dence on the projectile velocity, which is also compensat-
ed by the proportionality of K", tov,” .

With these observations on the kinematics in mind,
consider now the DDCS’s for processes (1) and (2) in the
projectile frame, which are shown in Figs. 3 and 4, re-
spectively. In Fig. 3 we show the Galilean-invariant
DDCS [cf. Eq. (4)] for process (1). The valley extending
from kp, =0, 0, =0°, out to kp=0.5 a.u., 8, =140 is due
to an interference between the s- and p-waves of the out-
going, detached electron.”!%!8 This valley causes the tra-

PROJECTILE FRAME DDCS (a.u.)

PROJECTILE FRAME DDCS (a.u.)

(a.u)

o

o

PROJECTILE FRAME DDCS

\—Gopkdeq\

'w) 0500

FIG. 4. Projectile-frame DDCS’s for process (2) for He tar-

gets plotted vs kp=(kp,0p). The solid-line trajectory on each

surface is defined in the caption for Fig. 3. (a)-(c) Results for

three values of the incident H™ energy, 0.5, 1.0, and 1.5 MeV,
respectively.
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jectory for 6, =0.7° to have two maxima, which is the
origin of the double-peaked structure of the laboratory-
frame DDCS shown in Fig. 1(a). As the incident projec-
tile energy increases, k" increases and the spread of the
6, =0.7° trajectory in 6p decreases, leading to a reduc-
tion of the minimum value of the 8, =0.7° trajectory, as
seen in Fig. 1(a) in the laboratory frame. While the mag-
nitudes of the Galilean-invariant DDCS’s shown in Fig. 3
are decreasing with increasing v;, the laboratory-frame
DDCS’s shown in Fig. 1(a) are relatively insensitive to
the changes in v; for the projectile energies from 0.5 to
1.5 MeV.

In Fig. 4 we show the projectile-frame DDCS’s for pro-
cess (2). The increasing value of kg"" as the projectile en-
ergy increases causes the 6; =0.7° trajectory to lie in-
creasingly far from the !P°-shape resonance peak!? at
small values of kp. It is this effect, which leads to the
rapid decrease of the laboratory-frame DDCS’s with in-
creasing projectile energy, that is shown in Fig. 1(b)."
The magnitude of the !P°-shape resonance peak in the
projectile-frame DDCS decreases with increasing projec-
tile energy, but this decrease is reduced in the laboratory
frame because of the multiplicative factor k; =v; [cf. Eq.
(10)].

IV. TARGET DEPENDENCE OF THE DDCS

The H™ detachment processes (1) and (2) depend on
the target in several ways. As shown in Eq. (4), the
Galilean-invariant DDCS depends on the target through
the atomic form factor ego(K ), its atomic number Z, its
incoherent scattering function SZ_(K), and its average
excitation energy I,. In our calculations we have chosen
I, for Z=2 to have that value (for small angles 6,) for
which the lower energy peak in the laboratory-frame
DDCS for the H(1s) final state lies at the same energy as
found experimentally (cf. Fig. 1), as was done in our ear-
lier works.">7 For each of the heavier rare gases, howev-
er, we have chosen I, to equal the excitation energy from
the ground state to the energy location of the near-
threshold peak in the photoionization cross section.?’
These values for I, are given in Table I together with the
minimum values for the momentum transfers K" (I;)
[cf. Eq. (7)] for 0.5-MeV H™ incident projectiles. We ex-
pect these ad hoc choices for I, to be reasonable for the
small electron-detachment angles that are relevant here.

TABLE 1. Average target excitation energies, I, and
minimum momentum transfers, K .(I;), for H(n=1) and
H(n =2) final states.

4 I; V) Kn-U(TI;) (au)? K"=3(1,) (au.)®
2 35.0 0.294 0.378
10 32.6 0.274 0.358
18 21.4 0.181 0.266
36 16.2 0.139 0.223
54 13.4 0.117 0.200

ag !t .(I,) is defined in Eq. (7). For this table we have set in Eq.
(7) kp=0 and v, =4.47135 a.u. (corresponding to incident H™
projectiles having an energy of 0.5 MeV).
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A detailed discussion of the sensitivity of the DDCS’s to
the choice of I, has been given in Sec. IV B of Ref. 2 for
the case of He targets. In brief, when the H atom is left
in its ground state, the DDCS’s are found to be
moderately sensitive to the choice of T,; when H is left in
the n =2 state, the DDCS’s are found to be insensitive to
the choice of I,.

In Figs. 5 and 6 we have plotted the target-dependent
parts of the two integrands in Eq. (4) on which the
Galilean-invariant DDCS depends. It is the small
momentum-transfer region that is most significant for the
DDCS. In this region it is easily shown from the
definitions of the atomic form factor and the incoherent-
scattering function that

|e&(K)—Z|*/K* <K for K—0, (15)
and

SZ (K)/K3<K ™! for K—0. (16)

inc

Because of the singularity at small K in the second in-
tegrand in Eq. (4) due to the behavior in Eq. (16), the
second integral always contributes significantly to the
magnitude of the DDCS’s for the small values of the
detached-electron momenta kp that are of interest in this
work. (For light elements, in fact, the second integral
predominates over the first integral.) In addition, because
of this singularity, the decrease in K", (I;) with increas-
ing Z (shown in Table I) significantly augments the
second integral in Eq. (4) as a result of the lower integra-
tion limit in a region where the integrand is large. This
augmentation with increasing Z is, in addition to the ex-
pected increase in the DDCS’s with increasing Z, simply
due to increases in the atomic form factors and the
incoherent-scattering functions. The dependences of the
atomic form factor and the incoherent-scattering func-
tion on Z, for a fixed value of the momentum transfer X,
are only known numerically and not analytically.'?

— 60 —

5 AN — He x10
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N{ 40 il \‘.\ Kr

NI‘ 30 | \. —— Xe
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4 PREEE, RS TTTPPN .
MOMENTUM TRANSFER K (a.u.)

FIG. 5. Target-dependent part of the integrand of the first in-
tegral in Eq. (4) for the Galilean-invariant DDCS plotted vs
momentum transfer K for five rare-gas target atoms. Values of
the atomic form factor €Z%(K) were obtained from the work of
Hubbell ez al. (Ref. 12).
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MOMENTUM TRANSFER K (a.u.)

FIG. 6. Target-dependent part of the integrand of the second
integral in Eq. (4) for the Galilean-invariant DDCS plotted vs
momentum transfer K for five rare-gas target atoms. Because of
the singularity of SZ.(K)/K?* as K —0 [cf. Eq. (16)], we plot this
function only for K > 1. Values of the atomic scattering func-
tion SZ.(K) were obtained from Hubbell et al. (Ref. 12).

A. 05-MeVH +T—H(1s)+T*+e"

In Fig. 7 we present our calculated Galilean-invariant
DDCS’s for process (1) for the rare gases He, Ne, Ar, Kr,
and Xe. We observe that the DDCS for Xe is nearly two
orders of magnitude larger than that for He. We observe
also how the s- and p-wave interference minimum?’!®18
that is a prominent feature in the DDCS for He (i.e., the
valley extending from kp=0.2, 6p,=0°, to kp=0.5,
0p~140°) has nearly disappeared for the heavier rare
gases Kr and Xe. This effect has been explained by Ma-
cek, Menendez, and Duncan,* who argued that the s- and
p-wave interference term stemming from the second in-
tegral in Eq. (4) is proportional to K" '(I;).2! Now, the
larger the value of I, the larger will be K '(I,), and
therefore the more prominent the interference minimum
of s and p partial waves.* Values for K" 1(I,) are given
in Table I, which shows that K" !(T,) is 2.5 times larger
for He than for Xe for 0.5-MeV H™ projectiles at the
equal-velocity peak position.

The argument of Macek, Menendez, and Duncan* as-
sumes that the target atom is left in an excited state, i.e.,
that the second integral in Eq. (4) predominates over the
first one. This is very true for light elements but not true
for heavier elements, as may be inferred from the two-
orders-of-magnitude-greater value of the first integrand
in Eq. (4) for Xe as compared with that for He, as shown
in Fig. 5. However, the first integral in Eq. (4), corre-
sponding to leaving the target unexcited, does not have a
prominent s- and p-wave interference term. Hence it
merely contributes to the ‘““background” on which sits the
target-dependent interference minimum stemming from
the second integral in Eq. (4). These behaviors of the two
integrals, which contribute to the Galilean-invariant
DDCS defined in Eq. (4), are compared in Fig. 8 for the
cases of the He and Xe targets. In Figs. 8(a) and 8(c) we
see that the unexcited-target contributions to the DDCS’s
[stemming from the first integral in Eq. (4)] for He and
Xe targets, respectively, have no detectable interference
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minima.?? In Figs. 8(b) and 8(d) we see that the excited-
target contributions to the DDCS’s [stemming from the
second integral in Eq. (4)] for He and Xe targets, respec-
tively, have significant interference minima, with that for
He much more significant than that for Xe due to the
proportionality of the interference term to K ;,(I;), as
explained by Macek and co-workers.*?! The sum of the
partial DDCS’s in Figs. 8(a) and 8(b) for He, and in Figs.
8(c) and 8(d) for Xe, give the DDCS’s shown in Figs. 7(a)
and 7(e), respectively. Due to the negligible contribution
of the unexcited-target state to the DDCS in the case of
He, the results in Figs. 7(a) and 8(b) are the same to
within a few percent. In contrast, in the case of Xe, the
large contribution to the DDCS of the unexcited-target
state [cf. Fig. 8(c)] tends to reduce the significance of the
s- and p-wave interference stemming from the excited-
target-state contribution to the DDCS [cf. Fig. 8(d)].
This is seen by comparing Fig. 7(e) with Fig. 8(d).

B. 0.5-MeVH +T—>H(n=2)+T*+e"~

In Fig. 9 we present our results for the projectile-frame
DDCS’s for processes (2) for the rare-gas target atoms
He, Ne, Ar, Kr, and Xe for the case of 0.5-MeV H™ pro-
jectiles. Once again we note the two-orders-of-
magnitude-greater values of the DDCS for Xe targets
than for He targets. We note also that the near isotropic
behavior of the DDCS in the projectile frame in the case
of He is atypical. The 'P symmetry of the prominent
shape resonance feature in the DDCS implies that the an-
gular distribution should depend on both constant and
cos’@p terms. As pointed out by us previously,® the
coefficient of the cos?6p term in the case of He is anoma-
lously small because of a near cancellation of positive and
negative contributions to the relevant integral over the
momentum transfer K. The other target atoms do not
have such a near cancellation, and hence the dependence
of the DDCS on cos?8} is clearly visible.

C. Comparisons with experimental results

Transforming our calculated results for the Galilean-
invariant DDCS’s for processes (1) and (2) to the labora-
tory frame, we can make comparison with three sets of
experimental results for rare-gas targets. Figure 10 com-
pares our calculated results with the data of Macek,
Menendez, and Duncan* for the processes,

0.5-MeVH +T—->H*+T*+e ™, (17)

for He, Ne, and Ar targets and for an electron detach-
ment angle of 8; =0.7°. Note, in particular, that the ex-
perimental results include contributions from all final
states of the H atom. Also, the relative experimental
measurements are normalized to the sum of our predicted
DDCS’s for H(1s) and H(n =2) final states at the energy
of the lower-energy peak. We see that inclusion of
H(n =2) final states in the theoretical calculations greatly
improves agreement with experiment as compared with
calculations that only include H(1s) final states.'’

The higher-energy peak in the laboratory-frame DDCS
is due to the !P° shape resonance feature in the DDCS’s
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for H(n =2) final states. We have shown elsewhere’ that
this feature in the DDCS decreases very rapidly with in-
creasing angle 6; in the forward direction. Consequent-
ly, we expect that the occurrence of experimentally mea-
sured higher-energy peaks, which are lower in magnitude
and broader in energy than the theoretical predictions at
0, =0.7°, has much to do with the large angular accep-
tance (+0.4°) in these measurements.*

Figure 11 compares our calculated DDCS results with
data of Duncan and Menendez’ for the process,

0.5-MeV H™ +Ar—H*+Ar*+¢ ™, (18)

for the three electron-detachment angles 6; =0.8°, 1.3°,
and 3.8°. For both 8, =0.8° and 1.3°, the relative experi-
mental measurements are normalized to our theoretical
predictions at the energy position of the lower-energy
peak. For 8; =3.8°, the experimental results are normal-
ized to our calculations at the energy position of the peak
in the DDCS. At these larger detection angles 6, , the
decrease with angle of the 'P° resonance feature is less
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FIG. 7. Galilean-invariant DDCS’s calculated according to Eq. (4) for the processes 0.5-MeV H™ +T—H(1s)+T*+e ~ plotted vs
electron momentum k, =(kp,0,) in the projectile (P) frame. The target atoms T are (a) He, (b) Ne, (c) Ar, (d) Kr, and (e) Xe.
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rapid than at smaller angles. Hence, the discrepancies
between theoretical and experimental results stemming
from the experimental angular resolution are significantly
less noticeable than those for the 6, =0.7° data shown in
Fig. 10. Thus, for 6, =0.8°, one sees that the experimen-
tal higher-energy peak is lower in magnitude and broader
in energy than the theoretically predicted peak. Howev-
er, for both 6; =1.3° and 6, =3.8°, theory and experi-
ment are in quite good agreement.

Finally, in Fig. 12 we compare our calculated DDCS
results with the data of Andersen, Bangsgaard, and
Sérensen® for the process,

0.1-MeV H™ +Xe—H(n=2)+Xe*+e ™ . (19)

The experimental data are for 8, =0°, but the angular ac-
ceptance is 0.506°. For this reason, we show in Fig. 12(a)
our theoretical predictions for the angles 6; =0.0°, 0.1°,
0.2°, and 0.3°. The cusp feature''? at the equal-velocity
position is most prominent for these low angles, but de-
creases rapidly with increasing angle ;. The shoulder
features’? at these low angles are due to the 'P°-shape
resonance in the projectile-frame DDCS. The experimen-
tal data show a marked difference in the peak heights of
these two shoulder features, which is not reproduced in
our calculations. Nevertheless, the overall qualitative
agreement of theory and experiment is quite reasonable.

V. DISCUSSION AND CONCLUSIONS

In this work we have extended our previous studies'?
of the DDCS’s for 0.5-MeV H™ detachment collisions
with He targets by examining the dependence of the
DDCS’s on both the projectile energy and the target
atom. For any target, the most interesting and significant
features of the DDCS occur in the projectile frame for
low values of the electron momentum k. Understanding
the projectile-energy dependence of the laboratory-frame
DDCS is thus a matter of examining the kinematics of
the transformation of the projectile-frame results (or,
more precisely, the Galilean-invariant results) to the labo-
ratory frame, as we have done in Sec. III.

The target dependence of the DDCS’s is a more com-
plex problem. Generally speaking, the larger the atomic
number of the target atom, the larger the DDCS’s. How-
ever, this dependence has many detailed aspects. Thus,
for He targets, we have shown that the contribution of
unexcited He final states to the DDCS is negligible com-
pared with the contributions of excited He final states.
On the other hand, for Xe targets, both unexcited and ex-
cited Xe final states contribute significantly to the DDCS.
The prominence of the s- and p-wave interference in the
DDCS for H(ls) final states decreases with increasing
atomic number (for the rare-gas targets considered in this
work, at least) because of the decreasing average excita-
tion energy of these targets as the atomic number in-
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creases, as first pointed out by Macek, Menendez, and
Duncan.* Our earlier prediction,?® that the isotropic be-
havior of the H(n =2) projectile-frame DDCS is anoma-
lous for the case of 0.5-MeV H™ detachment collisions
with He targets, has been confirmed here. We find that
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for the other rare-gas targets (as well as for other incident
projectile energies), the H(n =2) DDCS’s show the ex-
pected dependence on cos?6 in the projectile frame.

In comparison with experimental results, we find that
inclusion of H(n =2) excited final states in the theoretical
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FIG. 9. Projectile-frame DDCS’s calculated according to Eq. (4) for the processes 0.5-MeV H™ +T—H(n=2)+T*+e ™ plotted
vs electron momentum kp =(kp,6p) in the projectile (P) frame. The target atoms T are (a) He, (b) Ne, (c) Ar, (d) Kr, and (e) Xe.
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calculations, in addition to unexcited H(1s) final states,
greatly improves agreement with the experimental mea-
surements*> that do not measure the final state of the H
atom. Our results for 0.1-MeV H™ collisions with Xe
targets resulting in H(n =2) final states are in qualitative
agreement with experimental results;® in particular, the
cusp and shape resonance features found experimentally
are reproduced qualitatively in our calculations. In all
such comparisons, as we have noted before,""? the most
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FIG. 10. Laboratory-frame DDCS’s for the process 0.5-MeV
H +T—H*+T*+e " for electron detachment at 6, =0.7".
Dashed curves, present theoretical results for H(n=1) final
states; dotted curves, present theoretical results for H(n =2)
final states; solid curves, sum of present theoretical results for
H(n =1) and H(n =2) final states; triangles, experimental re-
sults of Macek, Menendez, and Duncan (from Ref. 4), normal-
ized to our solid curves at the position of the lower-energy peak.
(a) He targets; (b) Ne targets; (c) Ar targets.
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prominent features are very sensitive functions of the
electron-detachment angle. Hence, the generally large
experimental acceptance angles make precise comparison
of theory and experiment difficult without a convolution
of the theoretical results using experimental angular and
energy convolution functions. In the one case where we
have been able to carry out such convolutions, agreement
bethien the results of theory and experiment is excel-
lent.
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FIG. 11. Laboratory-frame DDCS’s for the process 0.5-MeV
H +Ar—H*+Ar*+e " for electron-detachment angles of (a)
6, =0.8% (b) 6, =1.3°, and (c) 6, =3.8°. Solid, dashed, and dot-
ted curves are defined as in Fig. 10. Triangles, experimental re-
sults of Duncan and Menendez (Ref. 5), normalized to our solid
curves at the position of the lower-energy peak for 8; =0.8° and
1.3° and at the position of the single peak for 6, =3.8".
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(from Ref. 6) for 6, =0.0°. The experimental angular accep-
tance is 0.506°.

Finally, we note that our present and previous’?’
studies of the DDCS’s for H™ -detachment collisions on
rare-gas targets have relevance to current interest in
electron-correlation effects on heavy-particle collision
processes.”>~® In particular, our analysis of the separate
contributions to the DDCS’s of unexcited- and excited-
target states (cf. Fig. 8 and its discussion in Sec. IV A
above) corresponds to the ‘‘screeming-antiscreening”
effects discussed by McGuire and co-workers,?>?8 to the
“two-center correlations” discussed by Stolterfoht,?’ and,
of course, to the pioneering studies of Bates and
Griffing?® on inelastic effects in hydrogen-atom collision
processes. Detailed experimental confirmation of such
electron-correlation effects on total cross sections have
recently been reported.?® Our studies contribute to the
knowledge of such correlation effects on differential cross
sections.
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