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A projection operator formalism is employed in considering the T operator for describing a

scattering or reaction event in which a system evolves from one continuum channel into another
continuum channel. The formalism is based upon projections of the Lippmann-Schwinger equa-

tions for T and an operator generalization of Gauss's reduction for linear algebraic equations. A

formal solution of the projected Lippmann-Schwinger equation is presented for the case in which

the couplings involving the final-state continua satisfy a chosen separability condition. The
simplifications that occur when the pole approximation is made on the final-state continua or on

both the initial- and final-state continua are presented. The formalism is employed in considering

the effects of an external dc electric field in photorecombination processes in a model atomic system

which features two autoionizing states, two electron continua (one of which contains the initial

state), and two photon continua (corresponding to radiatively stabilized atomic states). Particular
attention is paid to the effects of the coupling between the two electron continua.

I. INTRODUCTION

Projection operators have been used effectively within
a number of contexts for describing scattering and decay
processes. Feshbach' used projection-operator tech-
niques in the context of nuclear reaction theory to
separate resonance states from asymptotic continua. His
techniques have been extended in the context of
electron-ion dielectronic-recombination processes to
separate also the various scattering channels or sets of
asymptotic continua. Projection operators have also
been very useful in discussing photoionization and the de-
cay of prepared systems. Recently several papers
have used projection operators to give a unified treatment
of "radiative recombination" and "dielectronic recom-
bination" in atomic physics. One of these [Haan and
Jacobs (hereafter HJ)] has presented an expression for
the T operator, given previously by other authors in oth-
er contexts, which separates naturally into a term
describing direct, or nonresonant, transitions and a term
describing the resonance contribution. Such a separation
can be useful in situations in which one is especially in-
terested in knowing the effects of the resonances. How-
ever, if one is only interested in calculating the matrix
element of the T operator between the initial and final
states of interest, there may be other, more direct
methods one can use. One purpose of the present paper
is to present such a method.

In this paper we consider processes in systems featur-
ing two sets of orthogonal asymptotic continuum chan-
nels and a set of resonances. We assume that the interac-
tion of interest couples the continuum channels to each
other and to the resonances. We allow for coupling be-
tween the resonances, and for coupling within individual
continuum channels. We look specifically at the projec-
tion of the T operator appropriate for describing a
scattering or reaction event in which a system evolves

T(z) = V+ VG (z) V (l. la)

= V+ VG (z)V+ VG (z)VG (z)V+ (l. lb)

= V + VG'(z) T(z)

= V+ T(z)G (z) V,

(l.lc)

(1.1d)

where

G(z)=(z H)— (1.2a)

and

(1.2b)

represent the full and unperturbed resolvents, respective-
ly. A direct solution for matrix elements of the T opera-

from one continuum channel into the other continuum
channel. The method, based upon projections of the
Lippmann-Schwinger equations for T and an operator
generalization of Gauss's reduction for linear algebraic
equations, provides us with a relatively simple final ex-
pression for the T operator. Although the expression
does not separate naturally into resonant and non-
resonant parts, it has the advantage of providing a sim-

ple, basic equation to use in calculating the matrix ele-
ment of the T operator for the initial and final states of
interest.

We emphasize that the results of this paper are useful
in a wide variety of physical situations, and are by no
means limited to discussions of electron-ion photorecom-
bination processes.

We begin by assuming that the Hamiltonian H for the
system of interest has been decomposed as H=H + V,

where the scattering eigenstates of H are known, and
where Vis the interaction of interest. We further assume
that the multichannel T operator which describes the
scattering event of interest can be written in the form
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tor based on Eqs. (l. lc) or (l.1d), which are the
Lippmann-Schwinger equations for T, will be developed
in this paper.

In reactions, the initial state is a projectile incident on
a bound target. This initial state is a continuum eigen-
state of H asymptotically. Similarly, the final state, with
unbound reaction products and bound residual system is
a continuum eigenstate of H asymptotically. In addition
to a direct process leading from the initial state to the
final state, reactions are mediated by resonances of the
combined system. Indeed, the resonance process fre-
quently dominates the reaction. The resonances can be
considered to be discrete eigenstates of H .

This provides motivation for partitioning state space
into disjoint eigenspaces of H . The partitioning is
eff'ected by defining projection operators P, R, and Q onto
the following three spaces, respectively:

(1) P space —the continuum states IP j to which the in-
itial state naturally belongs;

(2) R space —the continuum states I r j describing all
possible reaction channels orthogonal to Ip j;

(3}Q space —the discrete eigenstates I q j of Ho.
The three projection operators satisfy

conclude the section with a discussion of the form of the
matrix elements of the operators needed in order to cal-
culate matrix elements of T(z); we consider especially the
cases in which the couplings within the P space are separ-
able or zero. In Sec. IV we discuss the simplifications
which occur if one makes the pole approximation on the
R-space continua only or on both the R- and P-space
continua. In Sec. V we employ the formalism to study
photorecombination processes in a model system featur-
ing two autoionizing states in an external dc electric field.
%e consider especially the effects that the couplings be-
tween the various IP j states have on the photorecom-
bination process. In Sec. VI we present the parallel for-
malism that can be obtained using Eq. (l. ld) instead of
(l. lc). Finally, in Sec. VII we summarize our results.

II. FORMAL EQUATIONS
FOR THE PROJECTED T OPERATOR

Matrix elements of the projected T operator RTP are
of primary interest in this paper. Using Eq. (l. lc) gives

RT(z)P = RVP+RVRG (z)RT(z)P

P;P =P;5J,
PH P =PH 5 =H P5J / IJ I IJ

(1.3}
+RVPG (z)PT(z)P+RVQG (z)QT(z)P,

(2.1a)

(where the indices i and j are used to distinguish between
the three projection operators P, R, and Q). The projec-
tion operators are thus as used in other works that
have studied electron-ion photorecombination. ' A
schematic diagram of the partitioning is shown in Fig. 1.

In Sec. II we develop a formal expression for RT(z)P
which is based upon Eq. (1.1c). Several operators are
defined in the development, and they are discussed briefiy
at the end of the section. In Sec. III we consider the ma-
trix elements of RT(z)P within the context of pho-
torecombination, and present a formal solution for the
matrix elements of T(z) for the case in which the cou-
plings to R space satisfy a separability condition. %'e

which will be written using the more succinct notation

TRp = VRp + VRR GR TRp + VRP Gp Tpp + VRg Gg Tgp
0 0 0

(2.1b)

Similar independent equations for the projected T opera-
tors Tpp and TQP Permit a unique solution for TRp.
These are

TPP VPP + VPR GR TRP + VPP GP TPP + VPg Gg TgP
0 0 0

(2.2)

TQP
= VQP+ VQR GR TRP+ VQPGP TPP+ VQQGQTQP

(2.3)

fp)
P

PUQ+ QVP

UQ+ QVR

The three linear equations in the three unknown project-
ed T operators will be solved using an operator generali-
zation of Gauss's reduction for linear algebraic equa-
tions.

Rearranging the equations gives

(P —
Vpp p) pp PR R Rp PQ Q Qp

=
pp

(2.4)

fr)
R

VQP GP Tpp VQR GR TRP + ( Q VQQ GQ }TQP VQp

(2.5)

VgpGp Tpp + (R —
VRg Gg ) Tgp VgQ GQ TQp VRp

0 0 0

(2.6)

FIG. 1. Schematic diagram of the partitioning of the eigen-
states of H into three disjoint eigenspaces. The interaction V
not only couples the eigenspaces to each other, but also PVP,

Q VQ, and R VR couple various states within each space.

In Gauss's reduction, the "less desirable" unknowns are
eliminated sequentially. TPP is eliminated by first multi-

Plying Eq. (2.4) on the left by VQpGp(P —VppGp) ', an
inverse in P space only, and then adding the result to Eq.
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(2.5). After defining

A, (z)—:V+VG (z)[P —V G (z)] 'PV, (2.7)

Gg(z) =Q [(P +Q)(z H— —V)(P+ Q)] 'Q

=QIQ[z —H —
A, (z)]Q] 'Q, (2.15)

one obtains

—kg~ G~ TRp+ ( Q
—

Egg Gg )Tgp =Agp . (2.8)

The form of A, and the P-space operator inversion which
must be carried out to find A, are discussed at the end of
this section, in Sec. III C, and in Sec. IV B.

Multiplying Eq. (2.4) on the left by Vtt p Gp(P
VppGp )

' and adding the result to Eq. (2.6) gives

where the last equality follows from Eq. (2.6) of HJ. It
follows from the relation T(z)=A(z)+A(z)QG(z)QA(z)
presented in HJ and from Eq. (2.12) that t (z) denotes the
transition or T operator within this limited P +Q space.

Solution of Eq. (2.13) for Tttp or its matrix elements re-
quires knowledge first of all of A, (z), and then of t (z)
We thus consider briefiy the operator A, (z). One can
easily show from the definition of A, , Eq. (2.7), that

(R XRRG—tt )Tttp XRgGgTgP =HARP (2.9) PA. =PV+( VppGp P+—P)(P —
VppGp) 'PV

Equation (2.8) is solved for Tgp by multiplying on the left
by (Q —

A, gg Gg ) ', an inverse in Q space only:

Tgp = (Q —
A, gg Gg ) '(A, gp+ A, gR Gz T„p ) .

The operator Q
—

A, gg Gg is a square matrix of dimen-

sionality equal to the number of important resonances,
and the operator inversion is an elementary matrix calcu-
lation.

Substituting Eq. (2.10) into Eq. (2.9) and defining the
operators

=P(P —VppGp) 'PV,

and thus that

aP= V+ Vgp0SP .

Similarly, one can easily show that

A, P= V(P —GpVpp) 'P

and

XP= V+aPGp0 V .

(2.16)

(2.17)

(2.18)

(2.19)

and

Gg(z)—:Q[Q(z —H )Q —A,gg]
—Go(Q gP Go )

—i

t (z) =A(z)+k, (z)Gg(z)A(z), ,

one obtains

(2.11a)

(2.11b)

(2. 12)

Matrix elements of A. can be constructed from matrix
element of PA, using Eq. (2.17), or from matrix elements
of A, P using Eq. (2.19). The latter method is more useful
in solving Eq. (2.13) for the matrix elements of Tttp, since
one can use the matrix elements of A, P and A, along with
Eq. (2.12) to construct the matrix elements of tttp and ttttt
which are needed in Eq. (2.13).

(R tRRGR )TRP =t—
RP

P 0 P (2.13)

Equation (2.13) represents the final result of the general
formalism based on Eq. (l. lc). We defer seeking its solu-
tion to Sec. III. We conclude the present section with a
brief discussion of how various operators de6ned above
relate to the operators discussed in HJ, and we consider
the operator k in detail.

It follows from the relationship

G (P —V G ) '=[P(z H V)P] 'P— —

that A, can be written as

A. (z) = V+ V [P (z H V)P] —'PV .— (2.14)

Here [P(z H V)P] 'P re—prese—nts a propagator in P
space. The operator A, (z) features only P-space inter-
mediate states and corresponds to the level shift operator
[denoted by A(z) in HJ] for a system which features P
space continua, but no R-space continua. For the sys-
tems of interest in this paper, it represents the level shift
operator for P+Q space, i.e., for the limited Hilbert
space featuring states onto which P and Q project, but
lacking the continua onto which R projects.

The operator Gg(z) defined in Eq. (2.11) is the Q-space
propagator when P-space intermediate states are allowed
for. It corresponds to QG(z)Q in the limited Hilbert
space onto which P +Q projects:

III. DIRECT SOLUTIONS FOR MATRIX
ELEMENTS OF Tg p

A. Equations for matrix elements of Tzp

P=y fdElaE&&a@i, (3.1a)

R =g f dcol fto)(fool .
f

The projection operator Q is

(3.1b)

An algebraic realization of Eq. (2.13) will be developed
for a problem of current interest in atomic physics: an
unbound electron is captured by a positive ion and a pho-
ton is emitted. Our notation will be similar to that used
in HJ and Ref. 6. The initial state is laE), where E is
the energy of the electron, and a denotes all discrete
quantum numbers needed to specify the unbound
electron-ion state completely. The final state is lfco),
where ro is the energy of the state, and f denotes all
discrete quantum numbers needed to specify the bound
electron-ion plus photon state completely. We assume
that these orthogonal eigenstates of 0 have a 5-function
normalization with respect to energy: (aEla'E')
=6..6(& —&'), &f~l f'~'&=8II6(~ ~'), &feel«&-
=0. The projection operators P and R are, neglecting all
other reaction channels,
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Q =g Ia &&a{, (3.2)
a

where a denotes all quantum numbers needed to specify
the resonant (autoionizing) electron-ion state complete-
ly, and &ala'&=5.... &alfco&=&alaE&=0, 0'Ia&
=E.la &.

It should be emphasized that although the context of
the discussion is photorecombination, the formalism can
also be applied to other scattering situations for which
similar projection operators P, Q, and R can be defined.

Taking the matrix element of Eq. (2.13}and using Eq.
(3.1b) gives

&fcol T(z)laE &
=

& fcolt (z){aE&++ f dco'& fcolt (z)Gtc(z)I f'co'& & f'co'I T(z)IaE &

f'

fd, &felt'(z}lf'~'& &f'~'I T(z}l«&
f' Z CO

The matrix elements of t are obtained by substituting Eq. (3.2) into Eq. (2.12):

& fcolt (z)laE&= & fco{A, (z)laE&+g & fcoIA, (z)la &&a {G&(z)la'&&a' A, (z)laE&,
a, a'

&f colt (z)lf'co'& = &fcolA, (z)lf'co'&+ g &fcolA, (z)la & &a IG&(z)la'& &a'lk (z) f'co'& .
a, a'

(3.3a)

(3.3b)

(3.4)

B. Solution of equations for separable R VP potentials

We consider systems for which the matrix elements of
Vbetween the {rI states and the {p j and {qI states satis-
fy the separability condition:

&fcol IrlaE & =bg (co)dI (E),
&aEI VI fco& =d t(E)bI(co),

& fcol I'la & =bg (co)dI, ,

& a
I I'If~ & =d,IbI(co) .

(3.5)

This condition is met, for example, by the spontaneous
radiative decay coupling of electron-ion photorecombina-
tion. (This separability has been exploited in HJ and in
Refs. 6 and 10.) Then bI is proportional to photon ener-

gy to the three-halves power, and d represents essentially
the electric dipole operator. For the spontaneous radia-
tive decay coupling, matrix elements of R VR are diagonal
in photon quantum numbers, including frequency. We
set

RVR =0, (3.6)

thereby accounting for this diagonality and also assuming
that an adequate description of electron-ion bound states

I

Approaches to the calculations of the matrix elements of
which appear in Eq. (3.4) for various situations will be

considered in Secs. III C and IV B.

is given by eigenstates of H .
As indicated above, the operator A,

r is the level shift
operator for P+Q space. However, its matrix elements
are defined in the entire P +Q +R Hilbert space. It fol-
lows from the separability condition (3.5) that matrix ele-
ments of A, (z) which involve the R-space states can be
written in the form

& fcoli, (z)laE&=bI'(co)Xt (z,E),

& fcoIA, (z)la &=bf (co)Af (z),

&fcol A, (z) If co & bf ( co )bf'( c—o' }A.If (z},
&alA. (z}lfco&=bI(co)K,I(z),

(3.7)

& fcolt (z)lf co &=bf (co)bf'(co )t ff'(z) (3.8)

In these equations A, and t represent operators in a sys-
tem which features discrete states { If & { (i.e., character-
ized by quantum numbers f) rather than photon con-
tinua { I fco& I. This {If &) + { Ia & {+{ IaE & I system
features the Hamiltonian H =H + V, where

for some co-independent A, .
We can similarly define co-independent matrix elements

t f(z(z, E) and tII (z) such that

& fco{t (z)laE & =bg (co)tI (z, E)

and

B=oy E, l f&&fl+y E. l a&&al+y f«ElaE&&«I,

g If &dI. &al+y f«lf &dg (E)&aEI+g f dEla &&a lVlaE&&aEI +H. c.
f,a f,a a, a

+y f« f«'l«&&«II la'E'&&a'E'I .
a, a'

(3.9)
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We shall denote the space of this limited system, which features only one set of continua, but two sets of discrete states,
by S. X is the level shift operator in space S,

and

X (z)= V+ V[P(z H— V—)P] 'PV,
= V+ V(P —Gp Vpp ) 'Gp V,

X (z}P= V(P —Gp Vpp ) 'P .

(3.10a)

(3.10b)

Matrix elements of k include

Xf (z, E)=g fdE'df (E')(a'E'~[P Gp(—z)Vpp] '~«)
a'

and

&.'.(z,E)=y f dE'&al Vl~'E'&&~'E'I[P G—p(z)Vpp] 'I«&
a'

Other matrix elements of k can be constructed from A, = V+ A, Gz V. The operator t has matrix elements

tf (z, E)=Xf (z,E)+g Xf, (z)(a~G&(z)~a')X, (z, E)
a, a'

and

tff'(z)=off (z)+ g Xf, (z)( a
~
G&(z)~a' )X,f (z)

a, a'

where (a~Gti(z) ~a') are the various matrix elements of the inverse of the matrix

(a ~Gg(z) '~a') = (a ~(z —H —X )~a') =(z E, )5„——XP,

The matrix elements in Eq. (3.12) are matrix elements of the operator

t (z)=X (z)+X, (z)Gg(z)X (z),

(3.11a}

(3.11b)

(3.12a)

(3.12b)

(3.13)

(3.14)

which differs from the T operator in the space S only in that G&(z) allows for propagation only through the Q ( [ ~a ) I )

states, and not through the [ ~f ) I states.
Equation (3.3) can now be written

bf (co')( f'co'~ T(z) ~aE )
(fco~T(z)~aE ) =bf (co)tf (zE)+bf (co) g tff'(z) f dpi'

f' Z N

Next, we note that we can write

(fmiT(z)=bf (co)(f i[V+ VG(z)V],

so that Eq. (3.15) can be written

bf (co}(f [ V+ VG(z) V]}laE ) =bf (cu)tf (z, E)+bf'(co) g tff (z)crf (z)( f'~[ V+ VG(z) V]~aE ),
f'

(3.15)

(3.16)

(3.17a)

where

bf(~') '
of(z)= f da)'

Z CO

Equation (3.17a) can be solved to obtain

(fco~ T(z)~aE ) =bf*(co) g [Lff (z)tf. (z,E)],
f'

where L is a matrix such that

(3.17b)

(3.18a)

l

separability condition (3.5). In order to find explicit
forms for the matrix elements of t, one can first find ex-
plicit forms for the matrix elements of A, , and construct
the matrix elements of t from them using Eq. (3.12).
The form of the A, matrix elements will depend on the
particulars of the PVP coupling. Explicit forms can be
constructed using Eq. (3.11), or, if the matrix elements of

are known, using Eq. (3.7).

C. Form of A, for PVP separable or zero

Lff'(z) 5ff' tff'(z)o f (z)-P (3.18b)

Equation (3.18) presents a formal solution for the matrix
element of T in terms of t for systems satisfying the

The operator A, , which is defined in Eq. (2.6) and also
given in Eq. (2.14), is the level shift operator in P+Q
space. The specific forms which its matrix elements take
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depend upon the nature of the coupling between the P
states. In this section, we consider the two special cases
in which PVP is separable or zero, and we present expres-
sions for A, for these cases. A third case, in which we
make the so-called pole approximation on the PVP cou-
pling, will be considered in Sec. IV. The results of this
section do not require RVR =0 except where explicitly
indicated.

(P —Gp Vpp) '. Starting from the expression

(P Gp Vpp ) =P + Gp Vpp(P Gp Vpp )

it is straightforward to show, using methods similar to
those used in obtaining Eq. (3.18),

(aEI(P Gpo—Vpp) 'Ia'E'&

1. PVP separable

We consider here the case in which the PVP coupling
satisfies the separability condition

where

A '(E)B (E')
(z —E)[1—P(z) ]

(3.20)

(aEl Vla'E'& = A,'(E)B (E') (3.19)
B (E)A'(E)

P(z) =g dE
z —E (3.21)

for some functions A and 8. In order to find matrix ele-
ments of A, , we consider first the matrix elements of It then follows from (2.18) that

(a i
Via'E'& A." (E') B.(E)

(a iA, (z)iaE &
= (a

~
V~aE &+g f dE'

z —E' 1 — z

,
(f~lvla'E'&A:(E') B.(E)

(fcoiA, (z)iaE &=(fee V~aE &+g fdE'
a'

and from Eq. (2.19) that

&f~l~p(z)la &= &f~lVla &+y fdE
a'

co V a'E' A* E' 8 - E" a"E" Va

(frig ( )izf ~ & (f~i Vif ~ &++f dE, &f~lVla'E'& & a'E'IVlf '~'&

z —E'a'

m V a'E' A* E' 8 ~
E" a"E" V 'co'

+ g dE', g dE" (3.22)

2. PVPzero

If PVP =0, then the full P-space propagator [P(z H V)P] 'P—is e—qual to the free P-space propagator
Gp(z) =[P(z H)P] 'P. We—then have from Eq. (2.18) A, P = VP, and the level shift operator is simply

A, (z)= V+ VG (z)V . (3.23)

The required matrix elements of t then reduce to

&felt (z)laE &
= &fml VlaE &+ &fcol[V+ VGp(z) V]Gg VlaE &, (3.24a)

(fco i t (z) if 'co'
&
= (fco Vif 'co'

& + (fa) i VGp (z ) Vif 'co'
& + (fco

~ [V+ VG p(z) V]Gg (z)[ V +
VG p (z ) V] if 'cg' &, (3.24b)

where, since PVP =0,

Gg(z)=[Q(z H V —VGp V)Q—] 'Q—.

For the case in which PVP =0, RVR =0, and RVP is separable [so that Eq. (3.5) is satisfied], X can be written

X. (z)= V+ VGp(z)V,

and its matrix elements, as we11 as those of t, can easily be constructed.

(3.25)
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IV. POLE APPROXIMATION

A. Pole approximation on the R continuum only

Matrix elements of the scattering matrix S are related to matrix elements of T by
(fcop~S aE&= —2ni5(cpp —E)(fcpp~T(cop+io)~aE&. Thus the argument of T that is of interest is cpp+io, i.e.,
lim, p+ (cop+i e) Fo. r this argument one can use the well-known relation

1 =P
0+i 0—E i n—6(cop E—), (4.1)

where P represents the principal part, to write, for some function P(co),

f . dco=P f dc@ in/—(cop. ) .
No+ l 0 co No co

(4.2)

If P is slowly varying, then one can make the "pole approximation" of neglecting the principal value integral in Eq.
(4.2). This approximation has been widely discussed in the literature. We emphasize that in what follows in this section
we make the pole approximation only on the photon continua, and not on the electron continua.

We begin by noting that we may write (f 'cp'
~
T (z)

~
aE &

= (f 'co'
~
V[1+G (z) V] ~

aE & as (f 'co' ( V
~
N (z, E) & for some

ket N; this matrix element of Vis a slowly varying function of co' (although it may be a rapidly varying function of E).
Similarly, it follows from Eqs. (3.4) and (2.7) that we can write ( fee~ t (z)

~

f'cp' & as (M(z, cp)
~ V~ f'co' & for some M; this

matrix element will also be a slowly varying function of co . Equation (3.3b) can then be written, taking co=cop,

coo+ l 0 co

g ( M (cpp+ i 0, op) l Vlf 'cp'
& (f 'cp'

~
V N (cp +i 0,E) &

( fop~ T(cpp+io)~aE & =(fcpp~t (cpp+io)~aE&+ f dcp' (4.3)

We now make the pole approximation in the integral over co, and solve the resulting equation to obtain

( fop~ T(cop+io)~aE & =g Kff'(cpp+io)( f'cpp~t (cpp+io) ~aE &,
f'

(4.4)

where

Kff {cop + t 0 ) '5ff + l n (fcop I t ( cop + t 0 )
~f cop & (4.5)

I

The matrix elements of t (cop+io) appearing in Eq. (4.8)
are the same as those appearing in Eq. (4.4).

The right-hand side of Eq. (4.4) is a simple matrix prod-
uct.

An equivalent expression for the matrix element of T
can be obtained by applying the pole approximation to
the results of Sec. III B, in which the coupling to the [r ]
continua was assumed separable. For this case one writes

crf ( cpp + l 0 ) = i nIb f ( cpp ) I

'—' (4.6a)

One can assume without loss of generality that bf (cpp) = 1

for all f' [since one can absorb any constant multiplica-
tive factors into d in Eq. (3.5) as needed]. Equation (4.6a)
then becomes

crf(cop+io) = i n, —

and Eq. (3.18a) gives (setting cp =cop in the bra of T)

( f~plT(~p+iOlaE &

(4.6b)

tf, (co +iO, E)=(f'cop(It (cp +io)~aE &,

tff cd(p+l 0)= (f spit (cpp+ )If cpp&

Lff'( cpp+ i 0 ) =Kff.( cop+ i0 )

(4.8)

=g [Lff' (Np+lo)t f'~(cpp+&O, E)], (4.7)
f'

with [froms Eqs. (3.8) and (3.18b)]

B. A, in pole approximation on the PVP couplings

k P = VP + VGp Vpp + VGp VGp Vpp + .

= g ( VGt, )"VP .
n=0

(4.9)

One can draw Feynrnan-like diagrams for the various
terms in (4.9); each Gp can be thought of as representing
unperturbed propagation in one intermediate P-space
continuum. If the various P-space eigenstates of H are
denoted by ~aE &, then in the pole approximation,

VGpP(Ep+iO)V~aEp &
= in g V~a'Ep & V ~—

a'
(4. 1Oa)

The limited Hilbert-space level shift operator A, allows
for P-space intermediate states and takes into account to
all orders the couplings between the P-space states. Ex-
plicit forms for it can be obtained in several different
ways. We could, for example, follow a procedure similar
to that used for separable PVP coupling in order to find
an expression for the matrix elements of k . Instead, we
examine the operator X in the pole approximation by
taking a perturbation series expansion. The analysis uses
the methods of Sec. V B of HJ.

Equation (2.18) for iL P can be expanded in an infinite
series as
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where

V...=&a'E, IVlaE, & . (4.10b) )a)

V is a square matrix with dimensionality equal to the
number of continua in P space. It follows that

VGp(ED+ i 0)VGi, (EO+iO) VI aEO &

Vla"E, &( i—n V. ., )„( i—nV.-.)
a', a"

()PE)}

=g Vla'Eo&[( —in V) ]
a'

Generalizing for all n ~ 0,

[VGi, (ED+i 0)]"VIaEo & =g V a'Eo &[( in—V)"]

(4.1 1)

(4.12)

and from (4.9)

A, (Eo+i0) I aEO &
=g Vla'Eo & g ( i n V )"—

a' n=0

)a)

r~

)1)

()PE)}

=g Vla'Eo&(1+in V)
a'

(4.13a)

(4.13b)

Equations (4.13) and (4.14) can now be used to write
explicit expressions for the various matrix elements of
A. (Eo+iO) The result. s can then be used to find matrix
elements of tzz, I(„„,and 6&. The calculations are
simplified if we assume matrix elements of PVP are slowly
varying enough that we can write

(aEI via'E'& = (aE, I
via'E, &

= v.. . (4.15)

i.e., if we neglect totally the energy dependence of the
matrix elements of PVP.

where 1 denotes the unity matrix with dimensionality
equal to that of V. Thus the matrix which needs to be in-
verted in Eq. (4.13) has dimensionality equal to the num-
ber of electron continua in P space.

Finally, Eq. (2.19) gives

a'(E, +io)= V —i~ y Vla'E, &(1+i~v).—,.'(aE,
I
V .

a, a'

(4.14)

FIG. 2. Schematic diagram of the model systems of Sec. V.

(g~lvlaE&=v, . &g~IVIpE&=v„,

&alvaE&=V, , (alvlpE&=v, p,
&b vaE&=v, . (bIVIpE&=v»,

(aEI VlpE'& = v.ii,

(5.1)

involve continuum states are slowly varying functions of
continuum energy, so that we may apply the pole approx-
imation in the analysis and so that we may write the cou-
plings shown in Fig. 2(a) as

&f~l VlaE& = V&, &fool VIPE &
= vs,

V. SAMPLE APPLICATION:
PHOTORECOMBINATION IN AN EXTERNAL

dc ELECTRIC FIELD

As an example of the use of the above formalism, we
will consider photorecombination processes within the
model system that is depicted in Figs. 2(a) and 2(b). The
P space consists of two electron continua [ IaE & ] and

[ I pE & ], the Q space consists of two discrete states
I
a &

and
I
b & with energies E, and Ei„respectively, and the R

space consists of two final atomic states with their corre-
sponding photon continua. The two R-space continua
are [If'&] and [Igloo& j.

We shall assume that the matrix elements of V which

(al vls &= V.„.
Their Hermitian conjugates are written similarly. We as-
sume R VR =0 (thus (fcoI Vlgco' & =0), and that the cou-
plings other than those listed above or their Hermitian
conjugates are zero. Because we neglect the energy
dependence of the matrix elements of V, there is no need
to distinguish V, which was used in the previous section
to identify matrix elements of V at a particular continu-
um energy, from V.

Under these assumptions, Eqs. (4.13) and (4.14) give,
using an obvious matrix notation (and denoting the
transpose of a matrix by superscript T),
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Vfa l 7TVfpVp Vfp $7TVf V p
RA, P =(1/Q p) V —imv pVp Vgp

—i~v V p

Vf, Vfb

V, Vgb

n (Vf V pVp, +VfpVp V, )

+i n.( Vf V, + Vfp Vp, )
—(1/g p) n (V V pVp, +Vspvp V, )

+in. ( Vg V, + VgpVp, )

n (Vf V pVpb+ VfpVp V b)

+in(vf. V b+ VfpVpb)

n (Vg V pVpb+ V pVp V b)

+in(V V b+ V pVpb)

V, —im. V,pvp
Qk P=(1/tl p) V V Vba ~~ bP Pa

Vp —i~v, Vp

Vbp
—i ~Vb V p

(5 2)

n. ( V—,~ V p Vp, + V,p Vp~ V~, )

—i~(l v..l'+ I v.,l')
QA, Q =(1/Q p)

V,bg p
n(V—, . V pVpb+ V,pVp V b)

i n—( Vb V, + VbpVp, )

Q p= 1+Pl v pl

V,b g,p
n—( V, V,p Vpb+ V,pVp V b )

iver( V—, V b+ V,pVpb)

n(V—b
.V pVpb+ VbpVp V b)

t ~—(l v,.l'+ I v,pl')

Vf
RA, P =(1/P p)

1 7T gp pa

vf, g p in vf V—,
Rk Q =(1/f p)

gp pa aa

—imvf V p

Vgp

m Vf V pVpb

Vbgg p in VgpVpb—

Matrix elements of QA, R can be obtained from RA, "Q by taking the transpose and interchanging the order of the sub-
scripts.

These expressions may be used to find Gg tRp and K~z, as outlined in Sec. IV. However, rather than proceeding
with the general case, we shall narrow our focus and describe photorecombination processes within the simplified sys-
tem depicted in Fig. 2(b). This model system represents a positive ion having two discrete states of opposite parity, each
of which can decay by either autoionization or photon emission. The states la ), [ IaE ) I, and lg ) have one parity, and
the states lb), [I/3E) {,and If ) have the opposite parity. Configuration interaction couples Ia ) to the continuum

[ I
aE ) I and

I
b ) to the continuum [ I pE ) I . The model also features parity-mixing matrix elements V,b and V,p

representing an external dc electric field. This system is similar to that studied by Ravi and Agarwal" (hereafter RA),
but generalizes theirs to include the coupling V p between the electron continua. Equations (5.2) then simplify to

—imV, VpV,
Ql P =(1/t/ p)

1 & bP Pa bP

(5.3)

—inlV, Vbg p nV, V —
pVpb

Q& Q =(1/t/ p)
~ab Cup n Vaa Vap Vpb t n

I Vbpl
'—

Equations (5.3) can then be combined with Eqs. (2.11), (2.12), and (4.5) to find G&, tttp, and Etttt. We define linewidth
parameters

dimensionless energy parameters

e= (E E, ), b, = (Eb—E, ), —=2 =2
a 0

and line-shape parameters
1/2 1/2 nr b1 'Va 1

~vf. r. ' g ~v, p r ' r
/ f=1+~'I vf. I'+ ~'I v.p I', / I =1+~'I vg pl'+ ~'I v.p I',

ff =1+n
I Vf I, Q p= 1+n

I
V pl2 .

4I v,„l'
&b=2 IVbpl', y. =2 lvf. l', yb=2 lv, bl', &= ',", g= v.p,r.' (5.4a)

(5.4b)

(5.4c)
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Then assuming that the discrete state-continuum matrix elements of V are real and positive, and that V
&

is real, we

find using Eq. (2.12) that the matrix elements of tl, z(E +i0) are

( y /I )1/2

(f~lr'iaE) =

(y /I )1/2

&felt'IPE &
=

7Tgf

( y /I )1/2

& g co~ r ~~aE &
=

7Tgg

Ib
(e+qf )(e —6) Q—+i (e+qf ) qf—r)g

Q

r, r,
[e(e 6—) Q—]g &+2rig — +i e 1+

Q a

qf ri i—[(e+qf )(e—b, )g —Qg+ ri]

r, r„
[c(e 6)—Q]—g fi+2r)g —+i e 1+

Q Q

q rl i I @[—e b, +q—(I b/I, )]g Qg—+ALII

r, r,
[e(e—b, )

—Q]tt &+2gg — +i e 1+
Q Q

(5.5)

(y b/I b)' ' e[e 5+—q (I b/I, )] Q+t'[—e b, +q—(I b/I, )
—

q gg]
geo t f3E

7Tqg r, r,
'

[e(e—b, ) Q]f —&+2rig +—i e 1+
Q Q

The matrix elements of ERz can now be constructed from Eq. (4.5), and are presented in Eq. (5.6) on the following
page.

It is now a straightforward matrix calculation to use
Eq. (4.4) to construct matrix elements of RT(E+i0)P.
Because of the algebraic length of the results, we do not
write out the final, algebraic expressions for the matrix
elements.

The probability of photorecombination from initial
continuum state ~aE) to the final photon continuum

[ ~
fro) I can be calculated as 4n. ~(fee~ T(E+i0)~aE) ~,

where by conservation of energy ~=E. Figure 3 shows
this probability as a function of the electron energy pa-

I

rameter e for varying dc field strengths. The various
atomic parameters were chosen so as to match those of
Fig. 2 of RA, except that we have included the coupling
between the two electron continua. In order to show
clearly the effects which this latter coupling can have, we
have made it comparable in size to the coupling between
the discrete states. In the absence of the field, the prob-
lem reduces to the well-understood case of a single reso-
nance imbedded in a continuum, and demonstrates the
expected single resonance profile. As noted by RA, in-
creasing the dc field causes the resonances to exhibit a
doublet structure. In this case the electric field mixes the
autoionizing states to form dressed states, each of which
can decay to the photon continuum

~fco ). For our case,

Pf

Pf

.2-

-3.5 -2. 1 W. 7 0.7 2. 1 3.5

FIG. 3. Probability Pf of photorecombination into continu-
um ( ~ fee) ) from initial state ~aE ) vs incident electron energy
parameter e for various values of the external electric field.
Fixed parameters are I &/I, =0.07, y, /I, =0.1, yb/I, =0.1,

qf =5, q~ =1, and 5=0.3. The third axis gives Q, which is di-
mensionless and proportional to the square of the electric field.
In this figure, the electron continuum-electron continuum cou-
pling is related to the coupling between the autoionizing states
by V ii= V,b/I', =&f1/2, or g=(m. /2)&Q.

FIG. 4. Pf vs e for various values of the electron continuum-
electron continuum coupling, but with fixed discrete state-
discrete state coupling parameter A=2. The values of the cou-
pling between the electron continua are quoted along the third
axis as multiples of 4V ~=4( /m . Other parameters are the
same as in Fig. 3.
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in which changing the dc field strength changes both the
discrete state-discrete state coupling parameter 0 and the
continuum-continuum coupling parameter g, increasing
field strength corresponds to a significant decrease in
peak height.

In Fig. 4 we consider only the effect of the electron
continuum-continuum couplings —the discrete state cou-
plings are held constant. It is clear from the curves that
large continuum-continuum coupling suppresses the tran-
sitions into the I ~fcu ) j continuum and narrows the
linewidth of the resonances. We also note that the cou-
pling between the electron continua has little effect on the
separation of the resonances.

In Fig. 5 we present the probability of photoemission
into the second photon continuutn, I geo ) j, for the same
conditions as in Fig. 3. If there is no dc field, no transi-
tions into the I ~geo ) j continuum occur. When the field is
present, the couplings it introduces allow the population
to reach the I ~geo ) j continuum. When the PVP coupling
is nonzero, the population need not pass through the au-
toionizing states in order to reach the I ~geo) j
continuum —it can go from electron continuum I ~aE ) j
to electron continuum I ~PE) j, and then directly to
I geo) j. Thus the curves in Fig. 5 exhibit sizable proba-
bility P even far from resonance. We notice that the
effect of the autoionizing states is indeed to inhibit rather
than to enhance the probability near the energies of the
dressed states.

Figures 6(a}, 6(b}, and 6(c} show the effects of increas-
ing the coupling between the two electron continua while
keeping the coupling between the resonances at a con-
stant value. At zero PVP coupling, the dressed state en-
ergies correspond to peaks in the curves, but as the cou-
pling increases the dressed state energies begin to corre-
spond to dips in the curves.

Our results clearly show that the PVP coupling can
strongly inAuence the photorecombination process, and
the magnitude and importance of the PVP coupling will
need to be considered in any study of real systems featur-
ing photorecombination in an external field.

0.75-

&0.8

-3.5 -2. 1 &.7 0.7 2. 1 3.5

FIG. 5. Probability Pg of photorecombination into continu-
um j ~geo) j from initial state ~aE ) vs e for the same conditions
as in Fig. 3. The total photorecombination probabilities can be
obtainied by summing these curves with those of Fig. 3.
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P

.2-

P
K

0.2 ~

0. 1 ~

4V
2

-3.5 -2. 1 &.7 0.7 2. 1 3.5

(a) (b)

.4-

0.04

-3.5 -2. 1 &.7 0.7 2. I 3.5

(c)
FIG. 6. Pg vs e for various values of 4V & and for 0=2. The total photorecombination probabilities can be obtained by summing

these curves with those of Fig. 4.

VI. ALTERNATIVE EQUATIONS
FOR THE PROJECTED T OPERATOR

Alternative equations for the projected T operator,
based on Eq. (l. ld) rather than Eq. (l.lc), will be
displayed in this section. Analogs to all final equations in
Secs. II, III A, and III 8 will be presented. The alterna-
tive formulation is particularly useful when the couplings
satisfy a separability condition in which the initial-state
energy can be separated out in a manner analogous to the
way that the final-state energy separates out in Eq. (3.5).
Since this "initial-state separability" condition is met in,
for example, photoionization, in which the initial state is
a photon continuum state, we shall in this section solve
for Tpg instead of Tg p. Then R can continue to
represent the photon continuum projection operator and
P the electron continuum projection operator. Of course,
the formalism can also be applied to other situations in

The equations for the required projected T operators TpQ
and Tpp can be written down by inspection. The entire
calculation is then carried out in a manner analogous to
that of Secs. I—IV. The main difference is that most
operator multiplications are performed from the right.
The formal solution is

TPR(~ GR tRR ) tPR (6.2)

where the operator t is defined in Eq. (2.12).
It follows from Eq. (6.2) that the matrix element of TPR

solves

which R and P represent projection operators onto other
appropriate initial- and final-state continua.

The equation for TPR which follows from Eq. (l. ld) is

TPR = VPR+ TPR GR VRR+ TPPGp VPR+ TPQGQ VQR

(6.1)
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where the matrix elements of t are obtained from Eq.
(3.4). It can be seen from Eqs. (6.3) and (3.4) that matrix
elements of Pk are needed rather than of A, P. Accord-
ingly, in a systematic approach to solving Eq. (6.3) one
first uses (2.16) to find matrix elements of PA, . Then
(2.17) is used to construct all additional matrix elements
of A, . These are substituted into Eq. (2.12) to obtain all
necessary matrix elements of t . Finally, these are substi-
tuted into Eq. (6.3), an integral equation that involves ini-
tial states. Because we are considering TPz these are the
continuum states I r ].

The solution is facilitated if all matrix elements cou-
pling the I r ] continua satisfy the separability condition

( aE
~
T (z )

~fco ) =g t f (z, E)Jf f ( z ) Ijkf ( co ),
f'

where J is a matrix such that

Jf'f(Z) 5f'f Sf'(Z)t f'f(Z)
-P

with

(6.5)

(6.6a)

rather than T„p. In this context, pf(a~) corresponds to
the square root of the spectral density function for the in-
cident radiation, and d is essentially the electric dipole
operator. The solution to Eq. (6.3) for separable poten-
tials as described by Eq. (6.4) is

( fee~ V~aE) =Pf(a))df (E),
(aE~ V~fco) =d f(E)gf*(co),

(ftli V~a ) =pf(tli)df, ,

(a
~ V~ fee) =d,fpf(N)

(6.4)

sf (z) —fdc'
Z CO

and tf f(z) being given by Eq. (3.12).
The matrix element t f(z, E) is

(6.6b)

t f(Z, E)=K f(z, E)+ g X, (Z, E)(a~Gti(z)~a')X, f(z),
a, a'

The function pf(co) is the same throughout Eq. (6.4).
This condition is met for reactions induced by a single
photon and provides motivation for considering Tpg with

(6.7)

X,f(Z, E)=g fdE'(aE~(P —VPPGP) '~a'E')d f(E'),
a'

X,(Z, E)=g fdE'(aE}(P —VPPGP) 'jIa'E')(a'E'~ V~a) .
a'

(6.8)

Other matrix elements of k can be constructed from

X =V+VG X, (6.9)

Application of this formalism will not be presented in
the present work.

VII. SUMMARY AND CONCLUSIONS

We have presented a formalism for finding projections
of the T operator. The formalism is based upon the pro-
jected Lippmann-Schwinger equations for T, given in Eq.
(2.1), and an operator generalization of Gauss's reduction
for linear algebraic equations. The projection operators
we have used are P, which projects onto the set of con-
tinua in which the initial state naturally belongs, Q,
which represents resonances (or discrete eigenstates of
the unperturbed Hamiltonian), and R, which represents a
set of reaction channels orthogonal to P. In Sec. II we
have developed a formal equation for T„p(z), Eq. (2.13),
which is based on the Lippmann-Schwinger equation, Eq.
(l. lc). The equation for Tttp involves the operator tr(z),
which is defined in Eq. (2.12) in terms of the operator
l(, (z) of Eqs. (2.7) and (2.14) and of the operator G&(z) of
Eq. (2.11). We have identified A, (z) as the level shift
operator for a system which features P-space continua,
but no R-space continua; we have also identified G&(z) as
the Q-space to Q-space propagator in the same limited

Hilbert space.
In Sec. III we have developed an algebraic realization

of Eq. (2.13) for systems in which the projection opera-
tors P, Q, and R can be written as in Eqs. (3.1) and (3.2).
For the case in which the final-state continua (the R-
space continua) satisfy the separability condition (3.5)
and satisfy RVR =0, considerable simplification occurs,
and the matrix elements of T„p(z) are given by Eq. (3.18)
[see also (3.12) and (3.17)]. In Sec. III C we have con-
sidered the level shift operator A, (z), and we have shown
how it can be written when the PVP coupling satisfies the
separability condition (3.19) or when PVP is zero.

In Sec. IV we have shown how the results simplify if
one makes the pole approximation on the R-space con-
tinua, with the results (4.4) and (4.10). We also show how
the P-space propagator and k simplify when the pole ap-
proximation is made on the PVP coupling.

As a sample application, we have considered pho-
torecombination processes in a model atomic system
which features two autoionizing states, two electron con-
tinua (one of which contains the initial state), and two
photon continua (corresponding to radiatively stabilized
atomic states). We have made the pole approximation
throughout the analysis. The model is similar to the one
studied by Ravi and Agarwal, "but includes coupling be-
tween the two electron continua. We have shown that
this PVP (electron continuum-electron continuum) cou-
pling can have a dramatic effect on the photorecombina-
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tion processes. These effects are shown clearly in Figs.
3—6.

Finally, in Sec. VI we have sketched the derivation of
matrix elements of Tzz based on the Lippmann-
Schwinger equation (l.ld). This formulation simplifies
for the case in which initial-state continua satisfy the
separability condition (6.4), such as in photoionization.

Although we have used the formalism only in one case
of present interest in atomic physics, the formalism may

prove useful in a wide variety of problems involving very
different physical situations.
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