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We present an alternative time-dependent method of calculating the S matrix in quantum systems
governed by a Hamiltonian. In the first step one constructs a new Hamiltonian that describes the
physics of scattering at energy E with a reduced number of degrees of freedom. Its matrix elements
are computed with a Monte Carlo projector method. In the second step the scattering matrix is
computed algebraically via diagonalization and exponentiation of the new Hamiltonian. Although
we have in mind applications in many-body systems and quantum field theory, the method should
be applicable and useful in such diverse areas as atomic and molecular physics, nuclear physics,
high-energy physics and solid-state physics. As an illustration of the method, we compute s-wave
scattering of two nucleons in a nonrelativistic potential model (Yamaguchi potential), for which the

S matrix is known exactly.

I. INTRODUCTION

The determination of dynamical observables like
scattering amplitudes, decay amplitudes, cross sections,
etc., from quantum theory is a theme of central impor-
tance in many areas of physics, e.g., atomic physics,
molecular physics, nuclear physics, high-energy particle
physics, and also in condensed-matter physics. In this
paper we are particularly interested in the scattering
problem in many-body systems. In quantum field theory
(QFT), there are two rigorous approaches to the scatter-
ing problem. First, there is the Lehmann-Symanzik-
Zimmermann (LSZ)' reduction formula, which relates S-
matrix elements to Green’s functions. Second, there is
the Haag-Ruellez’3 formulation, which constructs the S
matrix from asymptotic states, which are localized, hav-
ing a definite particle number, mass, and other quantum
numbers, via suitable operators applied to the vacuum.

A breakthrough to obtain nonperturbative quantitative
solutions in quantum field theory has come with the for-
mulation of field theory on the lattice (LFT). The formu-
lation of field theory on a space-time lattice and its simu-
lation on supercomputers has proven to be very useful in
the systematic and nonperturbative study of many static
properties in quantum chromodynamics (QCD). These
include the hadronic mass spectrum,* the heavy quark
potential at zero temperature,’ as well as the equation of
state of the quark-gluon plasma at high temperature.®
However, if one tries to compute scattering observables
on a space-time lattice, one is confronted with several
difficulties.

(i) Because of limitations in computing power [storage
space and CPU speed], most lattices have spatial exten-
sions between 1 and 2 fm. This seems to be too small if
one wants to describe scattering of baryons (the size of a
nucleon is roughly 1 fm).

(ii) If one computes Euclidean Green’s functions, then
the Minkowski Green’s function, which is relevant for
scattering amplitudes, can in principle be obtained from
analytic continuation of the Euclidean Green’s function.
In practice, however, difficulties have been encountered.’

(iii) If one tries to compute the time evolution exp(iHt)
for real time ¢ from an Euclidean lattice, one also has ob-
served difficulties,® which corresponds to taking into ac-
count a complex action. Thus there is a general belief
that scattering data cannot be obtained in a reliable way
using an Euclidean space-time lattice formulation.

Hence, attempts have been made to tackle the scatter-
ing problem in alternative ways.

(i) Information related to deep inelastic scattering in
QCD has been obtained from QCD lattice calculations by
Martinelli and Sachrajda.’ They have computed the
lowest two moments of the quark distribution function of
the pion and the proton.

(ii) Liischer'® has suggested computation of the scatter-
ing amplitude by extraction from finite-size effects on
large lattices. Wiese!! has extended this is to extract res-
onance parameters from finite-size effects. In order to ob-
tain reasonable accuracy, this requires very large lattices.

(iii) A time-dependent method to compute the time
evolution and the S matrix has been suggested by Kroger
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and collaborators, based on a discretization of the Hamil-
tonian and an algebraic evaluation of the S matrix. This
scheme has been applied to the ¢}, ; model,'? the massive
Thirring model,’> and quantum electrodynamics
(QED), ,,."

(iv) There have been other approaches, such as that by
Garczynski,!> which derives scattering perturbation
theory from a lattice.

On the other hand, many fruitful ideas and techniques
have been developed in order to solve for the ground
state. The techniques are mostly based on Monte Carlo
methods. In particular, there are the Monte Carlo
Green’s-function method,'® the Monte Carlo projector
method,!” the guided-random-walk technique,'® the
coupled-cluster method,!® and similar techniques. They
have been applied to compute, e.g., the binding energy of
the a particle,?’ the properties of liquid helium *He,?'
and the glueball mass from QCD.?%?

In this paper we want to discuss how to compute
scattering observables in a many-body system. We pro-
pose to join the time-dependent Hamiltonian method for
the S matrix!?2~'* with a stochastic method, in particular
the Monte Carlo projector method,!” in order to reduce
the number of degrees of freedom. Let us briefly describe
it. We use a Hamiltonian formulation, use
renormalization-group ideas and the Monte Carlo projec-
tor method to compute the Minkowski S matrix

(Pou!Sldin) = lim (¢, | exp(iH>t)exp(—i2Ht)
t—

Xexp(iH®t)|¢,,) , (1.1)
where H* denotes an asymptotic Hamiltonian, and the
asymptotic states are assumed to have a wave-packet dis-
tribution in energy in the interval [E\,,E ] In field
theory, the Hamiltonian has infinitely many degrees of
freedom. In the scattering process described by the
above matrix element, only the degrees of freedom corre-
sponding to energies in [E|,,,E ;] play a role. Thus we
have the freedom to replace the Hamiltonian H by a new
Hamiltonian H®°k such that it has fewer degrees of free-
dom, but with the constraint to give the same physics for
energies in the relevant energy interval. The transition
H — H"°* can be considered as a renormalization-group
transformation. We suggest the construction of HP°% a5
follows: One constructs a finite-dimensional basis of so-
called broad states |¢°*!). Then one constructs so-
called focused states

E
lll]{/ocus( 7-focus) > = fEl pdE CXp[ —(H —E)ZTfocus]‘(bEroad) .

(1.2)

In the limit 7q— o, the contributions of the broad
states corresponding to energies E exterior to [E,,,E,,]
are filtered out. The block Hamiltonian is constructed by
taking matrix elements of the original Hamiltonian be-
tween the focused states. The projection operator is posi-
tive (T¢,,s 1S @ real parameter) with a rapid exponential
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falloff behavior for contributions corresponding to an en-
ergy outside of [E,,y, E,,]. It is suitable for application
of the Monte Carlo projector method.!” The S matrix is
replaced by a block S matrix by substituting H — H®°°
in Eq. (1.1) and replacing the time limit by a finite
scattering time. The numerical computation of the block
S matrix is straightforward after algebraic diagonaliza-
tion of the block Hamiltonian.

We suggest working in momentum space, i.e., using a
momentum lattice. Momentum variables seems to be the
natural coordinates because they describe the asymptot-
ics in a simple way. Momentum lattices have been used
in Refs. 12 and 13, and a light-cone momentum lattice
has been used by Eller, Pauli, and Brodsky? to study
QED. Stochastic quantization and the conservation of
SU(n) gauge invariance on a momentum lattice has been
discussed in Ref. 24.

In this paper we want to demonstrate the feasibility of
our approach by an application in few-body physics. We
compute nucleon-nucleon (N-N) scattering in a nonrela-
tivistic potential model (Yamaguchi potential). Although
it is not the ideal application, we have chosen it because
it has an analytical solution. The application is not ideal
in the sense that solving a one-dimensional integral by
Monte Carlo integration is much inferior to a fixed-node
integration. However, for many-dimensional integrals,
Monte Carlo integration is by far superior to fixed-node
integration. Thus the ideal application is a system with
many degrees of freedom. Here the S matrix of the
Yamaguchi model provides a benchmark to test the accu-
racy of the method under variation of the coupling con-
stant, the lattice size and other parameters.

In Sec. I, we introduce the idea of blocking of a Ham-
iltonian in order to reduce the number of degrees of free-
dom and we discuss the computation of a real-time S ma-
trix on a lattice. In Sec. III, we explain the working of
the Monte Carlo projector method. In Sec. IV, numeri-
cal results for N-N scattering are presented. In Sec. IV,
we give a conclusion.

II. TIME-DEPENDENT FORMULATION
OF SCATTERING

Let us consider a system, the dynamics of which is
governed by a Hamiltonian H. Let us suppose we want
to compute a scattering matrix element, determined by
the boundary conditions that at t =+ oo (— o) the
scattering states asymptotically approach the Hilbert
states ¢, (4,,). Moreover, we suppose that there is an
asymptotic Hamiltonian H? [not necessarily the same for
t=+ oo (—w)]. Then the S matrix in time-dependent
language is given by Eq. (1.1). We assume that the
asymptotic states ¢, (¢;,) have a wave-packet distribu-
tion in energy, say in the energy interval [E\,,,E ], and
the scattering energy E,, =(H?®) lies in this interval.
The computation of the S-matrix element proceeds in two
steps: (i) the reduction of the number of degrees of free-
dom by introducing a block Hamiltonian and its compu-
tation using the Monte Carlo projector method; (ii) the
algebraic computation of the block S matrix.
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A. Blocking approximations (reduction
of the number of degrees of freedom)

In most physical systems, the Hamiltonian has a large
number of degrees of freedom (this is already the case in
few-body systems, if one considers, e.g., three-nucleon
scattering with realistic N-N potentials). How can the
number of degrees of freedom involved in a scattering re-
action be reduced? Let us assume for the moment that
dou/bin are sharp eigenstates of H* to the energy E.
Then the S-matrix element given by Eq. (1.1) would not
change if we replaced H—H'=P(E)HP(E), with P(E)
being the spectral projector corresponding to energy E.
Now H'’ describes the same physics at energy E as H
does, but has a much smaller number of degrees of free-
dom. Now P(E) is an object which is numerically incon-
venient to compute. In our case, however, ¢, ($;,) are
wave packets covering at energy interval [E,.,,E ]
Hence a suitable new Hamiltonian would be

H—H'=P[E,,E,]HP[E,,,E ], 2.1
and analogously for the asymptotic Hamiltonian

H*— H'"*=P*[E\,,E,JH*P*[E\,y,E ;] . (2.2)
Thus
(bou!S'lbin) = Ilirrolc ( boulexp(iH'*t)exp(—i2H't)

Xexp(iH ' *t)|¢;,)  (2.3)

gives the same matrix element as Eq. (1.1), i.e.,

(outlS18in) = (PoulS"|$in) - (2.4)

However, S#S’. The expression, given by Eq. (2.3), is
suitable for a numerical computation. This can be done
as follows. We construct a ‘“broad” basis of states

J

(¢0m|Sblock( t)}¢in ) — < ¢out|exp( iHas.b)ockt)exp( _ iZHblockt)exp( iHas’blOth)ldiin > .
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|gbroad) y=1,...,N, which are elements of Hilbert
space. The broad states can be chosen quite arbitrarily,
but are usually wave packets. They are supposed to have
nonzero overlap with eigenstates of the original Hamil-
tonian H, corresponding to eigenvalues from the interval
[E\ows Ep]- Moreover, they have to be linearly indepen-
dent. Then we construct a basis of “focused” states
[gfocus) v=1,..., N, via Eq. (1.2). Because of

P[Elow’Eup]
172 E
fE "dE exp[—(H —E)*r], (2.5)
low

™

= lim

T— ©

the states |$°(;,.,)) have the property of “focusing”
onto the eigenstates of H in the interval [E\,,,E,,] when
Trocus— ©, and to exponentially suppress all degrees of
freedom which correspond to eigenstates of H exterior to
[E\owsEyp]- The focused states are neither orthogonal
nor normalized. One can construct a projector onto the
focused states

N
Pblockz 2 th;ocusxa‘l)vy(lp{f’cus] s (2.6)
v,u=1
va: ( djiocusl l/},f‘ocus) , 2.7)

where we have suppressed the dependence on the approx-
imation parameter 7., With the help of P®°, we con-
struct a block Hamiltonian

[y block — pblock gypblock (2.8)

Analogously to |¢52d), [ygfocus)  pblock and HPock corre-
sponding to the Hamiltonian H, one can construct the
analogous expressions |¢2%%r0ad) - [yas.focus) - pasblock 54
H?%o% corresponding to the asymptotic Hamiltonian
H?. Then the block S matrix is given by

(2.9)

If, e.g., one chooses |#°*¢) such that H® is diagonal in that basis, then in order to compute the block S matrix one has

to evaluate only the following matrix elements:

E
— focu focus ) — up
0= Yy = [ dE

E low

E
block — ( ,pfocus focus ) — f up
HVF‘ ( d}" thﬁ" > ElowdE E\ow

E, .
¢out,v:<¢outi¢{?cus>= fEl pdE<¢out|exp[_(H _E)szocus]lqszm d> ’

Ey roa
¢in,v:<¢inl¢i/0cus)=fb'l pdE<¢in|exp[_(H_E)szocus]|¢?f d> .

Let us give two comments on the blocking procedure.
In principle, 7, should go to infinity. In practical ap-
plications, it has to be finite. Convergence with respect
t0 Trocus Nas to be verified numerically. Another remark
concerns the projection operator exp[ —(H — E)* 7]
introduced in Eq. (1.2). The Ilatter contrasts to
the projection operator exp(—Hg,,) used in ground

E
P AE"( $57° | expl — (H — E)*TrocusJexpl —(H —E' VT ]I 47)

(2.10)

E
* JE"( $270%|exp[ — (H — E)*Tpoeus JH exp] — (H — E' Prpoeysllgp) 5 (2.11)

(2.12)

(2.13)

{

state computations. If, instead we would take for scatter-
ing exp[ —(H — E)7g,y], this would fail, because contri-
butions coming from eigenstates corresponding to ener-
gies E’' < E would blow up exponentially.

Let us discuss possible choices for the broad states.
One possible choice for a basis of broad states is such that
H?* becomes diagonal in that basis. This brings about a
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simplification for the evaluation of exp(iH®°%ks),
Another choice would be such that the noninteracting
Hamiltonian H° becomes diagonal in the basis of broad
states. In order to define such a basis, we introduce a
momentum lattice of broad resolution. Let the lattice be
defined by the sites p,, v=1,..., N, which form a regu-
lar D-dimensional lattice. The volume of the elementary
cube is (Ap)P. The lattice may be viewed as a decomposi-
tion of the total lattice volume into disjoint elementary

cubes c,, v=1,...,N, such that p, is located at the
center of C,. Then one can define a basis of step func-
tions |p,), v=1,...,Nvia {p|lp,)=1if pEC, and van-
ishes elsewhere.

In a one-body Hamiltonian, one can choose
|¢b2d) =|p ), v=1,...,N. In a many-body Hamiltoni-

an, step functions can occur in all sectors of Fock space,
e.g., in the m-body sector Ipvl, ...,p, ). This would
m

still lead to a very large set of basis functions. However,
the broad basis can be chosen actually to be much small-
er. First, one can restrict the broad basis by the require-
ment

Ex=(¢’roxd|H*|¢b ) €[E,,,, E,p] - (2.14)

For the case H¥=HP° and considering a one-body Ham-
iltonian on a one-dimensional lattice, this is illustrated in
Fig. 1. Secondly, let us assume that the asymptotic states
dou (#;,) belong to an m-particle sector, e.g., m=2.
Then one can restrict the broad basis to be chosen from
only the m=2 particle sector (the focused states, via the
interaction included in the full Hamiltonian, have contri-
butions from other particle-number sectors). Then
HP®°% given by Eq. (2.11), can be viewed as a Hamiltoni-
an in the m=2 particle sector, while the original Hamil-
tonian H acts in the whole Fock space. This is another
way of looking at the above statement that H — H ok
can be regarded as a renormalization-group transforma-
tion. H and H®° are quite different Hamiltonians, but
they should describe the same physics in the energy inter-
val [E,,,,E,]. However, there are many other possible
choices for the basis of broad states, and in general it is
not necessary that they are eigenstates of the noninteract-
ing Hamiltonian. There is no general rule, except (i) basis
states should be constructively simple, and (ii) they
should not yield too-small matrix elements, i.e., elements
which are zero compared to the statistical noise.

We have noted the fact that H®° corresponds to a

]

N
<¢out|Sb10Ck(t)|¢in>= 2

Vi, o =1

The questions to ask now are the following: (i) Under
which conditions does this yield a systematic and reliable
approximation of the original S matrix? (i) What does
the parameter ¢ mean? How is it chosen? One can give
several answers to question (i). The mathematical answer
is that H°° has to approximate H in the sense of strong
resolvent convergence.?> The physical answer is that
HP°% has to be a good approximation of H in the spec-

(Boul 13V expGE S (0 m, Yexp( —i2E )7, |95 ) expUEXt)( |y, .
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FIG. 1. The definition of a “broad” state in momentum
space.

finite-dimensional Hamiltonian matrix and thus its eigen-
values E, [Eq. (2.14)] are expected to lie in the interval
[Ejow-Eypl- This is strictly valid in the limit 7g— o,
but for some large but finite 7, the eigenvalues are ex-
pected to be located in the neighborhood of this interval.
Numerically, this is desirable, because it corresponds to a
well-conditioned matrix, in contrast to the original Ham-
iltonian H, which has an unbounded spectrum, with ei-
genvalues extending from O to o, and hence H can be
considered an ill-conditioned matrix.

B. Computation of the block S matrix

In Sec. II A, we have described how to reduce the num-
ber of degrees of freedom of a Hamiltonian H by con-
struction of a block Hamiltonian H®°%, HP®°% corre-
sponds to a finite-dimensional Hamiltonian matrix.
Hence we can compute the block time evolution
UPk(t)=exp(iH®°°*¢) and the block S matrix by alge-
braic diagonalization:

H®%y Y=E |n,), v=1,...,N, (2.15)

Hasblock|pasy = pas|pas) - y=1, ... ,N . (2.16)
As mentioned above, it is convenient to choose

|gbroad) =[n2s), v=1,...,N . 2.17)

Then the block S matrix given by Eq. (2.9) reads, using
Egs. (2.15) and (2.16),

(2.18)

=

tral neighborhood of the scattering energy E,. The
answer from the practical point of view is that one con-
structs H°°* from H by the blocking procedure, based
on a lattice discretization. One has to vary the approxi-
mation parameter, e.g., the block dimension, lattice size
and spacing, until the block S matrix yields converging
results. The answer to question (ii) is that the parameter
t, which has nothing to do with the parameter 7¢,, is a
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real-time parameter which has to be chosen large but
finite. [Neither lim,_,  U®°*(z) nor lim, , , S®°%(z)
does exist, because the generator of the time evolution is
a finite-dimensional operator.] The ideal choice for the
parameter ¢ would be such that AS =|S-5®°%(¢)| would
be minimal. In practice, where the exact solution for S is
unknown, one can fix the parameter ¢ by the physical re-
quirement that the violation of energy in the scattering
process becomes minimal. The energy violation can be
measured by

A(E)(t)z ' ( 1/jscat(l.)l}]blockhbscat(t) > _ ( ¢iniHas,block|¢i" >| ,
(2.19)
where

|¢scat( t) > = UblOCk(t) Uas,block( _ t)1¢m> (2.20)

corresponds to a scattering state. This definition for the
parameter ¢, called scattering time ¢, , has been tested
for several nonrelativistic?® and relativistic models'2 ™4,
and it has been observed that the ideal definition and the
working definition, Eq. (2.19), give very close answers,
i.e., the parameter determined from the working
definition yields a stable S matrix, close to its reference
value.

Let us close this section with a remark on the behavior
of UY°%(¢) and S®°k(¢). First, matrix elements of both
U(t) and U®°*(¢) have an oscillatory behavior with in-
creasing t—>o. However, matrix elements of
U(t)U*(—1) converge with t — o, thus matrix elements
of S®°°k(¢) are expected to be smooth and stable func-
tions in ¢, at least in some reasonably wide time interval,
which includes the scattering time. Secondly, S is unitary
and S®°%(¢), by construction, is also unitary for any real
value of ¢. This implies bounds on the numerical solu-
tion, and is very useful from the practical point of view.

III. MONTE CARLO PROJECTOR METHOD

In this section, we want to describe how to compute
the matrix elements o, H'f,:ka, Dout,» Din,v given by Egs.
(2.10)-(2.13) necessary to compute the block S matrix.
We introduce another momentum lattice, which is of fine
resolution 8k with 8k <Ap (i.e., it has a finer resolution
than the p lattice of the broad states). We denote the lat-

—(H — )
><(k,-L|exp[ (H E)A'r]lk,»L+I

X (k

far +1

where A7=7g /L. Thus one has to evaluate the matrix
element
8, (E)=(k;lexp[ —(H —E)’Ar]lk;) . (3.7

One has

lexp[ —(H —E’')’AT]lk
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tice by sites k;, i =1,...,M, which form a regular D-
dimensional lattice. The volume of the elementary cube
is (8k)P. Correspondingly, we introduce a basis which
should span the whole Hilbert space via the step func-
tions, as introduced in Sec. II. We consider elementary
cubes C; of volume (8k)P centered at k;, and define a
one-body step function |k, ), defined by { k|k; ) =const, if
k € C;, and vanishes elsewhere. The constant is chosen to
normalize |k; ):(k;|k;)=1. In a many-body system, e.g.,
for one species of bosons, one has to build the basis from
all particle-number sectors, e.g., in the m-particle sector
\k,»l, .. ,k,-m ). For convenience of notation, we denote

the basis by |k, ), also including the many-body case.
Then we write

1= 3 [k, )k, |, 3.1)
k

which means that the states |k;) span a complete basis,
which is strictly valid only if the lattice momentum cutoff
goes to infinity and the lattice momentum resolution 8k
goes to zero. Having defined the broad lattice (Sec. II A)
and the fine-resolution lattice, then the conversion of a
function given in terms of the broad lattice onto the fine
lattice (or vice versa) is given by the scalar products
(p;lk;),i=1,...,N,j=1,...,M (M >N). The nonin-
teracting Hamiltonian is diagonal in the basis:

(k| HOk; ) =€%k,)8,; . (3.2)

Then in order to compute the matrix element H ‘;}j’c“, we

apply the Monte Carlo projector method. We split the
Hamiltonian into two parts:

H=H+V . (3.3)
Then we write
block — E"p E“P ’ ’
Hyp* = [, "dE [ g AE'B(EE") (3.4)
hvu(E’El)= <¢Eroad|exp[_(H _E)ZTfocus]
X H exp[—(H _El)szocus]ld’Bmad) . 3.5)

The operator exp[ —(H — E)*7g,,] is broken into L time
slices, between which the momentum basis of fine resolu-
tion |k; ) is inserted:

(¢?,'°adlk,l )(kiliexp[—(H ~E)2AT]|k,-2)X o

L +2

‘ ¢2road) ,

>(kiL+l
MWk,

L +2 L +2

(3.6)

f

exp[ —(H —E)’At]= exp[ — (H°—E)*A7]
Xexp[ —(V*+VH°+HV
—2VE)AT]
+0(A7?) .
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Hence, due to AT << 1,
g, (E)= (k,|exp[ —(H°—E)*Ar]lk,)
X (k,[1—=Ar(V*+VH’+HV —2VE)|k;) .
(3.9)

This can be evaluated explicitly. Then in order to
evaluate the matrix element 4, (E,E’) by Monte Carlo
methods, we introduce “scores” S;, and “‘weights” P, via

g,‘j:S,jP,j , (3.10)
EPUZI s (3.11)
i

P;=P; . (3.12)

Apart from the constraints given by Egs. (3.10)-(3.12),
the splitting of g;; into S;; and P,, is arbitrary. For the
case of N-N scattering, considered in Sec. IV, we have
considered two choices:

Pi(J»”)=const><exp[—(kiz—ZmE)z/az] , (3.13)

(3.14)

Putting Egs. (3.6)-(3.12) into Eq. (3.6) defines a Monte
Carlo procedure, where the amplitude for momentum k;
at some intermediate time slice is generated with proba-
bility P;;. In the process, the scores S;; are accumulated.

PP'=constXexp(—|H, —H|/d*) .

The generation of configurations of momenta
{kil’ ces kiZL 2} for all time slices and hence the prod-
+
uct S S b otp g iy ey S : is
172 L'L+1 L+1°'L+2 "L+2L+3 2L +1°2L +2

repeated many times in order to carry out the sum in Eq.
(3.6). Finally the evaluation of h,,(E,E") is repeated for
many values of E,E’ (corresponding to the moments on
the k lattice) in order to obtain H B}f“k by integration as
defined in Eq. (3.4). The same technique is applied to
compute the other matrix elements o, oy, 1> Pin, -

In principle, the resulting answers should be indepen-
dent of the choice of the probability matrix P,,. In prac-
tice, where the number of sweeps is finite, some choices
are better than others. Form (ii) is certainly better than
form (i) for the Yamaguchi Hamiltonian, considered in
Sec. IV. There exist many other ways of improving the
Monte Carlo algorithm described above, such as the
EPMC (Ref. 27) and the wave-function guided walk.'®
We do not wish to use those schemes here, as we are
more interested in studying the behavior of the S matrix
from an imperfect knowledge of the matrix element 4.

IV. NONRELATIVISTIC N-N SCATTERING

As outlined above in Secs. II and III, we want to avoid
computing (exp(iHt)) numerically, but rather compute
(H®°%) for which Monte Carlo algorithms have been
used widely.!¢7 182227 The success of our approach
therefore rests on the accurate determination of matrix
elements of the block Hamiltonian and also on the propa-
gation of the errors from the block Hamiltonian to the
block S matrix. In this section we discuss this issue for a
model describing nonrelativistic N-N scattering with the
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separable Yamaguchi potential. We have chosen this
model because it has an analytical solution for the S ma-
trix.

A. The model

In order to describe two-body scattering, one separates
the c.m. motion from the relative motion by using Jacobi
coordinates, and correspondingly writing the Hamiltoni-
an H. ., =H_ ., +H,. Then we split the relative
motion Hamiltonian into a free and an interacting part,
as in Eq. (3.3). The free Hamiltonian H? is given by

oq) =4

Hq) . lq) , 4.1
where q denotes the Jacobi relative momentum and
m =1im_ . is the reduced mass. We have taken the nu-
cleon mass to be m,,=938.259 MeV. In order to de-
scribe N-N scattering at low energies, the separable
Yamaguchi potential®® can be used. It describes the
phase shifts fairly well up to 100 MeV. The potential is
separable of rank one, with an s-wave form factor

V=[x l{xl,
(qlx)=1/(¢*+p%) .

(4.2)
(4.3)

The parameters A and 3 are fitted to reproduce the
effective range parameters, singlet scattering length, and
singlet effective range. We have taken A=—0.027 8811
fm~2 and B=1.12747 fm~!. The S matrix is related to
the T matrix via

(q'|S|q)=8(q'—q)— 2mi8(E, —E,)
X lim (q'|T(E,+ie)lq) .

e—0+

(4.4)

Because V is separable, one obtains an analytic solution
for the T-matrix

_ A

T(z)=|x) 13AG) (xl, 4.5)
. L 27m

lim A(E,+ie)=—"—"— . (4.6)

e—0+ B*q/B+1i)

We have computed the S matrix in a partial-wave repre-
sentation, in particular in the s wave.

In partial-wave representation, the momentum ¢ runs
from O to . We have used a momentum cutoff A=10.0
fm~!. We have chosen the energy interval [Eiow,E ] set
by iy =1.0 fm ' and ¢,,=4.0 fm~'. We have taken as
asymptotic state ¢, =d,,, given by a wave-packet state,
defined in the interval [g,,y,9,,] by

9 ~Giow
qup “Giow

doolg)=k |1—cos |27 s Gow =99y, »

4.7)

and vanishing elsewhere. The constant « is chosen to
normalize the state to unity. This wave packet is bell
shaped, having a peak at (q,,+g),,)/2 and a width of
(QUp T Giow )/2.
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We have introduced the broad resolution lattice by
discretizing the interval [g,,,,9,, ] into N=3 and 6 subin-
tervals, i.e., Ag=1.0 and 0.5 fm™ !, respectively. We have
chosen as broad basis functions the step functions (see
Fig. 1) corresponding to those subintervals. We have in-
troduced a fine-resolution lattice by discretizing the inter-
val [0,A] into M=20 and 40, subintervals, respectively,
i.e., 8¢=0.5 and 0.25 fm ™!, and used as basis functions
the step functions corresponding to those subintervals. It
has turned out that the exact analytical solution for the S
matrix and the numerical solution from the lattice with
fine resolution agree to less then 10>,

The other approximation parameters correspond to the
Monte Carlo simulation. We have used focus time steps
AT of 0.014, 0.020, 0.033, and 0.071 fm, and a total num-
ber of focus time slices L=3, 5, 7, and 11. For the
Yamaguchi model, we found that ¢, of about 0.2-0.5
was already good enough to obtain convergence, as is
shown below in the results. For the given magnitude of
the coupling constant A, it turns out that the probability
given by Eq. (3.12) is a good choice to perform the ran-
dom walk in phase space.

The computation of the on-diagonal matrix elements of
HP®°ck required only a few thousand sweeps (up to 10*) in
order to get an accuracy of less than 10%. The off-
diagonal matrix elements, on the other hand, involve
more work, namely up to 10° sweeps.

B. Numerical results

We have computed the S matrix in three ways. (i)
First, we have taken the analytical expression from time-
independent stationary scattering theory for the on-shell
T matrix, Egs. (4.5) and (4.6), and integrated numerically
over the energies which contribute to the asymptotic
wave packet, Eq. (4.7). This is considered as exact solu-
tion, referred to as reference solution. (ii) Secondly, we
have computed the time-dependent block S matrix, Eq.
(2.9), by computing the block Hamiltonian, Eq. (2.11),
from the fine-resolution lattice (k lattice). We have re-
placed in Eq. (2.11) the original Hamiltonian H by the
Hamiltonian defined on the fine-resolution lattice. We
have diagonalized it and hence computed the exponen-
tials in Eq. (2.11) in its eigenrepresentation. This is con-
sidered as the reference solution for the block Hamiltoni-
an and the block S matrix. (iii) Finally, we have comput-
ed the block S matrix from the block Hamiltonian via the
Monte Carlo projector method. This is the solution we
want to study. In this way, information on the error
from the blocking method is obtained by comparing the
exact solution with the blocking reference solution, and
information on the error from Monte Carlo methods is
obtained by comparing the blocking reference solution
with the blocking Monte Carlo solution.

The point of our numerical example is not to attempt
to get the most accurate value for the S matrix as possible
using the best available Hamiltonian projector Monte
Carlo method. We have used a conventional Monte Car-
lo method and limited statistics because the goal is in-
stead to attempt to see whether acceptable values for the
scattering matrix can be obtained with imperfectly
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known Hamiltonian matrix elements. The fact is that an
accurate calculation of the S matrix in the context of the
Yamaguchi model could not imply the success of our
general approach for more complicated and more realis-
tic theories. What is more likely, however, is that in the
latter case the numerical calculation of the block Hamil-
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FIG. 2. The difference between the eigenvalues of the asymp-
totic and the full block Hamiltonians vs 7p.,, A=0.278811
fm ™2, N=3, and M=40. The diamonds, crosses, and pluses
correspond to the reference values. The solid squares represent
the Monte Carlo data. The lines are a guide for the eye.
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FIG. 3. Block S matrix vs 7g.,. A=0.278811 fm 2. The
continuous line (Re S) and the dashed line (Im S) correspond to
the exact solution. The symbols (X ) and (+) correspond to Re
S and Im S, respectively, of the reference block S matrix. The
open diamonds and open squares correspond to Re S and Im S,
respectively, of the Monte Carlo block S matrix.

tonian matrix elements will be known with mediocre ac-
curacy (10-20 %), given the size of the problem and the
complexity of the interactions.

In general, the Monte Carlo method described in Sec.
III yields the matrix elements of the full and asymptotic
block Hamiltonian. In our application, we have chosen
to use for the matrix elements of the asymptotic block
Hamiltonian the exact values, in order to reduce the er-
rors. In most applications in many-body theory, the cal-
culation of the matrix elements of the asymptotic block
Hamiltonian is likely to be simple enough to permit an
exact solution.

In Fig. 2 we show the difference of the eigenvalues
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FIG. 4. Block S matrix vs coupling parameter A. N=3,
M=40. The symbols (+) and ( X ) correspond to Re S and Im
S, respectively, of the reference block S matrix. The continuous
lines are a guide for the eye. The Monte Carlo data are given by
diamonds (Re S) and squares (Im S). The open symbols corre-
spond to g, =0.1 fm and the solid symbols correspond to
Tf()cuszo's fm.
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FIG. 5. Block S matrix as a function of the error €, Eq. (4.8),
in the block Hamiltonian. A=0.0278811 fm ™2, 7., =0.1 fm,
N=3, M=40. 150 random numbers were used to generate the
Gaussian distribution.

E°—E,, v=1,2,3 corresponding to the asymptotic and
full block Hamiltonian as a function of 7¢,. This corre-
sponds to taking A=—0.278811 fm™? (ten times the
value of the Yamaguchi model), N=3 broad states, and
M=40 on the fine-resolution lattice. We display the
reference results and the Monte Carlo results from the
block Hamiltonian. One observes convergence of the
reference block Hamiltonian as a function 7¢,, starting
at about 7., =0.5 fm. Except for the lowest eigenvalue
(v=1), the eigenvalues obtained from Monte Carlo
methods show good agreement. Because the asymptotic
state has only a small contribution from the v=1 broad
states, the deviation in the lowest eigenvalue from Monte
Carlo methods does not strongly influence the block S
matrix. This is shown in Fig. 3, which gives the exact S
matrix, the reference block S matrix, and the Monte Car-
lo block S matrix. Again one observes rapid convergence
of the reference block S matrix as a function of 7.
For 7¢,.,,=0.5 fm, the relative error between the exact S
matrix and the block S matrix is less than 3%. This is re-
markable, in view of the small dimension N of the block
Hamiltonian and strong coupling parameter A. From
this we conclude in this model that the idea of the block
S matrix works. The Monte Carlo data have larger er-
rors, but follow the trend of the reference block S matrix.
This can be seen clearly from Fig. 4, where we have plot-
ted the same results as a function of the coupling parame-
ter A.

Because the eventual application of the method in a
many-body system requires the evaluation of the block
Hamiltonian by Monte Carlo methods, the question of
how statistical errors from the block Hamiltonian propa-
gate to the block S matrix is crucial. We have studied
this by a simulation, introducing a “noisy”’ block Hamil-
tonian

Hblock_>Hblock( 1+ex) , (4.8)

where € is a real-error parameter and x is a Gaussian sto-
chastic variable ({x)=0, {(x2)=1). The results are
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shown in Fig. 5. This corresponds to the coupling con-
stant A from the Yamaguchi model. Concerning the er-
ror propagation from the block Hamiltonian to the block
S matrix, two observations can be made. (i) In the region
of small € (<0.05), there is a linear relation between the
error of the block Hamiltonian and the block S matrix.
(ii) In the region of large € (<0.2), the error of the block
S matrix shows some saturation. This is due to the built-
in unitarity of the block time evolution and the block S
matrix, which puts an upper bound on the block S-matrix
elements.

However, looking at Figs. 3-5, with respect to unitari-
ty, one observes Re?(S)+Im2(S) < 1. This is due to the
fact that we do not scatter an asymptotic state of sharp
energy, but rather a wave packet covering a finite range
of energies.

V. CONCLUSIONS

We have proposed and tested a new formalism for the
calculation of the scattering matrix which should be appl-
icable for a wide variety of scattering problems. The
method consists of reducing the number of degrees of
freedom of the Hamiltonian, in order to describe scatter-
ing in a finite-energy interval. The matrix elements of the
new block Hamiltonian are computed using a momentum
lattice and the Monte Carlo projection method. This
Hamiltonian is diagonalized algebraically, which yields
the corresponding block S matrix. We have investigated
the role of errors associated with the matrix elements of
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the full and the asymptotic Hamiltonians on the scatter-
ing matrix, and have found that acceptable results can be
obtained with error levels of 10% or less (the typical er-
rors in the Monte Carlo method). We are now in the pro-
cess of applying this method to compact quantum elec-
trodynamics on the lattice in order to test its perfor-
mance in gauge theories. >’
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