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Extensive multiconfigurational Hartree-Fock (MCHF) calculations on the 'S ground state and the
'P excited state of lithium are reported. MCHF problems involving full configuration-interaction

calculations within up to 85 orbitals are solved numerically using the finite-element method. Sys-

tematic studies of the convergence of the hyperfine parameters with respect to the size of the active

space are given. The Fermi contact term of Li('S) has an accuracy of 0.07%. The Fermi contact,
the orbital, the spin-dipolar, and the electric quadrupole terms of Li( P) have an estimated inaccura-

cy of 0.7%, 0.13%,0.15%, and 0.35%%uo, respectively.

I. INTRODUCTION

During the past few years an atomic multi-
configurational Hartree-Fock (MCHF) program based on
the finite-element method and the direct configuration-
interaction (CI) technique has been developed. ' The
direct CI technique and the energy function formalism
make it possible to solve large-scale MCHF problems.

The hyperfine parameters are known to be very sensi-
tive to the quality of the wave function. The hyper-
fine parameters of Li( S ) and Li( P ) have earlier been
studied theoretically using both the Hylleraas expan-
sion approach, many-body perturbation methods
(MBPT), ' '2 and configuration-interaction approach-
es. ' ' The experimental value for the Fermi contact
term of Li( S), which is the only magnetic hyper-
fine parameter for the ground state of Li, is

A i/z =401.752043 3(5) MHz. ' ' The magnetic hyper-
fine coupling constants of Li( P) are A, /2 =45.914(25)
MHz and /li/2 = —3.055(14) MHz, ' respec-
tively. The off-diagonal coupling constant [ A 3/2 i/2
=11.85(35) MHz] (Ref. 20) and the diagonal ones ( A, /z
and A 3/2 ) yield experimental estimates of the Fermi con-
tact, orbital, and spin-dipolar terms of Li( P ).

The MCHF wave function is relatively compact and
the results are analyzable in terms of contributions from
different shells of a given symmetry and in terms of con-
tributions from different symmetries of shells. By using
systematic sequences of active shells in the MCHF calcu-
lations, it is possible to extrapolate the results, and to ob-
tain the s, sp, and spd limits of the hyperfine parameters.
The contributions from shells of higher symmetries de-
crease relatively fast and the extrapolation to the nonrela-

TABLE I. The s, sp, spd, spdf, and spdfg limits of the Fermi contact term of Li('S) (in a.u.).

n'

2
3
4
5

6
7
8
9
10
11
12

2.0932
2.8388
2.7341
2.8055
2.7847
2.7983
2.7970
2.7963
2.7970
2.7965
2.7968
2.7967

SP

2.0938
2.9444
2.8240
2.9039
2.8796
2.8960
2.8932
2.8936
2.8935

2.8936

spd

2.0919
2.9426
2.8249
2.9142
2.8890
2.9054
2.9024
2.9031

2.9031

spdf

2.9418
2.8242
2.9139
2.8898

2.9039

spdfg

2.8224
2.9135

'The number of active shells are ns, nsnp, nsnp(n —
1 )d, nsnp(n —l)d(n —2)f, and

nsnp(n —1 )d(n —2)f(n —3)g for the s, sp, spd, spdf, and spdfg limit calculations, respectively.
Estimated limits.
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TABLE II. The Fermi contact term of Li('S) (in a.u.).

s limit

sp limit

spd limit

spdf limit
NR limit
Rel. and finite

mass corrected
NR limit, Hy
NR limit, Hy
NR limit, Hy
Finite mass corrected
Rel. and finite

mass corrected
NR limit, CI
MBPT
Experiment
Experiment

Value

2.7967
2.8936
2.9031
2.9039
2.9039(20)
2.9049(20)

2.906
2.9041
2.9062
2.9057
2.9074

2.909 57
2.9189
2.9096
2.90606

Reference

This work
This work
This work
This work
This work
This work'

5

8

9
9
98

15
11

16,17
16,17'

The relativistic correction is 0.0017 a.u. (Ref. 11). The relative
correction factor for the finite nuclear mass correction is

0.999 765 yielding a correction of —0.00068 a.u.
Recalculated experimental value in Ref. 11.

'Recalculated in Ref. 9 using the new conversion factors of Ref.
25.

tivistic limit is obvious.
In the Hylleraas (Hy) expansion approach the situation

is different, the wave function cannot be interpreted in
terms of symmetries, and therefore it is not possible to
take advantage of the symmetry of the operator in ques-
tion. To obtain reliable values for the hyperfine parame-
ters from a Hy calculation, the accuracy of the energy
must be pushed close to the nonrelativistic limit. By
comparing, for example, the two Hy calculations by
Ahlenius and Larsson on Li( P) (Refs. 6 and 7) the ob-
tained energies are —7.409 99 and —7.410078 a.u. and
the corresponding electric quadrupole terms are —0.0202
and —0.022 36 a.u. A less drastic example is the Hy cal-
culation on Li( S) by King where the change in energy
is less than 1 pH when adding further 102 terms to a
500-term Hy expansion, resulting in a 0.000333 a.u.
change of the Fermi contact term. However, the change

of the Fermi contact term is in the wrong direction, away
from the experimental value.

Though the MCHF energy is not as accurate as the en-

ergy obtained from a Hylleraas calculation, the one-body
density matrices and the one-particle properties in the
MCHF approach converge even more rapidly than the
energy with increasing I quantum number. ' In the Hyl-
leraas approach, the error of the wave function and the
error of the one-particle properties are proportional to
the square root of the error in the energy.

The purpose of this work is to calculate the hyperfine
structure parameters of the Li( S) and Li( P ) states by
using a large-scale MCHF method, and to study the con-
vergence of the hyperfine parameters towards the nonre-
lativistic limit by using systematic sequences of active
spaces. By using systematic sequences of energy opti-
mized shells in the active spaces, discrepancies between
the theoretical and experimental values are better under-
stood.

II. METHODS

In this numerical multiconfigurational Hartree-Fock
method, the radial part of the occupied orbitals, Coulomb
potential, and exchange potentials are confined to the in-

terval [O,R,„]and the domain is divided into a number

of subdomains (elements), each containing np element

functions. We currently use Lagrange interpolation poly-
nomials of fourth order (n =5) as element functions.
The Lagrange interpolation polynomials have the proper-
ty of being 1 at one grid point and zero at all the others.
With this choice of element functions the expansion
coefficients of the orbitals and potentials become the am-

plitude of the functions in each grid point.
In this numerical basis we construct an energy function

where h, and g; I,i are the one- and two-electron in-

tegrals, respectively, and I; and I; k& are the one- and
two-particle density matrices. The energy is optimized
with respect to the expansion parameters of the orbitals,
i.e., the amplitude of the orbitals in each grid point, and

TABLE III. The s, sp, spd, spdf, and spdfg limits of the total energy of Li( 5) (in a.n. ).

n'

2

3
4
5
6
7
8

9
10
11
12

—7.432 727
—7.447 568
—7.448 476
—7.448 611
—7.448 644
—7.448 657
—7.448 663
—7.448 664
—7.448 666
—7.448 667
—7.448 667

sp

—7.456 860
—7.472 196
—7.473 454
—7.473 714
—7.473 789
—7.473 816
—7.473 827
—7.473 832
—7.473 834

spd

—7.459 127
—7.474 867
—7.476 238
—7.476 577
—7.476 689
—7.476 733
—7.476 752
—7.476 760

spdf

—7.475 370
—7.476 880
—7.477 267
—7.477 399

spdfg

—7.477 041
—7.477 485

'See footnote a of Table I.
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TABLE IV. The s, sp, spd, spdf, and spdfg limits of the Fermi contact term of Li('P) (iu a.u. ).

1

2
3
4
5

6
7
8
9
10
11

0.0000
—0.2143
—0.1517
—0.2302
—0.1916
—0.2334
—0.2267
—0.2278
—0.2273
—0.2275
—0.2274
—0.2274

sp

—0.2060
—0.1466
—0.2573
—0.2227
—0.2330
—0.2260
—0.2294
—0.2272
—0.2277
—0.2276
—0.2276

spd

—0.2066
—0.1412
—0.2459
—0.2127
—0.2231
—0.2157
—0.2192
—0.2171
—0.2176

—0.2175

spdf

—0.1411
—0.2456
—0.2120
—0.2214

—0.2158

spdfg

—0.2456
—0.2120

'The number of active shells are nslp, nsnp, nsnp(n —1)d, nsnp(n —1)d(n —2)f, and

nsnp(n —1)d(n —2)f(n —3)g in the s, sp, spd, spdf, and spdfg limit calculations, respectively.
Estimated limits.

TABLE V. The Fermi contact term for Li( P) (in a.u. ).

s limit

sp limit

spd limit

spdf limit
NR limit
Rel. and finite

mass corrected
Semitheoretical
NR limit, Hy
MBPT
Experiment

Value

—0.2274
—0.2276
—0.2175
—0.2158
—0.2158(15)
—0.2159(15)

—0.2148(8)
—0.2162
—0.2210
—0.2135(10)

Reference

This work
This work
This work
This work
This work
This work'

This work
7
11
20'

'The relativistic correction is —0.00011 a.u. (Ref. 11). The
finite nuclear mass correction is 0.00005 a.u. obtained using the
relative factor of Table II.
See text.

'Recalculated using conversion factors of Ref. 9. The experi-
mental value is —9.838(48) MHz (Ref. 20).

with respect to the expansion parameters of the
configuration state functions, i.e., the CI coeScients, with
imposed orthonormality constraints on the occupied or-
bitals and the CI vector. In the orbital optimization, the
optimization parameters constitute actually the non-
redundant set of angles of rotations from the virtual
space into the occupied orbitals. The occupied-virtual
part of the Fock matrix is constructed in the I.agrange
interpolation basis, and transformed to a basis where the
occupied set of orbitals are orthonormal against each oth-
er and against the virtual space. In this new basis the
occupied-virtual Fock matrix becomes the exact gradient
for rotations between the occupied space and the virtual
one. The rotations of the virtuals into the occupied space
are performed by using a generalized exponential map-
ping technique. The numerical procedure is discussed in
detail in Ref. 1.

a, = g 5II ) p51(', 1(i) & p,. l25(r ) Ip, &I 'i~'", (2a)

~ urn(j)&P;~r '~y, &r, (2b)

~d = y (161r/5 )
'"

& Fl "
~

F',
~
Y "'

& & (t, i r, 'i/, & r' '"

(2c)

In the multiconfigurational self-consistent field
(MCSCF) procedure, both the orbital and CI coefficients
are optimized to self-consistency. The CI problem is
solved using a Slater-determinant-based direct CI algo-
rithm in D„& symmetry. The e vector is constructed
in a Slater determinant basis from the CI expansion in
the same basis. In the Davidson diagonalization algo-
rithm, the vectors are transformed into the configuration
state basis. The coupling between the orbital and the CI
parameters is partly taken into account by using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton optimization technique. ' When the CI prob-
lem is solved the density matrices of equation (1) are con-
structed from the CI vector. The one- and two-electron
integrals are recalculated for each set of occupied orbit-
als, i.e., the optimization algorithm does not involve any
integral transformations. The MCSCF method is based
on the complete-active-space (CAS} self-consistent-field
(SCF} approach and its extension, the restricted-active-
space (RAS) method.

In the CAS method, the orbital space is divided into
three subspaces: the inactive, the active, and the virtual
ones. The inactive orbitals are doubly occupied in all
configurations, the virtual orbitals are all unoccupied and
are involved only in the optimization of the occupied
ones, and the active space is a full CI space. The spin-
polarization calculations are carried out using the RAS
method.

The hyperfine parameters
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TABLE VI. The s, sp, spd, spdf, and spdfg limits of the spin-dipolar term of Li('P) (in a.u.).

2
3
4
5

6
7
8

9
10
11

—0.011 72
—0.011 76
—0.011 76
—0.011 77
—0.011 77
—0.011 78
—0.011 78
—0.011 78
—0.011 78
—0.011 78
—0.011 78
—0.011 78

sp

—0.011 87
—0.011 95
—0.012 07
—0.012 09
—0.012 09
—0.012 09
—0.012 09
—0.012 10
—0.012 10
—0.012 10
—0.012 10

—0.01344
—0.012 08
—0.013 73
—0.013 27
—0.013 52
—0.013 36
—0.01346
—0.01341
—0.01344

—0.01343

spdf

—0.012 10
—0.013 75
—0.013 29
—0.013 55

—0.01346

spdfg

—0.013 76
—0.013 29

'See footnote a of Table IV.
Estimated limits.

b = g (16 /5) ( Y;,'
I
Y I Y,'" & & y; I», 'ly, & I;, ,

(2d)

are evaluated using LS-coupled wave functions with

ML =L and Ms =S. In Eq. (2), I; and I';t"" are the ele-
ments of the one-body density and spin-density matrices,
respectively. 51(;) &(~~ is the Kronecker delta, and 5(r ) is
the Dirac 5 function.

III. RESULTS AND DISCUSSION

A. Li(2S)

TABLE VII. The spin-dipolar term of Li( P) (in a.u. ).

Value Reference

s limit

sp limit

spd limit

spdf limit
NR limit
Rel. and finite

mass corrected
NR limit
MBPT
Experiment

—0.011 78
—0.012 10
—0.01343
—0.01346
—0.01346(2)
—0.01346(2)

—0.01342
—0.01348
—0.013 57(9)

This work
This work
This work
This work
This work
This work'

7
11

20

'The relativistic correction is —0.000004 a.u. (Ref. 11). The
finite nuclear mass correction is 0.000003 a.u. obtained using
the relative factor of Table II.
Recalculated using conversion factors of Ref. 9. The experi-

mental value is —1.876(12) MHz (Ref. 20).

In Table I, the obtained Fermi contact term of Li( S)
as a function of the active space is reported. About ten
energy optimized s shells are needed to reach the s limit
of the Fermi contact term. The first two p shells take
about 90% of the effect of p shells into account, but the
convergence for the last percent of the p effect is very
slow. When adding d, f, and g shells, the first few shells

have negative contributions to the Fermi contact term,
but when the third d shell and fourth f shell are added
the differential contribution changes sign, and further,
the fourth d shell causes a very large change in the Fermi
contact term. The contributions from g shells probably
behave similarly as when f shells are added. The fully
energy optimized shells are not the most efficient set of
shells to obtain accurate hyperfine parameters. As seen
in Table I, there are lots of overcompensation effects that
cause oscillating hyperfine parameters with an increasing
size of the active set of shells. As mentioned above, the
hyperfine parameters are very sensitive to the quality of
the wave function. To ensure that the hyperfine parame-
ters have converged in the calculation the energy thresh-
old for the convergence was set to 10 ' . The orbital CI
coupling becomes very strong and slows down the con-
vergence when the highest occupied orbitals have occu-
pation numbers of the order 10 to 10 '. By rotating
the orbitals into canonical ones, the Hamilton matrix be-
comes more diagonal dominant, and a faster convergence
in the Davidson diagonalization procedure is obtained.
In the orbital optimization procedure, natural orbitals
yield the fastest convergence.

By using the estimated limits of Table I, and neglecting
all contributions from g shells and shells of higher sym-
metries, the nonrelativistic limit becomes 2.9039 a.u.
This is a lower limit, because when adding further f
shells the Fermi contact term will increase, and the g-
shell differential contribution will change sign when the
third or fourth shell is added. By adding the relativistic
and finite nuclear mass corrections, a value of 2.9049(20)
a.u. is obtained. This value is only 0.0012 a.u. less than
the experimental value. ' ' In Table II, the present cal-
culated values are compared to earlier theoretical and ex-
perimental values.

To obtain an excellent agreement between theory and
experiment, King introduced the new proper conversion
factors between MHz and a.u. obtained by using the new
accurate values for the fundamental constants. Howev-
er, when considering the relativistic eff'ects, which were
neglected, the discrepancy between the theoretical and
experimental values increases from —0.0004 to 0.0013
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TABLE VIII. The s, sp, spd, spdf, and spdfg limits of the orbital term of Li('P) (in a.u.).

n'

1

2
3
4
5
6
7
8

9
10
11

0.058 58
0.058 78
0.058 81
0.058 83
0.058 84
0.058 90
0.058 90
0.058 90
0.058 90
0.058 90
0.058 90
0.058 90

sp

0.059 47
0.059 86
0.060 63
0.060 72
0.060 74
0.060 76
0.060 77
0.060 78
0.060 78
0.060 78
0.060 78

spd

0.06004
0.061 71
0.062 68
0.062 74
0.062 78
0.062 79
0.062 80
0.062 80
0.062 80

0.062 80

spdf

0.061 78
0.062 80
0.062 91
0.062 99

0.063 01

spdfg

0.062 83
0.062 94

0.063 04

'See footnote a of Table IV.
Estimated limits.

B. Li(2p)

In Table IV, the Fermi contact term of Li( P ) as func-
tion of the active space is given. In the Hartree-Fock ap-
proximation, the Fermi contact term vanishes, and nine
energy optimized s shells are needed to obtaining the s
limit. The p limit is almost equal to the s limit. The first
few p shells changes the Fermi contact term significantly.
However, when adding the sixth p shell to the active
space, cancellations cause the net contribution from the p

TABLE IX. The orbital term for Li('P) (in a.u. ).

s limit

sp limit
spd limit

spdf limit
NR limit
Rel. and finite

mass corrected
Semitheoretical
NR limit, HY
MBPT
Experiment

Value

0.058 90
0.060 78
0.062 80
0.063 01
0.063 04(8)
0.063 03(8)

0.063 07(16)
0.0634
0.063 08
0.062 63(27)

Reference

This work
This work
This work
This work
This work
This work'

This work
7
11

20'

'The relativistic correction is 0.000004 a.u. (Ref. 11). The finite
nuclear mass correction is —0.000015 a.u. obtained using the
relative factor of Table II.
bSee text.
'Recalculated using conversion factors of Ref. 9. The experi-
mental value is 8.659(37) MHz (Ref. 20).

a.u. The relativistic correction" is actually about three
times larger than the finite nuclear mass correction, with
the opposite sign, and must not be neglected.

The calculations in this work support the recalculated
experimental value of 2.90606 a.u. (Refs. 9, 16, and 17)
instead of the old one of 2.9096 a.u. In Table III, the to-
tal energy of Li( S) with respect to the number of active
shells per symmetry is reported.

shells to become almost zero. In Table IV, it is seen that
higher symmetries reduce, in absolute value, the Fermi
contact term. Also for the P state the obtained spdf lim-

it is a lower limit to the nonrelativistic value of the Fermi
contact term. In Table V, the calculated limits of the
Fermi contact term are compared with earlier theoretical
values and experiment. The relativistic corrections to the
hyperfine parameters are taken from Ref. 11.

The convergence of the spin-dipolar term with respect
to the size of the active space is shown in Table VI. The
spin-dipolar term converges fast with increasing l quan-
tum number. The convergence with respect to the num-
ber of d shells is slow and oscillating. In Table VII, the
obtained spin-dipolar terms are compared with literature
values.

The orbital term versus active spaces is shown in
Tables VIII. The spdfg limit of the orbital term is a
lower limit to the nonrelativistic value. Additional con-
tributions, obtained by adding further f and g shells will
increase the orbital term, and further higher symmetries
will also have positive contributions. This is rather obvi-
ous, because the correlating orbitals of higher symmetries
have about the same average radial radius, but larger m

quantum numbers. In Table IX, the limits of the orbital
term are compared with literature.

The by far least accurate experimental magnetic
hyperfine coupling constant of Li( P) is the off-diagonal

3/p t /2 parameter which has error bars of about 3%.
A more accurate set of interaction parameters in the un-
coupled representation is obtained by adapting the
theoretical spin-dipolar term. The final value for the
spin-dipolar term a~ (Table VI) has an uncertainty of
about 0.00002 a.u. Assuming that the spin-dipolar term
is —0.01346(2) a.u. [—1.8608(28) MHz], which is very
close to the earlier literature values of —0.013 42 (Ref. 7)
and —0.01348 a.u. (Ref. 11) obtained from a Hylleraas
calculation and a many-body perturbation calculation, re-
spectively. The diagonal magnetic hyperfine coupling
constants /I &/z and A3/2 are 45.914(25) and —3.055(14)
MHz, respectively. The sernitheoretica1ly estimated
values for the Fermi contact term a, and the orbital term
ao obtained from
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TABLE X. The s, sp, spd, spdf, and spdfg limits of the electric field gradients at the nucleus of
Li( P) (in a.u.).

n'

1

2
3
4
5

6
7
8

9
10
11

—0.023 43
—0.023 51
—0.023 53
—0.023 53
—0.023 54
—0.023 56
—0.023 56
—0.023 56
—0.023 56
—0.023 56
—0.023 56
—0.023 56

—0.023 66
—0.023 86
—0.024 15
—0.024 19
—0.024 20
—0.024 20
—0.024 21
—0.024 21
—0.024 21
—0.024 21
—0.024 21

spd

—0.018 89
—0.020 79
—0.024 58
—0.020 80
—0.023 78
—0.021 57
—0.022 96
—0.022 17
—0.022 61

—0.022 45

spdf

—0.020 80
—0.024 65
—0.020 89
—0.023 82

—0.022 52

spd fg

—0.02466
—0.02090

'See footnote a of Table IV.
Estimated limits.

and

3/2 a +ao+ad (3a)

A &/z
= —a, +2ao —10ad (3b)

become —9.897(39) MHz [—0.2148(8) a.u.] and 8.703(22)
MHz [0.06307(16) a.u.], respectively. The theoretical
value for the orbital term is very close to the semitheoret-
ical estimate, and the error bars of the theoretical and
semitheoretical values for the Fermi contact overlap.
Additional f shells would further lower, in absolute mag-
nitude, the Fermi contact term and an even better agree-
rnent would be obtained. The off-diagonal parameter,
A 3/2 J /Q is obtained from the parameters of the uncou-
pled representation by equation (4).

given in Table X. The convergence towards the spd limit
is slow, and the f and g shells hardly contribute to the
electric field gradient. Though the theoretically deter-
mined electric field gradient at the nucleus of Li( P )

should have an accuracy of about 0.35% (see Table XI),
it does not lead to any improvement of the nuclear quad-
rupole moments of the Li nor the Li nuclei, because the
uncertainty of the nuclear quadrupole coupling constant
is about 10%. The best available value for the nuclear
quadrupole moment of Li is —0.04055(80) barn ob-
tained from molecular calculations on LiH (Ref. 26) and
LiF (Ref. 27). The energy of Li( P) versus active spaces
is given in Table XII.

A3~q ~~2= —a, +ac/2 —5ad/4 . (4) C. Spin-polarized calculations

The sernitheoretical value of 33/2, /p becomes
11.923(85) MHz, which is in good agreement with experi-
mental value of 11.85(35) MHz.

The nl convergence of the electric-field gradient is

s limit

sp limit

spd limit

spdf limit
NR limit
Rel. and finite

mass corrected
NR limit, Hy
Rel. corrected

Value

—0.023 56
—0.024 21
—0.022 45
—0.022 52
—0.022 53(8)

0.022 53(8)

—0.022 36
—0.022 66

Reference

This work
This work
This work
This work
This work
This work'

'The relativistic correction is —0.000001 a.u. (Ref. 11). The
finite nuclear mass correction is 0.000005 a.u. obtained using
the relative factor of Table II.

TABLE XI. The electric field gradient at the nucleus of
Li( P) (in a.u. ).

As seen in Tables I, IV, VI, VIII, and X, the hyperfine
parameters converge slowly with an increasing number of
energy optimized shells. A faster convergence can be ob-
tained by adding polarization orbitals to the active space.
The spin- and orbital-polarization orbitals for the P state
are obtained by the following procedure: The Hartree-
Fock 1s shell is kept frozen, and only single excitations to
the spin-polarization 2s and 1d shells and to the orbital-
polarization 2d shell, which are optimized, are allowed.
The polarization orbitals affect the energy slightly, only
0.17% of the spd correlation energy is obtained in the
2slp2d calculation. In the subsequent CAS calculations
the active space is augmented with energy optimized
shells of s, p, and d symmetries, while the diffuse polariza-
tion shells and the 1s shell are kept frozen. A 6s6p5d
CAS calculation, which includes the polarization shells in
the active space, yields the same Fermi contact term as
an 8s8p7d CAS calculation with energy optimized shells.
The 6s6p5d polarization calculation yields a spin-dipolar
term that is only 1 X 10 a.u. smaller than the spd limit,
and an electric field gradient that is 3X10 a.u. larger
than the estimated spd limit. For comparison, the
10s10p9d CAS calculation, with energy optimized shells,
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TABLE XII. The s, sp, spd, spdf, and spdfg limits of the total energy of Li( P) (in a.u. ).

n"'

1

2
3

5

6
7
8

9
10
11

—7.365 070
—7.380 123
—7.381 031
—7.381 167
—7.381 197
—7.381 211
—7.381 219
—7.381 222
—7.381 223
—7.381 223
—7.381 224

sp

—7.401 376
—7.404 239
—7.404 823
—7.405 050
—7.405 119
—7.405 143
—7.405 152
—7.405 156
—7.405 158
—7.405 159

spd

—7.403 692
—7.407 136
—7.408 254
—7.408 628
—7.408 739
—7.408 780
—7.408 797
—7.408 806
—7.408 811

spdf

—7.407 644
—7.408 909
—7.409 338
—7.409 485

spdfg

—7.409 071
—7.409 557

'See footnote a of Table IV.

yields an electric field gradient that is 1.6X10 a.u.
from the spd limit. The convergence of the orbital term
with respect to the size of the active space is not im-
proved.

To speed up the convergence of the Fermi contact term
for Li( S), a similar procedure was used. The spin-
polarization shell is obtained by the following procedure:
A CAS calculation with 3s active is performed. The 1s
shell is kept frozen and only single excitations are al-
lowed to the 4s shell. In the subsequent CAS calcula-
tions, the four s shells are kept frozen, and the active set
is augmented with energy optimized shells. The conver-
gence of the Fermi contact term to the s limit is faster
than with the energy optimized shells. A 7s CAS calcula-
tion yields a Fermi contact term that is 3X10 " a.u.
smaller than the s limit. However, when adding p and d
shells to the active space to reach the spd limit the con-
vergence becomes even slower than with energy opti-
mized shells. When the initial 3s CAS calculation in this
procedure was replaced by a HF calculation, the conver-
gence towards the s limit became very slow. Further in-
vestigations on the optimal use of polarizing shell are in
progress.

IV. CONCLUSION

The feasibility of large-scale MCHF calculations on
atoms using the finite element method has been demon-
strated. The largest CI expansions of the present calcula-
tions consists of 11514 CSF's for Li( S), and 10864
CSF's for Li( P) in D„h symmetry. The hyperfine pa-
rameters of Li( S) and Li( P) converge slowly with an
increasing number of active shells, but by using systemat-
ic sequences of active spaces the extrapolation to the
respective limits is obvious. By adding spin-polarized
shells to the active space, shorter expansions are needed
for obtaining accurate hyperfine parameters of Li(~P).
However, for Li( S) the procedure involving spin-
polarized shells did not in general lead to improved con-
vergence.
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