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Stationarity principle for quantum-mechanical resonance states
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We show that the quantum-mechanical time-reversal operator provides a satisfying formulation
of the "generalized dilatation transformation" for forming scalar products with partial complex
conjugation, and leads to a theoretically justified stationarity principle for finding resonances (i.e.,
metastable states) in atomic and molecular systems.

I. INTRODUCTION

In recent years, various methods involving complex ex-
tensions of the quantum-mechanical eigenvalue problem
have been employed to find resonances (i.e., metastable
states) in atomic and molecular systems. Formally, these
methods lead to complex eigenvalues of the Hamiltonian
or generalized forms of it. ' Some of these methods have
involved the dilatation transformation of the Hamiltoni-
an, ' while others have been based on redefinition of the
scalar product so as to allow complex "expectation
values" of the energy. ' While these methods have often
been quite successful, the relation between them has not
always been clear, nor has it been as clear as one might
wish as to why the methods based on redefined scalar
products work.

In this paper, we focus on the method used (but not al-
ways explicitly formulated) in Ref. 5, which has been
named the generalized dilatation transformation or
(GDT) by Reinhardt. We will formulate this approach
in later sections with some precision; here we just briefly
summarize it.

Consider a molecular system in which total angular
momentum is conserved, and let %(ck,J,M) be a trial
function with definite angular momentum quantum num-
bers J and M (standing as usual for total angular momen-
tum and component in a chosen z direction), and depend-
ing on parameters ck, which are allowed to be complex.
Rejnhardt defines the GDT conjugate 4 as the
function obtained from 4 by complex conjugating only
the part depending on angular variables. One then
defines a variational function W(ck ) as

f qt (ck )IIV(ck )dr
W(ck)=

f 4 (ck)4(c&)dr

where 8 is the Hamiltonian. Evidently, W(ck ) is capable
of taking on complex values. In the GDT method, one
seeks stationary points of W(ck ), real and complex. The
real stationary points of 8' are then interpreted as
bound-state eigenvalues of the Hamiltonian, while the
complex ones with negative imaginary parts are inter-
preted as resonances. (Complex stationary points with

positive imaginary parts are normally not of physical in-
terest. )

The GDT method has proven quite successful in locat-
ing resonances, but nonetheless there are some unsatisfy-
ing features. In the first place, it is not clear how to per-
form partial complex conjugation with different coordi-
nate systems, phase conventions, or representations. (For
example, the distinction between radial and angular vari-
ables in Jacobi or heliocentric coordinates is not
preserved under a transformation to hyperspherical coor-
dinates. ) Moreover, the relation to more rigorously es-
tablished approaches, such as dilatation of the Hamiltoni-
an or the location of poles of the resolvent operator, is
unclear, leaving unanswered the question of why the
GDT method leads to good results.

The purpose of the present paper is to put the GDT
approach on a more nearly rigorous basis, by showing
how to define it more precisely and generally, and then
demonstrating that it leads to a true stationarity principle
for locating poles of the resolvent operator. [From now
on, when we speak of a resonance, we will always mean a
pole of the resolvent operator located in the lower half
energy plane. ] In Sec. II, we discuss the precise formula-
tion of GDT conjugation, and show that, when precisely
formulated, it is simply related to time reversal, leading
to a definition of GDT conjugation which is independent
of coordinate system, phase convention, and representa-
tion, and which is applicable in the presence of spin. Sec-
tion III presents the general theory of the stationarity
principle, and proves the main result that stationary
points of Was defined by the more precise form of Eq. (I)
correspond to poles of the resolvent operator. In Sec. IV,
we illustrate the approach by means of a calculation on a
simple model. There is some further discussions in Sec. V
and a brief summary in Sec. VI. Some mathematical
points are discussed in the Appendixes. Our treatment is
not mathematically rigorous in all respects: most impor-
tantly, we will frequently assume that expressions involv-
ing operators, and products of operators, which are func-
tions of complex variables can be analytically continued.
When such expressions are written out in terms of matrix
elements, this amounts to assuming that an infinite sum
of analytic functions is itself analytic. Nevertheless, we
feel that we have put the GDT approach on a sounder
basis then heretofore, and that we have taken a
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worthwhile step —though not the last step —toward a
truly rigorous theory.

II. RELATION BETWEEN GDT
AND TIME REVERSAL

This section will be divided into two subsections. In
Sec. II A, we discuss in some detail the formulation of the
GDT method, so that the ambiguities in the usual
definition become apparent, as do the required proper-
ties of the phase convention which will lead to a useful
definition. In Sec. II 8, it is shown how this definition of
GDT conjugation is expressible in terms of an antiunitary
operator simply related to time reversal.

A. Usual formulation of GDT conjugation

To motivate our development, it is convenient to carry
out GDT conjugation in two steps. Suppose that 4' is
written as a sum of the form

iP(ck,'J,M)= g iP (ck,J,M;p)y (M;0), (2)

where the + depend on scalar variables p, and the g are
spherical harmonics, or products of them, depending on
angular variables 0, each with total z component of an-
gular momentum M. In order for ~P as defined in (2) to
have the specified value of the total angular momentum,
one must have

y(X.le'lX&&q', =J(&+1)~..
P

(3)

We now define a function +, without the asterisk,
whose complex conjugate will be 4 . It is related to
4' as follows:

ipGDT —y ipse~ (4)

As we will see in Sec. II B, it is always easy to guarantee
that Eq. (5) is satisfied. The "GDT conjugate" is now
defined as the cpmplex cpnjugate tp +

will still be an eigenfunction of J with the same ei-
genvalue if the matrix elements appearing in (3) are real,
and we assume that the phase convention for the g has
been chosen so that this is the case:

(5)

and look for stationary points of it. It is worthwhile to
point out that, in cases of interest, 8'will be an analytic
function of the parameters ck, but will of course have
singularities, including branch points, at certain values of
the variables ck. There may therefore be two or more
Riemann sheets for 8', and different stationary points
may be on different sheets. The method, however, does
not restrict itself to a single Riemann sheet: all stationary
points on all sheets (for which Im W 0) can be associat-
ed with resonances. It is also worth noting that, if ordi-
nary complex conjugation were used instead of GDT con-
jugation, it would not longer be possible to consider 8'an
analytic function of the parameters, with ordinary conju-
gation, 8' would be real for all values of the parameters,
real or complex, and thus could not be an analytic func-
tion.

(ee~ey) =(e y)*,
e(a ~% )+b ~p) ) =a "e~%')+b'e~$) .

(7)

(8)

Although Eq. (8) as written applies to constant a and b, it
is shown in Appendix A that it implies complex conjuga-
tion of the ip in expressions such as (2) as well.

The time reversal operator T is antiunitary, satisfying
(7) and (8), and also has the property of being involution-
al: If 1 is applied twice, the result is the same state as
before, except perhaps for a phase factor. It can be
shown that this phase factor is always +1, and that
the plus sign applies if the overall spin of the system is in-

teger, the minus sign if it is half odd integer:

T =1 for integer spin,

T = —1 for odd integer spin .

(9a)

(9b)

Of more direct use to use than T itself is the related an-
tiunitary operator C, defined by

B. GDT conjugation in terms of time reversal

The time-reversal operator f', which has the property
of reversing all momenta and spin, is an example of an
antiunitary operator. The properties of antiunitary in
general, and of T in particular, have been discussed ex-
tensively in the literature. Here we briefly review a
few fundamental properties which will be needed in what
follows.

For any antiunitary operator e, any two kets ~%') and

~ P ), and any two complex constants a and b, one has

qgGDT —y ipse C=R T, (10)

This is consistent with the definition of Ref. 2, according
to which GDT conjugation consists of applying complex
conjugation only to the angular part of the trial function.
Note that the phase convention for the functions g must
be at least partially specified in order for this definition of
GDT conjugation to be unambiguous. For example, if

Ef
we multiply each 4 in (2) by a phase factor e and each

EP
by e, there is no change in +, but + + would ac-

quire significantly different properties.
Once ~II is defined, one can define 8'(ck ) as in (1)

where R„ is the unitary operator for rotation through m

about an axis perpendicular to the quantization axis. C is
evidently antiunitary and involutional, and it can be
shown that, regardless of spin,

C =1.
Now consider the operation of C on one of the angular

functions y of Eq. (2). Application of T reverses the an-

gular momentum component, but then R„restores it to
its original value, so the result is the same function as be-
fore, except perhaps for a phase factor:
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C'y (M;II) =e' y (M:II) . (12) Ie. ) =Ia )+cia) (20a)

Notice, however, that if we write y' =e' y, then we

find, making use of (8) and (12),
and

l~, & =i(le& —cia& }, (20b)
C iA/2~ ik—/2C~ eiP/2~. (13)

CX.=X. . (14)

Moreover, the phase convention that guarantees (14) is
also the one that guarantees (5). To see this, notice that
C leaves J invariant; in other words,

[C,J ]=0. (15)

If (14) is satisfied, we can make use of (7), (14), (15), and
the Hermitian property of J to obtain

Thus, by an appropriate choice of phase convention, we
can assure that,

and it follows immediately from (8) and (11) that both are
left unchanged by C. Thus (19) reduces to the ordinary
stationarity principle for the eigenvalue problem if one
restricts oneself to trial functions invariant under C. By
considering the more general case, we will obtain solu-
tions corresponding to resonances. In Sec. III, the gen-
eral theory is examined more closely.

Notice that the functionals in (18), unlike those in (1),
are defined in unambiguous in all cases. This is the cen-
tral result of the present section.

III. GENERAL THEORY

&x.lJ'Iyp&' = &apl J'17(..&
=

& cyplcJ'y. &'

=
& c'x,

l
J'Ix. &'

=&xplJ'Ix. &'

=&x. J'lx, &, (16)

The goal of this section is to prove that stationary
points of W, as defined by (18), correspond to poles of the
resolvent operator. In order to prove this however, we
must first lay some groundwork, which is done in Sec.
IIIA —IIID. Once this is done, the proof of the sta-
tionarity principle is quite simple, and this is done in Sec.
III E.

which is the same as (5).
Now, applying C' to the trial function 4 defined by (2),

making use of (8) and (14), and comparing with (3), we
find

(17)

(c'elBI+)
(cele) (18)

where the use of bra-ket notation is justified by the invari-
ance under change of representation of all quantities ap-
pearing in (18). The stationary problem may now be
solved in the usual way by means of the requirement

fi( & c'vial+) —x& ce Ie & =0, (19)

where 5 denotes a variation with respect to the parame-
ters c, and X is a Lagrange multiplier.

Since C commutes with the Hamiltonian and satisfies
(11), the eigenkets I4) of the Hamiltonian can be
chosen such that Cl@)= I

&). For, if I4) is an eigen-
ket of 8 with eigenvalue E, so is CIA). If C I4) is al-
ready just a phase factor times I@),we can use theyro-
cedure of (13) to rephase I@) so it is unchanged by C. If
Cl@) is linearly independent of I4), we can define the
kets

(For a discussion of the validity of applying complex con-
jugation to the functions 4, see Appendix A. ) More-
over, C% possesses none of the ambiguities of the original
definition involving partial complex conjugation. It is
well defined regardless of coordinate system, phase con-
vention, or representation. The presence of spin also
causes no problems. From now on, we will drop the
GDT notation and will work with C'.

With this definition, we can now rewrite (1}as

c (21)

This is called a C-adapted basis.
Our Hamiltonian commutes with C by hypothesis, but

we will need a generalization of this to operators that
need not be Hermitian. Accordingly, consider an opera-
tor G, not necessarily Hermitian, which satisfies

CC=G C, BC=M (22)

where the second relation follows from the first after mul-
tiplying on both sides by C' and using (11). The relation
(22) is independent of representation, as shown in Appen-
dix B.

The matrix for an operator satisfying (22) with respect
to a basis obeying (21) is symmetric; for, if (21) and (22)
are satisfied, we can use these relations in addition to (7)
and (11}to obtain

&kl&lj &=&jl~'Ik &*=&cj c&'Ik &

(23)

Conversely, if G is symmetric in such a basis, it follows
that (22) is satisfied. For any ket IF), we find, using (8),

A. Preliminaries: Hamiltonian, basis set, trial function

We consider a Hamiltonian 8 possessing certain sym-
metries, such as commuting with angular momentum, so
that the problem of determining its spectrum can be split
a priori into blocks such as JM blocks, and we can confine
our attention to a single such block. In the problems we
consider, moreover, there exists an antiunitary operator
C which satisfies (11), commutes with 8, and does not
couple different JM blocks.

As discussed in Sec. II B, we construct a complete set
of basis kets

Ij) for our block, all of which are invariant
under C, i.e., all of which satisfy
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(21), and (23),

M I F &
=M & Ij & & j IF &

=cy I
k & & k

I
C Ij & & j IF &

J j, k

=ylk &&klClj)'&jlF)*
j, k

=pit &&kl~'Ij&& jlF &*

j, k

=G'cIF & . (24)

B. Eigenvalue problem

Now consider a variational problem analogous to (19)
for an operator satisfying (22):

a&cd Gle) —x&Cee))=o. (25)

Because of (8), we see that

filce) =c'lw ),
so (25) becomes

&csel6le)+&celC se) —x&cfie e&

(26)

—A. & C@15%')=0. (2'7)

(29)

Inserting (28) and (29) into (27), and making use of the
fact that & C5+I is arbitrary, we see that (27) reduces to

(G —x)le) =0 . (30)

Thus the variational problem (25) is equivalent to an ei-
genvalue problem, just like the more familiar variational
principle. UnLike the usual variational problem, howev-
er, (25) lends itself to analytic continuation.

C. Analytic continuation

Consider a trial function I%'(ck)), depending analyti-
cally on the parameters ck in such a way that, for all of
our basis vectors, &j I%'(ck ) ) is an analytic function of the
parameters. Now, since

&col~) =&Jlce&*=&cjlc'+)=&Jl~&, (31)

it follows that all the & Cilll j ) are also analytic functions
of the parameters. From this, we can conclude that, un-
der suitable convergence criteria which we will assume
are fulfilled (as discussed at the end of the Introduction),
both

Using (7), (11), and (22), we can rearrange the second
term on the left-hand side of (27) as

& 0+IC lse &
=

&(ielC'Ice�

&"=
& cw IcC'el+ &

=&C5iplCIV) . (28)

Similarly, the fourth term becomes

&c'elfie) =&w lcw)'=&c'w lc'e&=&caela& .

and

«+I+&= g &~+Ij&&jl+& (32b)

are also analytic functions of the parameters; from this, it
follows further that W, defined in (18), is also an analytic
function of the e&. Note that the usual variational aver-
age energy Wo=&VIBI'P)1&+IiII) is not an analytic
function of the parameters, because of the complex conju-
gation. The variational principle using 8'reduces to the
usual one for 8'o if one restricts oneself to trial functions
left invariant by C (which includes all actual eigenfunc-
tions of 8); W, however, unlike Wo, can be analytically
continued.

To get an idea of what can occur, assume that 8 has
discrete eigenvalues co, and a continuous spectrum rang-
ing from coo to infinity. 8'will then have the form

W(cl, ) = y ro~~(ci, )+f a~p(a~, ck )dry .
COpa

(33}

The function p(co, ck ) will in general be an analytic func-
tion of co and ck except perhaps for certain singularities.
Suppose, for example, that p, considered as a function of
co for fixed ck, has a pole at ro= v(ck },so that the location
of the pole will change with the ck. As the ck vary so
that v(ck ) passes through the real axis at a point beyond
coo. W will experience an abrupt change. Thus 8' con-
sidered for simplicity as a function of one of the ck with
the others fixed, will have a branch point where
v(ck ) =coo, with a cut along the curve v(cl, ) =x,
coo&x & ~. As is the case with any analytic function,
the location of the branch point is determined by the
structure of the function, but the direction in which one
draws the branch cut is a matter of choice, corresponding
to a choice of Riemann sheet. We expect, therefore, that
8' will often possess more than one Riemann sheet, and
that analytic extensions of 8' may lead to complex sta-
tionary points on one or more of these. We will call the
sheet obtained by taking the branch cuts along the real
axis the principal sheet; sheets obtained by distorting one
or more of the cuts into the lower half-plane will be
called continuation sheets.

R(w)(w H)=(w H)(R—(ai)=1 . — (34)

R (w), or strictly speaking each matrix element of it, is an
analytic function of tL), with a pole at each discrete eigen-
value co of H and a branch cut along the real axis corre-
sponding to the continuous spectrum of 8, with a branch
point at each continuum threshold.

The product of resolvents for two di8'erent values of m,
Z(w, , w2 ) =R (w i )R ( wz ), satisfies

D. Resolvent and projection operators

The resolvent operator' P(w), a function of the com-
plex variable w, is formally the inverse of (w H), satis-—
fying

&+IHI+&= g &~+Ij ) & jlHlk &&kl+&
j, k

(32a)
(w, H)2( w„w)(2w2 8—) =1, —

which is solved by

(35)



STATIONARITY PRINCIPLE FOR QUANTUM-MECHANICAL. . . 2597

Z(wi, w2)
l8) N2

[R(w, )
—R(w~)] . (36)

%e will find this result to by useful later in this section.
The resolvent, like any analytic function, obeys the

Cauchy integral formula, which can be conveniently ex-
pressed as

1 R(cv)dcv
c

277l w cv
(37)

where the contour C is the clockwise path shown in Fig.
1(a), for a Hamiltonian with discrete negative eigenvalues
and a continuous spectrum of positive energies. Equa-
tions such as (37) are always understood to apply to each
matrix element of the operator(s) concerned, with each
side of the expression to be constructed, in principle, one
matrix element at a time. Accordingly, since any particu-
lar matrix element of P(cv) becomes small for large cv, the
circle at infinity can be omitted and the path distorted to
that shown in Fig. 1(b)

From the form of the contour in Fig. 1(b), we see that
the resolvent can be expressed as

analytic structure of matrix elements of R (w). By chang-
ing the direction of a branch cut, however, we can obtain
analytic continuations of R (cv) onto other Riemann
sheets. In particular, we may distort one or more of the
cuts into the lower half-plane, as shown in Fig. 2(a). The
distorted cut beginning at threshold co will be called S .
Figure 2(b) shows where R+ and R contribute to the
integral along one of the cuts. Although R (w) has no
poles in the lower half-plane, R+(w) may have poles
there, and in that case the distortion of the cut leads to
more residue terms in the continued form of R(w), as in-
dicated in parts (c) and (d) of Fig. 2. The expression (40)
for P(w) remains formally unchanged, but the sum over
a may now include complex values, and the integrals
need not be along the real axis.

The Hamiltonian itself may be expressed in terms of
the resolvent as an integral over a circle at infinity which
reduces to contributions from the spectrum as follows:

H= fwR(w)d w= geo g + g f cvg (cv)dcv .
2&l N

(41a)
Ra + f g(cv)dcv

a a
(38) A matrix element of (41a) has the form

&ulHlv &= &cv.&ulg. lv &+ g f "cv&cc lg(co) v &dcv .
a 0 c7

(41b)

where the g are residues at the poles, the integral goes in
the outward direction along the branch cut, and

g(cv)= [R (cv) —R+(cv)],
27Tl

(39)

where P (cv) and P+(cv) are the functions obtained by
continuing from the left half-plane below and above the
cut, respectively.

For multichannel continua, there are two or more
thresholds cv, each with its own branch point, and g(cv)
has contributions from more than one channel. In that
case, Eq. (38) becomes

If the direction of each branch cut 0. is distorted in the
direction S, (41a) becomes (the subscript in braces
denotes the direction of distortion of the branch cut)

H(s j

—g N g + g f cog (cv)dco, (42a)
a cr

a matrix element of which is

&u ~H(s
)

~v &= gcv &u ~g ~v &

R w=g +gf (40)
+ g f cv&u~g (cv)~v&dcv. (42b)

a well-known result. Evidently, if H commutes with the
antiunitary operator C', then R(w), g, and g (cv) are
symmetric in a basis satisfying (21).

The locations of the branch points are consequences of
the structure of the Hamiltonian, and through it, of the

For fixed & u
~

and ~v &, the integrands in (42b) are ana-

(a)

rC/CJ &

(b)

FIG. l. Contours for resolvent in Eq. {37). The points on the
negative real axis represent discrete eigenvalues of the Hamil-
tonian, and the heavy line along the positive real axis represents
the continuous spectrum.

(c)

FIG. 2. {a) Distortion of two branch cuts into lower half-
plane. (b) Contribution of (+) and (

—) branches of resolvent to
one of the cuts of (a). (c) Appearance of a pole of the (+)
branch of the resolvent. {d) Distorted cut of (c) with contribu-
tion of the pole isolated.
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P(C)= . ) cR( w)d w.
277l

(43)

As illustrated in Fig. 3, P(C) consists of residues g at all
poles contained within C, and the integral of g (co) along
any portion of a cut 0. contained within C, as expressed
by the relation

P(C)= g g +g f g (co)den .
a( C) cr

(44)

To evaluate the product of two such pseudoprojection
operators, we can use (36), which applies by analytic con-
tinuation to any continued version of R (w), as follows:

P(C, )P(C2)= fc dw, fc dw2R(w, )R(w2)
(2n.i)

1
dw f dw

(2
. )2 FC] 1+C2 2

X[A(w2) —R(w2)

—R(W2)), (45)

where the last equality comes from (36). Integrating the
first term over w, and the second one over w~, and using
the residue theorem both times, we see that we are left

lytic continuations of those in (42a). As illustrated in Fig.
2, the sum over a in (42a) and (42b) may contain terms
not included in the corresponding sums in (41a) and
(41b).

The matrix element ( u ~H (s }
~

U ) will be unaffected by

the change of direction of the cuts if the elements
( u ~g (co)

~
U ), considered as function so co, have no singu-

larities in the lower half-plane. In general, however,
analogously to the discussion following Eq. (33), 8(s }

must be considered as a different operator from 8, not
necessarily Hermitian, leading to continuation sheets of
the functions (u ~g (co)~U). If u

~
and/or ~U ) depend on

parameters, (42b) gives analytic continuations of the ma-
trix element as function of the parameters onto continua-
tion sheets.

Given a particular choice for the branch cuts of P(w),
we can define for any closed curve C in the complex w

plane a pseudoprojection operator P(C) as

RaSp =ga&ap (47a)

g g (~)=g (~)g

I den f den~ (co )g, (co,)=5,f g (co)den,

(47b)

(47c)

where in (47c} the curves K and E, are portions of S
and S„and K, is the segment, if any, where K and K,
coincide. If there are two or more continua whose cuts
coincide for all or part of their length, one can obtain
(47c} by imagining the cuts infinitesimally distorted so as
to become nonoverlapping.

The properties (47a) —(47c) correspond to the proper-
ties of projection operators onto orthogonal spaces, with
the g projecting onto discrete subspaces and an integral
along a curve of g (co) onto a portion of the continuum;
however, for distorted versions of R(w), the g~ and

g (co) are not necessarily Hermitian, which distinguishes
them from ordinary projection operators. Hence we use
the term pseudoprojection operator.

K. Stationarity principle

Given a trial function ~%), depending analytically on
parameters c&, we now seek solutions to the variational
problem (19) and its analytic continuations. As discussed
in the treatment of Eqs. (33), (41), and (42), one can ob-
tain an analytic continuation of (19) by distorting each
cut o. into the direction S, giving the analytically con-
tinued variational principle

with the portion of C~ contained in Cz and the portion of
Cz contained in C&, so that the result is the projection for
C,z, the curve made up of these two portions and enclos-
ing the portion of the plane enclosed by both C, and Cz.
The result for the product is thus

P(C, )P(C2)=P(C, 2) . (46)

The situation is illustrated in Fig. 4.
By making various choices of the curves C, and Cz so

as to enclose only a single pole, a portion of a cut but no
pole, etc. , one easily obtains the following properties of
the g operators:

FIG. 3. Portion of a branch cut and pole selected by the
pseudoprojection operator of curve C.

FIG. 4. Product of two pseudoprojection operators, as ex-
pressed by Eqs. (45) and (46). The intersection curve and the
portion of the cut contained within it are emphasized.
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(48) words, for any ket
5(& c% IH(

)
I% &

—
A& cq I+& )=0

where the operator H(s }
is given by (42). Now, the

operators g (co) are symmetric in representations satisfy-
ing (21); this property, just expressing the equality of two
functions

l~& = Iq &ci+ J "lco&g(co)dco,
0

we have

~IF &=Iq &~*+f l~&g*(~)d~ .
0

(55)

(56)

& jig.(~)lk &=&klg. (~)lj& (49)

(50)

Now let
I
Y & be an arbitrary ket, and try I

4 &
=g p I

Y &,

where g& is any one of the pole residue operators, real or
complex. Making use of (47a) and (47b), we easily find

H(s )
l+&= +co g gp+ g f cog (co)gp I

Y&
a g c7

=copgpl Y &
—cop q & (51)

In other words, Eq. (50) is satisfied by our trial func-
tion, so there i a solution of the variational problem for
every pole of (s )

. Equation (51) thus establishes our
a

variational principle, and it is the main result of this pa-
per.

IV. EXAMPLE: CALCULATIONS
WITH A SIMPLE MODEL

A. Definitions and resolvent

The model we use in this section is of a type that has
been studied extensively in the literature, going back at
least to the classic work by Weisskopf and Wigner. " Our
model consists of a free particle moving in one dimen-
sion, or in three dimensions with zero angular momen-
tum, which can be annihilated and recreated (or which
can be trapped in a metastable state and reemitted).
There are thus two types of zero-order basis states: a
state with no particle present (bound state), denoted by
Iq &, with zero-order energy s, and a continuum of states
Ico&, in which a free particle is present with zero-order
energy co, 0(m( oc. There is also coupling between the
states, which may have the effect of replacing the bound
state Iq & by a resonance. In detail, the model is defined
by the relations

is not lost in analytic continuation. It therefore follows
from the work of Sec. III A that 8~s }

satisfies (22). The
a

treatment of Sec. III B is therefore applicable to (48),
which, according to (30), reduces to

P(s )

4'&= +co g + g f cog (co)dco
a cJ

&cols(w)Iq &
= (58)

For the diagonal matrix elment &qlR(w)lq &, we again
use (24) and (52)—(54), and find

&qlw Hlq &&q—l~(w)lq &

+ J & q I
w HI ~ &d~—& ~~(~)

I q &
0

=(w —e)&ql&(w)lq &

—J f (co)dco& coll(w)lq & =1 .
0

Combining (58) and (59), we now have

& q lfY(w) Iq &
=

w —s —g(w)

&colR(w)lq &
=

(w —co)[w —s —g(w)]

where

f (co)dco(w)=
0 W CO

(59)

(60)

(61)

(62)

To obtain resolvent matrix elements between two contin-
uum states, we use (34), (52)—(54), (61), and the symmetry
of P(w) to obtain

& col& (w) lq & & q I
w —& lco' &

+ co R w co dco co w H co
0

f (co)f(co')
(w —co)[w —s —g(w)]

+(w —~'}&~I&(w)l~'& =fi(~ —~'), (63)

It is clear that C commutes with 8 and satisfies (11). It
then also follows from (34) that the resolvent in this rep-
resentation is symmetric.

To find the resolvent operator, we use (34) and
(52)—(54) as follows:

&colw —Blq &&qlfY(w) q &

+ a)w —Hco' e)' co' w q
0

= —f (co)&qla(w)lq &+(w co)&co—lR(w)q & =0,
(57)

&qlq &=1, &q leo&=0, &colco'&=fi(co —co');

Qlq &
= Iq &a+ I "Ico&f(co)dco;

0

8
I
~ &

=
I
~ & ~+

I q &f(~)

(52)

(53)

(54)

so that
I

&colfax(w)lco'& =

The function (co) is taken to be real; thus the antiuni-
tary operator in this representation can be taken as
simple complex conjugation of all coefficients. In other

+ f(co)f (co), . (64)
[w —r. —g(w)](w —co)(w —co')

The results (60), (61), and (64) can be summarized as
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f - Ico&dco(col

0 W CO

+ 1
I

+ ~ lco )dcof (co)

w —s —g(w) o w —co
+

~ f (co )dco (co Iq+ I
0 W CO

(65}

Clq'& = Iq &+ f "leo&g "(co)dco .
0

Now, using (52)—(54), (66), and (67), we find

(67)

Iql)+ lq &+ f Ico)g(co)dco, (66)
0

where g(co) is a function to be determined. Using (56),
we find

We see from (65) that the resolvent R(w) will have a
pole at any point for which w =e+g(w). This can hap-
pen on the negative real axis if the properties of f (co) are
such that e+g(0) (0, which we assume not be the case.
If the integral in (62) is taken along the real axis, there
can be no poles for complex values of w, since Imw and
Imp(w) always have opposite signs. Thus there are no
poles on the principal sheet. However, g(w} as defined in
(62) has a branch point at w =0, and we get a continua-
tion sheet by taking the cut below the real axis. On this
sheet, there may be poles.

B. Trial function and variational calculation

To illustrate the variational procedure as applied to
our m.odel, we consider a trial function of the form

and

~ +I@lq'& =a+2 f "f(~)g(~)d~
0

(qil+) =1+f gz(co)dco . (69)
0

Inserting (68) and (69) into the expression (18) for W, we
find

E+2f f (cO)g(CO)dCO+ f cOg (CO)dCO
W= 0

1+f g (co)dco
0

(70}

The variational problem consists of setting the varia-
tional derivative of 8'with respect to g (co) equal to zero.
Taking the variational derivative and setting it equal to
zero, we find

58' =2 1+f g (v)dv
5g(co) . o

[f(co)+g(co)] 1+f g'(v)dv —g(co) a+2 f f(v)g(v)dv+ f vg'(v)dv
0 0 0

=0.

(71)

Setting the quantity in large square brackets in (71) equal
to zero and solving, we easily obtain

g (CO) = (CO)

Z co

with

v+2 vg v v+ Ug v v
Z= 0 0

1+f g'(v)dv
0

(73)

Z=
f (v)dv f vf (v)dv

o Z —v o (Z —v)2

f (v)dv

(Z —v)

(74)

Equation (74) can be simplified by using the definition
(62} of the function g(Z), and by noticing that

dg(Z) f f (v)dv
dZ o (Z —v)2

(75)

Using (62) and (75), we can transform (74) into the form

We notice that g(co) as given by (72) has a pole at
co =Z, and that Z is itself a functional of g (co). It will not
be surprising, therefore, if more than one sheet appears.

We have a solution to our problem if (72) is consistent
with (73). Inserting (72) into (73), we find

or simply

Z=E+g(Z) . (77)

Comparing (77) with the discussion following (65), we
see that solutions of (77), which are solutions of our vari-
atioaal problem, coincide precisely with poles of the
resolvent operator. As noted earlier, however, these will
not occur on the principal sheet.

Finally, having found a solution of (77), it is a straight-
forward matter to substitute (72) and (77) back into (70)
to obtain

~stationary (78)

The calculations of this subsection confirm directly that
our variational principle locates poles of the resolvent for
this simple model.

V. DISCUSSION

The method used here depends on the existence of an
antiunitary operator that commutes with the Hamiltoni-
an and satisfies (11). In principle, such an operator exists
for any Hamiltonian. To see this, let Icp ) be the eigen-
kets of H, and expand an arbitrary ket

I
4 ) as

(79)

a+ g(Z) —Zg'(Z)
1 —g'(Z)

(76)
where the sum formally includes an integral over the con-
tinuum. Now we define the antiunitary operator 8 by
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e~q ) = g ~e. ) &c.~q )* . (80)

In other words, e is just complex conjugation in the rep-
resentation of the eigenkets of the Hamiltonian. The
operator 8 evidently commutes with H and satisfies (11),
so it can be used in the same way that C' has been used in
this paper.

In the absence of time reversal invariance, however, it
will normally be difficult to find an appropriate antiuni-
tary operator without first diagonalizing the Hamiltoni-
an. In practice, therefore, the method is limited to sys-
tems with time reversal in variance, i.e., to systems
without external magnetic fields.

The method of complex dilatation ' is diferent from
our method, although both are capable of revealing reso-
nances. In the complex dilatation method the Hamiltoni-
an

8=v+v (81)

is replaced by

(82)

We have established a genuine stationarity principle
for resonances, but a stationarity principle for a function
of complex variables is not the same as a minimum prin-
ciple, for which one can always be sure that allowing
greater flexibility in a trial function will bring one closer
to the correct answer. Indeed, a trial function depending
on a small number of parameters may lead to spurious
stationary points: points that are stationary with respect
to a limited set of variations, but which are not approxi-
mations to true stationary points.

an operator which is not the same as our HI& I. The

Hamiltonian defined by (82) becomes non-Hermitian even
for matrix elements involving no singularities in the com-
plex plane, and its matrix elements are not necessarily an-
alytic continuations of matrix elements of k It is easy to
convince oneself, however, that the operator defined by
(82) satisfies (22), so it eigenvalues can also be found by
seeking stationary points of

(cq ~h, ~q )
(83)

lar we have shown that every pole of the resolvent opera-
tor is associated with a stationary value of (18). Equation
(18) is defined in all representations, and it provides a
theoretical justification of the empirically successful
method of generalized dilatation transformations for cal-
culating complex resonance energies.

ACKNOWLEDGMENTS

This work has been supported by the National Science
Foundation through Grants Nos. CHE-8662825, CHE-
8713564, and CHE-8920520.

APPENDIX A: VALIDITY OF EQ. (17)

In arriving at (17), it was taken for granted that Eq. (8)
could be applied to the functions 4 as if they were con-
stants. That this is so can be seen by making use of the
existence, established by Eq. (21), of a complete basis set
of functions left invariant by C'. If each 4' is expanded in
these, and (8) applied, the result follows immediately.

APPENDIX B: PROOF THAT EQ. (22)
IS INDEPENDENT OF REPRESENTATION

As has been shown in the literature, any antiunitary
operator such as C can be represented as

c=pK, (B1)

pi QpQT (B3)

where T denotes the transpose.
Using (Al), we can rewrite (22) as

pG*=C p .

In the primed representation we have

(B4)

where K stands for complex conjugation and p is unitary.
We use a tilde instead of a caret to designate p because its
transformation properties are different. For a change of
representation characterized by a unitary operator 0,
such that an ordinary operator 0 is replaced by

0 =MOt, (B2)

P becomes"

VI. SUMMARY

We have defined a functional (18) involving the antiun-
itary operator (10) defined in terms of time reversal. This
functional has real and complex stationary values, and
the latter may be associated with resonances. In particu-

p'C*'= UpO'O*C*O'= OpC*O'

= MtpO'= M'OtOpO'

gt pi

which completes the proof.
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