
PHYSICAL REVIEW A VOLUME 42, NUMBER 5 1 SEPTEMBER 199P

Nonlinear-optical susceptibilities of gases measured at 1064 and 1319nm
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The third-order nonlinear-optical susceptibilities of 16 simple atoms and molecules (Ne, Ar, Kr,
Xe, H„D„N„O&,CO2, CF4, SF6, CH4, C,H6, C3H8, n-C4H, O, and C4H, ) have been measured in the
gas phase at two near-infrared wavelengths using the technique of electric-field-induced second-
harmonic generation (ESHG) with periodic phase matching and with He as the reference gas.
These results are combined with previous ESHG data in the visible region to determine dispersion
curves. The experimental estimate of the static hyperpolarizability y for Ne, y&, =119+3a.u. , is in

good agreement with the best ab initio calculations, but the experimental estimates of the static hy-
perpolarizabilities for Ar and H~, yA, =1167+20 a.u. and (yH ) =686+10 a.u. , differ significantly"2
from the best ab initio results.

INTRODUCTION

A wide range of nonlinear-optical processes are medi-
ated by the third-order nonlinear susceptibility
which is the macroscopic expression of the microscopic
second hyperpolarizability tensor y. ' There has been
much recent interest in third-order nonlinear-optical
properties of atoms and molecules, motivated both by the
wish to obtain a quantitative understanding of the origin
and dynamics of the nonlinear response of atoms and
molecules, and by the desire to design better nonlinear-
optical materials for applications. For example, organic
and polymeric materials are promising candidates for use
in nonlinear-optical devices, ' but reliable and accurate
calculations of their properties are very difficult, because
of their large molecular size, and because of the complex
combination of electronic, vibrational, conformational,
and orientational contributions to their nonlinear-optical
properties. At present, accurate calculations are restrict-
ed to much smaller molecules. '

Productive interplay between theory and experiment
requires a common ground for the two, a condition which
is met with gas phase nonlinear-optical measurements
and ab initio calculations for individual small atoms and
molecules. Ab initio calculations for an isolated molecule
determine y, which is readily compared to the isotropi-
cally averaged hyperpolarizability ( y ) measured by
nonlinear-optical experiments with a dilute molecular
gas. And while small molecules are computationally
more tractable, they nevertheless display many of the
features also found in larger systems.

An essential complication in the comparison of theory
and experiment is the strong frequency dependence of y.
Although now there are an increasing number of dynam-
ic as well as static calculations of y, many of the most ac-
curate calculations are restricted to the static limit,
whereas all experiments measure y at optical frequencies.
The present measurements at near-infrared wavelengths
make use of the electric-field-induced second-harmonic
generation (ESHG) process, because of the intrinsic accu-

racy of the technique, and in order that the experimental
results may be directly combined with the results of pre-
vious ESHG measurements in the visible. In this manner
one may determine the dispersion of y over the widest
possible frequency range. One aim is to accurately extra-
polate the experimental measurements to the static limit
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FIG. 1. Schematic diagram of the apparatus. Pulses of about
0.2 mJ, from a Nd: YAG laser, pass through the gas cell. The
frequency-doubled beam of light generated in the gas cell is
detected by a photomultiplier tube (PMT). Inside the cell, the
gas sample through which the laser beam passes is subjected to
periodic, transverse electrostatic field of about 1 kV/mm, pro-
duced by an array of electrodes with longitudinal repeat dis-
tance I'. The optical elements include glass filters (F1,F2),
lenses (L1,L2), a polarizer (POL), windows (%1,W2), a high
reflector for the fundamental laser beam (HR), and double-
Brewster-angle prisms (P1,P2). The apparatus is viewed from
above, except for the electrode array which is viewed from the
side. The path length from laser to PMT is 3.5 m. The elec-
tronics ensure that the output pulses of the PMT are registered
only when they are synchronized with the laser pulses.
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for direct comparison with the results of ab initio calcula-
tions. A second aim is to examine the dispersion curves
for direct indications of the vibrational contributions ex-
pected for molecules. Following a lengthy exposition of
the experimental methods, the measurements are present-
ed and analyzed, and the experimental results are con-
sidered and compared with the results of ab initio calcula-
tions.

EXPERIMENTAL METHOD

The experimental method is similar to that previously
described, ' ' but the use of a pulsed near-infrared laser
requires revision of many of the details. Accordingly, a
relatively complete account of the experimental pro-
cedures will be given below. Pulsed operation compen-
sates for a reduction in second-harmonic conversion
efficiency when the wavelength is shifted from the visible
to the near infrared.

The experiments were performed using a continuously
pumped, acousto-optically Q-switched Nd: yttrium
aluminum garnet (YAG) laser (CVI model 210 PQT) pro-
ducing pulses whose wavelength is either A, =1064 or
1319 nm. The laser beam is weakly focused through a
cell containing the sample gas, where second-harmonic
generation takes place in the presence of a symmetry-
breaking static electric field. A double-prism spectrome-

ter and glass filters serve to separate the second-harmonic
from the fundamental laser beam, and a photomultiplier
tube (PMT) detects the second-harmonic light. Figure 1

shows the essential optical elements.
The second-harmonic signal generation in the sample is

enhanced by means of periodic phase matching. This is
accomplished by the use of an array of electrodes which
is designed so as to reverse the polarity of the electric
field every coherence length 1, =m/b, k =n/(2k —k~ ),
where k is the wave vector at frequency co in the gas.
The resulting periodic phase shift in the generated
second-harmonic wave serves to cancel periodically the
accumulating phase shift due to normal dispersion, thus
allowing the continued growth of the signal throughout
the length of the sample. The coherence length of the gas
is adjusted to match the fixed spacing of the electrodes by
varying the density of the gas until peak signal is
achieved.

To calculate the ESHG signal, consider a laser beam
propagating through a sample subjected to a transverse
electrostatic field varying as E0 'sinEz within a region of
length 2L along the beam axis. The power P' ' in the
second-harmonic beam, generated from a TEM00 Gauss-
ian mode laser beam with confocal parameter z0 in the
sample and beam waist located a distance z from the
center of the spatially periodic static field region, is given
b 10, 14

co'(po/eo) . . . , , , L sinKz sin[6, k (z —z ) —arctan(z —z )/zo]

[1+(z—z. )'lz,']'"

The second-harmonic waves generated at various posi-
tions in the sample are described by a Gaussian mode
with the confocal parameter z0, where z0 differs from z0
by a small z-dependent correction of order
(nz /n„—1)zo that has been ignored in the derivation.
The nonlinear susceptibility y' ' mediating ESHG in a
low-density gas is given by

(2)

where X =(n +2)/3 is the Lorentz local field factor,
n is the refractive index at frequency m, and p is the gas
density. Since all fields are assumed to be polarized in a
common horizontal plane, the spatial subscripts have
been omitted from g' ' and the isotropically averaged
molecular hyperpolarizability tensor (y ). The wave vec-
tor mismatch Ak is negative for normal dispersion and
varies as A, p, while the refractive index of a low-density
gas has only weak linear density dependence. ' ' An ex-
pression for numerically integrating Eq. (1) is given else-
where. ' The spatially periodic field is produced by an
array of 2N electrode pairs with longitudinal spacing I'.
When the number of periods of the field N =EL/m is where, to lowest order in density,

(3)

large, the integral in Eq. (1) is sharply peaked near
b, k~ =K, with peak height proportional to N and with

fractional peak width N '. Figure 1 shows the
configuration of the electrodes. The density dependence
of the second-harmonic signal is shown in Fig. 2(a).

In these experiments one determines very accurately
the ratio y'„'/ya', by comparing the second-harmonic
signals produced under identical phase-matching condi-
tions in sample and reference gases A and B, respectively.
Operationally, one varies the gas density and measures
the peak second-harmonic signal and the sample density
at which this occurs, for each gas in turn. From this in-
formation one cfishes to extract the ratio of microscopic
hyperpolarizabilities ( y „)/( ys ) for the molecules
and B. The dominant density dependence of P' ' is con-
tained in the factor

I (Ak)

sinKz sin[6 kz —arctan(z lzo ) ]
2

d (Kz)
K —x~ [1+(z/z, )']'"
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FIG 2. Calculated results for ESHG with periodic phase matching are compared for two electrode arrays. The coarse electrode
array with N =8 and L =20.320 cm was used for near-infrared ESHG measurements at k —1319 nm while the finer array with
N =75 and L =20. 193 cm was used to obtain visible ESHG data. These calculations assume that the laser beam waist is centered in
the electrode array (z =0). (a) The variation of the normalized second-harmonic signal S" ' with normalized sample density p i

shown for coarse and fine electrode arrays. The confocal parameter z0=20 cm is assumed. Note that the ESHG signal peaks ar
slightly skew. Less sharply defined phase-matching conditions are obtained with the coarse array, as further illustrated in (b). (b)

e gas density at which peak signal occurs, determined by Ak„„becomes a stronger function of the focusing parameter zo/L as the
number of repeats N of the electrostatic field is reduced. (c) The peak ESHG signal S""'expressed as photons per second is propor-
tional to (N /L)(a2 —a )

~ times the function plotted [see Eqs. (1)-(4)], and in the weak focusing limit z, /L»1,
S' "'~ (p ptL/Ar)'/zo. For zo/L ~0.5, obstruction of the fundamental laser beam by the electrodes will be difBcult to avoid. Experi-
mentally, the most convenient region is near zo/L = 1. In order to keep the phase-match density p,p, constant for electrode arrays of
fixed length L which operate at different wavelengths, one may compensate for the normal X' dependence of p,„,by scaling N to keep
A, 'N constant. Operated at their design wavelengths, the peak ESHG signals from electrode arrays such as the two illustrated here
will scale as A, 2. (d) The exponent 3g, appearing in Eq. (6), accounts for the small effect on the signal S'~'"' due to shifts in beam pa-
rameters with changing sample refractive index.

hk =( —2n. /Leo)(a2 —a )p, (4)

and where the leading factor Ak comes from the factor p
in Eq. (2) and z has been set to zero. The peak of the
signal versus density curve identifies essentially identical
phase-matching conditions in different gases since I (b,k)
is independent of the particular gas, except through the
weak implicit n dependence of zo in Eq. (3). The varia-

tion, with Ak and z„, of I (Ak), the peak position, and
peak signal, is shown in Figs. 2(a)—2(c). A more refined
estimate of the peak signal must account for the slowly
varying refractive index factors, which differ for each gas.
The n dependence of I (hk) may be made explicit by
noting that zo=n„zoo, where z is the fundamental
beam confocal parameter in the evacuated sample cell.
Expanding Eq. (3) as a Taylor series in (n —1) and using
1+/(n —1)=n ~, one may approximate the peak value
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I of I (b,k) as I =n~I „„where g=(I dI /
dn )„,. Treating Eqs. (1) and (2) in a similar fashion,

one may express all the explicit and implicit dependence
of P' "' on nz, n, and nz„ in the form of a factor

n gnawn ) . This factor slightly changes the peak value of
Eq. (1) but has a negligible eff'ect on the value of b,k at
which the peak occurs. Higher Fourier components of
the periodic electrostatic field have a small effect on the
ESHG signal peak, but this is independent of the particu-
lar gas sample and so may be ignored. Equations (1) and
(2) may be solved for ( y ), and if the laser beam parame-
ters are kept fixed, one obtains

(yq ) Sq ' n„'pq VA

Sii '
napa Va

where S' "' and p are the maximum ESHG signal and the
optimum sample density, V is the voltage applied to the
electrodes, and

(5)

(~4 2+3( )1/6
0 co 2' (6)

The value of 3g is plotted in Fig. 2(d) as a function of the
focusing parameter zc/L and the number of periods N of
the static field. One finds that 3(=1 when the focusing
parameter falls in the experimentally convenient range
1 ~zc!L ~1.5. Figure 2(c) shows that for this range of
zr, /L values the ESHG signal is about —', of its maximum

possible value. The analysis of the experimental results
makes use of Eqs. (5) and (6) with 3(=1.

Next we return to a more detailed consideration of the
experimental design and operating parameters. Referring
back to Fig. 1, one sees that the presample optics include
an infrared-transmitting filter (RG-850) which blocks any
second-harmonic light and most of the stray pump light
from the laser, a lens which focuses the laser beam at the
center of the sample cell with a confocal parameter of
zo =20 cm, and a Gian-laser prism polarizer to select the
desired polarization state of the beam. The average
power of the unpolarized, TEM laser output beam is
about 1.3 W when operating at A, =1064 nm with a Q-
switch repetition rate of 5000 Hz. The laser pulses have a
duration of 150 ns full width at half maximum (FWHM),
and the width of the laser output pulse height distribu-
tion is 16% FWHM. The polarized beam inside the sam-
ple cell has an average power of about 0.45 W and a peak
power of about 500 W. For X=1319nm operation, the
laser is Q switched at 2500 Hz and the average and peak
powers are reduced to about 70% of those for A, =1064
nm operation. The laser has the unfortunate tendency,
when operating at A, = 1319nm, of simultaneously operat-
ing on the X=1338 nm laser line with up to 10% of the
output power appearing in the second laser line. ' When
this occurs, the experimental measurements become very
erratic and are discarded. Another source of erratic re-
sults at both laser wavelengths is temperature cycling of
the laser-head cooling water; the laser was modified to
stabilize the water temperature to better than 0.1 C in or-
der to eliminate this problem.

The output beam from the sample cell passes through a
dichroic mirror which reflects & 99.5% of the fundamen-

tal laser beam, a collimating lens, a pair of fused-silica
double-Brewster-angle dispersing prisms, and an
infrared-blocking filter (KG-3), finally reaching the detec-
tor. For experiments at X=1064 nm the detector is an
uncooled EMI 9893 QB/350 PMT with a bialkali photo-
cathode, operating in photon counting mode. This PMT
has a quantum efficiency of about 10%%uo at A, =532 nm but
is blind to light from the laser that passes through the
combined Schott RG-850 and KG-3 filters, resulting in a
background count rate of 1 count per second (counts/s).
For experiments with the laser operating at X=1319nm,
the second-harmonic light at A, =660 nm is detected by a
cooled RCA 31034 PMT with a GaAs(Cs) photocathode
having high quantum efficiency in the red. Since this
PMT is sensitive to the light near A, =850 nm which leaks
through the combined glass filters, the background count
rate in this case is much higher, near 40 counts/s.

The electrode array is constructed from two parallel
steel bars, each of which has two rows of holes drilled
and reamed to accept the 3.175-mm-diam polished steel
dowel pins which serve as the actual electrodes. The lon-
gitudinal and transverse spacing between the centers of
the holes is 5.080 mm. The longitudinal spacing of the
electrode pairs I' may be selected as a multiple of the
spacing between the holes by choosing the holes into
which the pins are inserted. The length of the electrode
array is up to 41 cm. Other than using drilled holes to
hold the electrodes and having a coarser electrode spac-
ing, the construction of the electrode array is similar to
that previously described. ' A longitudinal spacing
I'=15.240 mm, with 2N =28 electrode pairs, was select-
ed for the measurements at A, =1064 nin. For A, =1319
nm the spacing was increased to I'=25.400 mm and the
number of electrode pairs was reduced to 2N=16, ap-
proxiinately compensating for the A, dependence of the
coherence length of the gas at constant density. ' Typical
operating conditions at A, = 1064 nm, with Nz sample gas,
were p =4.3 atm, V=2000 V, and S' '=800 counts/s.
Phase-rnatch pressure varied from 90 atm for He to only
0.3 atm for butadiene, while V was in the range 0.8—3.6
kV (well below the breakdown voltage). At A, =1319nm,

p and V were about 15% and 50% larger, and S' ' was
reduced to about 400 counts/s.

Dead time in the photon counting electronics could not
be ignored, even though the average count rate of the
detector was less than 10 counts/s, because the second-
harmonic photons are generated only during the 150-ns-
wide laser pulses. The configuration of the electronics
was chosen with this in mind. The PMT output pulses
are used to trigger 1-ps-duration logic pulses; these pulses
are sent to one input of a coincidence module which has a
1-ps coincidence resolving time. Logic pulses of 1 ps
duration and synchronized with the laser output pulses
are generated and sent to the second input of the coin-
cidence module. Output logic pulses from the coin-
cidence module are registered by a multichannel scalar
(MCS). This arrangement serves two purposes. First, it
reduces the effective background count rate by a large
factor, since PMT pulses cannot be registered unless they
fall within a 1-ps time window centered on each laser
output pulse. Thus, the effective background is reduced
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to 0.01 counts/s for A. =1064 nm and to 0. 1 counts/s for
A, = 1319 nm (in each case about 0.005 counts/s of the to-
tal is due to coherent second-harmonic background).
Second, this arrangement of the electronics makes the
dead time corrections accurately calculable. Let n be the
average number of PMT output pulses produced per laser
pulse. Assuming Poisson statistics, the probability that
there will be at least on PMT output pulse per laser pulse
is P(n ) = I —exp( n).—Because the coincidence resolv-
ing time of 1 ps is much longer than the time during
which essentially all second-harmonic photons are pro-
duced for each laser pulse (0.1 ps), the measured signal
count rate S is just S =RP, where R is the laser pulse re-
petition rate. The true count rate S=Rn (i.e., the rate
that would be measured with zero dead time) is given by

S = —R In(1 —S/R) . (7)

This relation was tested by determining S/V versus V
with our apparatus, where S/V should be independent
of V if S is correctly calculated. Choosing experimental
parameters such that 10 ~ n ~ 1, the relation
S/V =const was confirmed at the 0.5% level of accura-
cy (note that the counting efficiency has fallen to 63% for
n = I).

In order to make the experimental results insensitive to
small inaccuracies of the dead time corrections, sample
and reference signals were arranged to be nearly equal by
appropriate adjustments of the electrode array voltage.
The approximate result S„/Sz = [ I —(S„—S& )/
2R](S„/S~ ) shows that the dead time correction to the
ratio S„/Sz is only 0.5% when S„/R =0. I and

S~ /S~ = 1.1. Furthermore, matching the signal
strengths also reduces the systematic error in the ratio
S„/Sii due to the presence of a coherent second-
harmonic background b, where S/ S~ii(1 +E) S/ Sii
and e=+(b/Sii)' (S„—Sz)/Sz in the presence of the
coherent background. For the ESHG measurements re-
ported here, the signals S~ and Sz were matched to
about 1% and n =S/R was in the range 0.04—0.16.

Two other possible sources of systematic errors are
misalignment of the static and optical field polarizations,
and stress birefringence of the cell windows. Misalign-
ment of the static field will cause systematic errors in the
ratio S„/Sz which vary as 8, but only if there is a
difference in the deviations from Kleinman symmetry for
A and B." If the deviations from Kleinman symmetry
are no larger than 10%, then a misalignment of 0=5' will
result in a systematic error no larger than 0.01%. The
actual misorientation was only about 0.5. A more seri-
ous concern was the stress birefringence of the entrance
window, which reduces the ESHG signal in this ap-
paratus by the factor (I—2.4b, , ), where b, = —,'5 sin2$, 5 is

the retardation, and P is the angle between the strain axis
of the window and the optical polarization. Because of
the polarization selectivity of the prism spectrometer,
birefringence of the exit window of the sample cell also
reduced the ESHG signal, but the sensitivity to the
second window was five times smaller. Systematic errors
in S~ /S~ arise because the window stress birefringence
varies with gas pressure, and so it is not the same for both

gases A and B. Care was taken to reduce the stress
birefringence of the fused-silica gas cell windows by sup-
porting them on symmetrical, optically flat steel mounts
at normal incidence to the beam. The effect of the typical
5=10 mrad retardation of a nominally unstressed win-
dow was minimized by carefully orienting the stress axis
along the laser beam polarization direction. The window
stress birefringence was assessed by placing a crossed po-
larizer after the sample cell and measuring the extinction
ratio r =(5,+A&), employing a )L. =514.5 nm laser
beam, while varying the gas pressure in the range 0—150
atm. The extinction ratio varied as p, reaching
r =2 X 10 at the He phase-match pressure. Accounting
for the A,

' dependence of the retardation 5, one may
infer that the maximum systematic error in the ratio
Sz/Sz due to window stress birefringence was only
0.01%. In summary, adjustments to the apparatus made
systematic corrections to the ESHG measurements negli-
gible, except for the dead time correction to the signal
given by Eq. (7).

Measurements were made in coupled triplets
(ABASH ) in order to cancel drifts. The ESHG
peak for each gas was scanned twice before interchanging
sample and reference gases in the cell. Signal counts were
accumulated for 20 s in each MCS channel, while the
pressure was scanned at a rate of 0.1—0.2% per channel,
and synchronized pressure (and temperature) readings
were recorded. The peak signal and phase-match pres-
sure were determined from a quadratic least-squares fit to
the ESHG signal data, using only data within 15% of
peak signal to avoid fitting errors and to minimize the
effect of pressure scan nonlinearity. Statistical uncertain-
ty for a single peak intensity determination was typically
0.1—0.2%. The hyperpolarizability ratios were obtained
from the raw measurements by first correcting the mea-
sured peak signals with Eq. (7), and then using Eqs. (5)
and (6) with 3(=I. Sample densities were computed
from the measured pressures and temperatures using the
virial equation of state. ' The typical virial correction
was (1%,while the largest correction was about 5% for
He. The random uncertainty is 0.1% for a single phase-
match-density determination. Pressures were measured
with either a Bourdon-tube gauge accurate to 0.1% of
full scale (160 bars), or at pressures below 10 Torr, with
a capacitance manometer with a relative accuracy of
0.15%. Temperature was measured to 0.1'C with a cali-
brated thermistor thermometer in contact with the sam-
ple gas. All measurements were made at room tempera-
ture (21—23 'C). The measurement temperature was
22.0+0.2'C for the gases C3H8, n-C4HIo and C4H6, for
which the effective ( y ) may have temperature depen-
dence due to a p' 'l3/3kT term. Refractive indices were
calculated from tables using the measured densities, ' '
with the resulting values of n' —1 in the range
{1—4)X10 . The electrode voltage was measured by
means of a voltage divider and voltmeter with an overall
accuracy of 0.01%. High-purity gases were employed.
The minimum purity was 99.999%%uo for He, Ne, Ar, Hz,
Dz, and Nz, 99.995% for Kr and Xe; 99.99% for CO&,

SF6, C~H6, and C3H8, 99.97% for CH4, 99.9% for CF4,
996% for Oz, 995% for butadiene; and 990% for



42 NONLINEAR-OPTICAL SUSCEPTIBILITIES OF GASES. . . 2583

n -C4H&o. Analysis of the butane on a gas-chromatograph
mass spectrometer indicates that the actual impurities
were 0.3% neopentane and 0.02% isobutane, which may
be expected to shift ( y ) for the sample by less than 0.1%
compared to pure n-butane. ' ' Except for the cases of
butadiene and 02, where sample impurities may possibly
introduce systematic errors & 0.1%, the experimental un-
certainty of the hyperpolarizability ratio determinations
is just the convolution of the statistical uncertainty for an
average of three triplets of measurements and the uncer-
tainty of the density determinations due to the limited
pressure gauge accuracy. The uncertainty of the ratio
(y„/yti ) is about +0.4% (range+0. 1 —+0.7%).

DATA ANALYSIS

The ratios of phase-match densities and hyperpolariza-
bilities determined for 16 atoms and molecules in these
ESHG experiments are presented in Table I. Inspecting
the values of ( y „)/( ya ) obtained at A, = 1319 nm and
at A, =1064 nm for each choice of A and B, one finds only
small, though significant, differences in the values at the
two wavelengths. This is as one would expect, and tends
to support the accuracy of the experimental results, but
also demonstrates that a more refined analysis is needed
to extract information about the contributions to y due
to electronic, vibrational, and other degrees of freedom of
the molecules. The phase-match density ratios,
pa/p„=(a2 —a )„/(a2 —a }it, are more sensitive in

this regard. For atoms and homonuclear diatomic mole-
cules there is no vibrational contribution to a„, and since

cu is far below electronic resonance, (az —a ) should in-

crease steadily with increasing co. But for the polyatomic
molecules, the vibrational resonances at infrared frequen-
cies should also increase the dispersion of e at low-
enough frequencies, making (a2 —a„) decrease with in-

creasing co for near-infrared wavelengths. Consideration
of the frequency dependence of the results for ps/p „ im-

mediately allows one to divide the molecules into three
classes: pii/p„ for the atoms and homonuclear diatomic
molecules increases by 1% going from A, =1319 nm to
X=1064 nm, reflecting the purely electronic contribu-
tions to a; p~/p„ for the molecules CO2, CF4, and SF6
decreases sharply, by 40%, reflecting a strong vibrational
contribution to a; and p~/p„ for the alkanes decreases
only slightly, by 4%%uo, reflecting relatively minor vibra-
tional contributions to a . More quantitative analysis
bears out this categorization.

The first step in the analysis of the hyperpolarizability
data is extraction of (y ) from the measured ratios. This
is done in several stages. Since the ultimate reference for
all the measurements is the theoretical result for yH„ the
data calibrated directly with He are treated first, and they
in turn serve as secondary reference standards in the
reduction of the remaining data.

The best available ab initio calculation for yH, is that
of Bishop and Pipin, which uses explicitly electron-
correlated wave functions to evaluate a sum-over-states
expression for y; each of the 'S, 'P, and 'D states of He is
expressed as a sum of up to 140 basis functions which can
represent ss', sp, sd, and pp configurations. Dynamic hy-
perpolarizabilities are calculated for the dc Kerr effect,

TABLE I. Experimental results for the ratios of phase-match densities, pz/p&, and ratios of hyper-
polarizabilities, (y„)/(y~ ), measured at A. =1319nm and k=1064 nm. A and B denote the sample
and reference gases, respectively, for a given ESHG measurement. The measurements of yA„/yH„
( yN ) /yH„and y«/( yN ) form an overdetermined set; the values given in the table have been adjust-

2 2

ed to maximize the self-consistency of this set. The density ratios pH /pD and pN /p&„are so close to 1
2 2 2

that the differential linearity rather than the absolute accuracy of the capacitance manometer deter-
mines the gauge calibration uncertainty; the stated uncertainty for these measurements is essentially the
statistical uncertainty.

pa/ps

A. =1319 nm X=1064 nm

(y, )/(y, )

A, =1319 nm A, =1064 nm

Ne
Ar
Kr
Xe
H2

02
N2

02
Ar
COq
CF4
SF6
CH4
C2H6
C3H8
n-C4H, O

C4H6

He
He
Ar
Ar
He
H2
He
N2

Nq

Nq

Nq

N~

N2

N2

N2

N2

N2

1.853+0.004
18.41+0.03
2.019+0.004
4.686+0.010
13.16+0.03

0.9720+0.0005
19.83+0.05
1.185+0.003

0.9282+0.0002
2.530+0.008
2.345+0.005
3.144+0.007
2.240+0.005
3.899+0.009
5.662+0.015
7.35+0.02

1.850+0.007
18.54+0.05
2.031+0.004
4.727+0.009
13.28+0.03

0.9717+0.0002
19.93+0.05
1.200+0.003

0.9295+0.0005
2.031+0.004
1.558+0.003
2.321+0.005
2. 166+0.005
3.742+0.009
5.440+0.015
7.07+0.02

14.61+0.08

2.534+0.019
27. 84+0.16
2.244+0.005
6.025+0.013
15.10+0.05
1.013+0.003
21.75+0.13
1.054+0.005
1.280+0.004
1.263+0.008
1.082+0.007
1.542+0.008
2.757+0.012

5.39+0.03
9.03+0.03

11.54+0.05

2.487+0.011
27.98+0.08
2.296+0.006
6. 136+0.015
15.77+0.04
1.002+0.001
21.82+0.07
1.067+0.003
1.282+0.002
1.283+0.008
1.084+0.005
1.530+0.008
2.931+0.010

5.53+0.03
9.14+0.03

11.69+0.04
20. 88+0.11
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TABLE II. Coefficients of the truncated power series

y=yp(1+ Avz+Bvc + Cvt ), fit to the ab initio values of y„,
for ESHG (where v~ =6v' and v is given in units of cm ') (Ref.
24). The coefficients in the column headed atomic units" per-

tain to the expansion in terms of coL (a.u. ).

values. The frequency dependence of y H, for each
nonlinear-optical process may be represented at low fre-
quencies by truncating the power-series expansion

y( co—~;coi, cop, co, )=yp(1+ AcoL+Bcot +Ccol+ . ),
Atomic units SI units

To

8
C

43.104
2.191
3.381
6.748

2.6903X10 '-' C m J
4.550X10 " cm'
1.458X10 ' cm
6.043X10 " cm

degenerate four-wave-mixing (DFWM), ESHG, and
third-harmonic generation (THG) nonlinear-optical pro-
cesses, for frequencies up to co=0.20 a.u. The estimated
convergence error of about 0.02%%uo is also the estimated
accuracy of these results. ' To make use of the results
of this calculation to calibrate our experimental data, we
have fitted a dispersion curve to the calculated y„,

where yp=y(0;0, 0, 0), co =co&+co2+co3, and
cLlL co + co ] +f02 +Q)3 For ESHG one has
y( —2co;O, co, co) and coL =6co . A rigorous calculation has
shown that the first dispersion coefficient A in this
power-series expansion of y is exactly the same for all
nonlinear processes in a given atom. The coefficients in
Eq. (8) were determined for He by making a least-squares
fit of the function A +Bco~+CcoL to the values of
( y /yp 1 ) /coL vel'sus coL ovel the interval
0.004~coL ~0.08 a.u. (where roundoff errors and the
contributions of higher terms were both small). The fit
included data for all four nonlinear-optical processes: the
coefficients 8 and C were allowed to di8'er for each pro-

TABLE III. Experimental values of ( y )„„from gas phase ESHG measurements at 34 near-infrared and visible wavelengths. The
values at A, =1319nm and 1064 nm are from the present work, while the values at the other wavelengths are from the literature. The
stated uncertainties for (y ) do not include an allowance for the calibration uncertainty (see text). Wavelengths A. are those measured
in air, while wavenumbers v are those measured in vacuum. (a) Measurements of ( y ) for Ar, H2, and N, made directly against He,
which is the ultimate reference for all the measurements. The tabulated values of (y'") for H~ and D2 at T =295 K were calculated
as discussed in the text. The values of (y) for D, and 0, were calibrated using the smooth fitted curves for (y„) and (yN ), re-"2 2

'

spectively. (b) Measurements of yN„calibrated directly against yH, ', measurements of yK„and yx„calibrated using the smooth fitted
curve for y«, and measurements of (y) for SF„C,H6, C,H„and n-C4H, p, calibrated using the smooth fitted curve for (yN ). (c)

2

Measurements of (y) for CH4, CF4, CO„and C~H„calibrated using the smooth fitted curve for ( yN ).
2

(a)

(y) (IO-" C'm'I -')

(nm)

1319'
1064'
700.0
694.3
690.0
680.0
670.0
660.0
650.0
640.0
632.8
620.0
610.0
600.0
590.0
580.0
514.5
496.5
488.0
476.5
457.9

(cm ')

7581
9 395

14 282
14 399
14 489
14 702
14 921
15 147
15 380
15 620
15 798
16 124
16389
16 662
16 944
17236
19430
20 135
20 487
20 981
21 831

Ar
(Ref. 28)

76.09+0.43
77. 12+0.22
84.45+0.71
84.30+0.77
84. 85+0.71
85.77+0.48
84. 58+0.74
85.83+0.80
87.32+0.52
86.90+0.40
87.09+0.49
88 ~ 91+0.61
89.50+0.58
90.05+0.46
91.05+0.47
91.40+0.56
97.22+0.51

100.23+0.96
101.37+0.67
104.50+0.67
105.85+ 1.42

H,
(Ref. 13)

41.27+0.13
43.47+0.10
49.90+0.31
49.97+0.28
50.21+0.23
50. 18+0.26
50.79+0.26
50.65+0.20
51.39+0.23
51.35+0.17
51.55+0.23
52. 59+0.23
53 ~ 10+0.26
53.38+0.26
54.25+0.20
54. 81+0.23
59.22+0.24
60.45+0.39
61.13+0.30
62. 55+0.46
64. 82+0.77

H.R
2

—3.52
—2.25
—0.84
—0.83
—0.82
—0.79
—0.77
—0.74
—0.72
—0.69
—0.68
—0.65
—0.63
—0.61
—0.58
—0.56
—0.44
—0.41
—0.39
—0.37
—0.34

D2
(Ref. 13)

41.70+0.12
43.63+0.05

48.73+0.17

49.86+0.14

50.84+0.14

51.54+0.19

52.42+0.15

57. 14+0.17
58.65+0.19
59.65+0. 19
60.85+0.30

DuR
2

—1.61
—0.99

—0.40

—0.36

—0.33

—0.30

—0.28

—0.21
—0.20
—0.19
—0.18

N2

(Ref. 28)

59.44+0.36
60. 14+0.19
65.58+0.43
66.01+0.40
65.60+0.34
65.92+0.34
66.27+0.34
66.62+0.32
67.50+0.32
67.99+0.26
68.38+0.29
68.70+0.38
68.61+0.32
69.71+0.26
70.66+0.26
71.00+0.26
75.46+0.33
76.76+0.39
78.25+0.39
79.75+0.61
82.90+0.89

02
(Ref. 28)

62.06+0.29
64. 31+0.18
71.93+0.85
72.71+0.80
72.36+0.80
73.26+0.77
74. 13+0.63
74.65+0.60
75.57+0.66
75.70+0.66
75.79+0.58
77. 14+0.61
77.50+0.64
78.28+0.64
79.34+0.67
80.56+0.76
89.48+0.78
93.30+ 1.05
94.29+0.94
96.89+ 1.46
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TABLE III. (Continued).

(b)

(nm)

V

(cm ')
Ne

(Ref. 30)
Kr

(Ref. 29)
Xe

(Ref. 29)
SF,

(Ref. 31)
C,He

(Ref. 33)
C,H,

(Ref. 33)
n -C4Hlo
(Ref. 33)

1319'
1064'
670.0
650.0
620.0
616.1
594.4
590.0
514.5
488.0
457.9

7 581
9 395

14 921
15 380
16 124
16 227
16 817
16944
19430
20487
21 831

6.925+0.051
6.855+0.030

169.7+0.4
177.4+0.5

204. 6+0.5

6.402+0.087
217.4+ 1.0

6.816+0.060 242. 5+0.7
7. 141+0.091 254.4+0.7

455.5+ 1.0
474. 1+1.2

586.5+2.3

645. 1+1.9
754.3+2.8
809. 1+3.1

(c)

90.8+0.5
92.2+0.5
98.2+0.5
99.2+0.5
99.9+0.8

109.1+0.2
112.0+0.4
115.2+3.0

317+2
333+2

431+2

503+3
546+5

532+2
551+2

746+6

890+6
958+7

680+3
705+2

969+15

1176+13
1278+14

(y) (10 "C'm J ')

(nm)

1319'
1064'
694.3
692.9
671.7
671.5
667.8
659.8
650.7
640.2
621.7
619.0
616.1

589.0
514.5
501.7
496.5
488.0
476.5

' Present work.

(cm ')

7 581
9 395

14 399
14 427
14 883
14 888
14 970
15 152
15 369
15 615
16080
16 151
16 227
16 973
19430
19926
20 135
20487
20 981

CH4
(Ref. 32)

162.33+0.71
176.65+0.60

206.76+0.47
206.46+0.60
207.06+0.47

211.07+0.54

217.65+0.55
217.99+0.55
225.27+0.56
253. 16+1.44
260.23+0.77
263.02+0.93
268.29+0.78
275.25+ 1.51

CF4
(Ref. 23)

63.71+0.41
65.33+0.30

71 ~ 83+0.27

72.31+0.27
73.22+0.27

74.41+0.14
79.05+0.23

80. 14+0.31
81.13+0.23

COp
(Ref. 22)

74.37+0.47
77.33+0.48

85.27+0.33

87.62+0.27

90.00+0.34

100.58+0.23

105.01+0.39

C4Hq
(Ref. 34)

1258+7
1708+97

cess, but the coefficient A was constrained to be identical
for all four. The coefficient A =2.191 a.u. obtained in
this way is a good estimate (+0.001 a.u. ) of the coefficient

in the infinite power series expansion, though the
coefficients B and C are not. The fit coefficients obtained
for the ESHG process in He are given in Table II. This
fit represents the ab initio results for He to better than
0.01% for coL ~0.08 a.u. (A, ~395 nm). Finally, before
being used for calibration, the yH, results must be con-
verted from atomic units to SI units. Accounting for the
effect of the finite He nuclear mass by means of sealing
factors [co=co„(p/m, ) and y=y„(p/m, ) ] involving
the reduced electron mass p, and using the 1986 coDATA

values of the fundamental constants, the conversion fac-
tors for the He atom are: co, 1 a.u. =219444.S464 crn
and y, 1 a.u. =6.241363X10 C m J . The fit

coefficients for yH, expressed in SI units are also given in
Table II.

In addition to the data given in Table I, there are also
previous ESHG hyperpolarizability ratio rneasurernents
of comparably high accuracy, made at visible laser wave-
lengths. Combining the near-infrared and visible data al-
lows one to accurately describe the frequency dependence
of y and to make a meaningful extrapolation to the static
limit of y. The visible ESHG data to be included in our
analysis is given in Ref. 13 (H~, Dz), Ref. 22 (CO&), Ref.
23 (CF4), Ref. 28 (Ar, Nz, Oz), Ref. 29 (Kr,Xe), Ref. 30
(Ne), Ref. 31 (SF6), Ref. 32 (CH4), Ref. 33,
(C&H6, C3Hs, n-C4H, O), and Ref. 34 (C4H6). Ward and
co-workers have also made ESHG rneasurernents at
k=694. 3 nrn, with stated accuracy of 1—2%, for a num-
ber of molecules in the present study. These and other
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relevant nonlinear-optical measurements had been con-
sidered previously and found to be consistent with the
data in our chosen sample. Since these other data are of
uneven quality and would have at most a marginal effect
on our fits, they are not considered here.

The experimental estimates of yA„and yN„computed
from the measured ratios using the fitted values for yH„
are given in Tables III(a) and III(b). Just as for He, we
wish to obtain dispersion curves which represent the
data. For the atoms Ne and Ar it is sufficient to use a
truncated power series in vL, with the form given by Eq.
(8), and with coefficients yp, A, and 8 determined by a
weighted least-squares fit to the data. The fit coefficients
are given in Table IV, and the data and the fitted curves
are shown in Figs. 3(a) and 3(b). The negative dispersion
at low frequencies seen in the case of Ne is anomalous, as
has already been noted and discussed. While surpris-
ing, such behavior for y is allowed by the quantum-
mechanical expression for y, and it also resolves the ap-
parent discrepancies between the results of various exper-
imental measurements and ab initio calculations of y for
Ne. This unusual behavior seems to be due to strong
electron-correlation effects for yN„and merits further
study. The smooth, monotonic dispersion curve for Ar is
the expected and usually observed behavior for y. Now
using the fitted curve for yA, to calibrate the hyperpolari-
zability ratio measurements for Kr and Xe, one obtains
the values given in Table III(b). Again fitting a power-
series dispersion curve, one obtains the fit coefficients
given in Table IV. The data and the dispersion curves for
Kr and Xe are plotted in Figs. 3(c) and 3(d).

The experimental values of ( yH ) and ( yN ) are com-
2 2

puted from the experimental ratios, using the fitted ab in-
itio yH, curve as before, and the results are given in Table

Gas
j 0

(10 63 C4 4 J 3) (10 ' cm')
8

(10 cm )

Ne
Ar
Kr
Xe
H2

D2
N2

02
CO2
CF4
SFe
CH4
C2He
C3H8
n C4H10

C4He

7.435
72.75

162.1

429.5
42.80
41.71
57.20
60.03
71.50
61.43
89.10

161.5
292.4
489.5
635.9
924

—1.924
1.066
1.389
1.499
1.200
1.184
1.003
1 ~ 112
1.252
1.145
0.500
1.532
2.410
2.132
1.573
6.81

6.901
2.033
3.465
8.048
2.254
2.104
1.852
4.603
2.405
0.498
2.124
4.334
3.710
6.667
9.730

III(a). However, determining the dispersion curves for
these molecules is more complicated than for the atoms.
The power series of Eq. (8) adequately describes only the
electronic contribution (y') and not the vibrational and
rotational contributions (y'"). For ESHG, the vibra-
tional and rotational contributions to (y )„„,due to vir-
tual transitions OJ ~v'J' in a homonuclear diatomic mol-
ecule in the ground vibronic state, are given by

TABLE IV. Coe%cients of the weighted least-squares fit of
the function ( y ) =y„[1+A vL +Bvt ] to the (}) data in Table
III. For the diatomic molecules in Table III(a), the fit was made
to the experimental values of (}'). For CH„ the A, =1319nm

point was excluded from the At.

4 +oJ, Us+2 (J+1)(J+2)
15 flQpJ „1+2 (2J + 1 }(2J+ 3)

4 «oJ+2, UJ (J+1)(J+2) +
15 A'Qpj+2 UJ (2J +3)(2J +5)

2 —2
8 «oJ, UJ J(J +1) + OJ, UJ

45 A'II „(2J—l)(2J+3) p(J)F(Qpq„J ~)+~2~~
' p(J)F( pJ „J (9)

d37, 38

4 «os, os+~ (J + 1)(J +2)
15 A'Qpi pJ+ q (2J + 1)(2J +3)

transition polarizability, p( J) is the normalized rotational
distribution function, and the rovibrational energy levels
are given in terms of the usual spectroscopic constants
by

2J+1
X p( J) p( J +2) F(Q pJp J+p& rp)2J+5

(10)

&(u, J)/&=co, (u + —,
' }—cp, x, (u + —,

' )2

B+„(JJI+) D, [J(J+1)]—

where

F(O;cp) =[1—(2'/II }'] '+2[1—(ru/0) ]

a and Aa are the mean and anisotropy of the Raman

Equations (9)—(11) are derived by neglecting the disper-
sion of a and Ao. , and are valid away from exact reso-
nance. These expressions are tedious to apply, and when
the rotational transition energies are small compared to
kT, Eqs. (9) and (10) may be replaced by a simpler ap-
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FIG. 3. Dispersion curves are shown for y„„as a function of vt, for the atoms Ne, Ar, Kr, and Xe [(a)—(d)]. The function

p =pp( 1 + 3vL +BvL ) has been fit to the data points from Tables I II (a) and III(b) (measured by ESHG over the near-infrared and
visible), with the fit coefBcients given in Table IV. The smooth curves show the fitted functions. The error bars for some of the data
points are smaller than the plotted symbols. All frequencies involved are far below the lowest resonance frequency of any of these
atoms. As expected, the dispersion increases for the sequence Ar, Kr, Xe. The negative dispersion for yN, is anomalous.

proximate expression obtained by summing over J:

(y'") = g (cT + ,', b,a ),F(Q, ;cu)—
, o &o, .

An() o
2

+ ' F(Q, ,;co),
l5kT

where

Q, ,=4BO/(fiBc/kT)'

(12)

(13)

is the efFective rotational transition frequency given in
terms of the ground-state rotational constant Bo. Furth-
ermore, if the optical frequencies are much larger than
the rovibrational frequencies, co&)Q, one may approxi-
mate

F(Q'cu) = ——'(Q/cu) ——"(Q/co)

Combining Eqs. (12)—(14) allows one to write

(y" )=Geo +Hco

(14)

(15)

where G and H are weakly temperature-dependent
coefficients which may be evaluated from the Raman ma-
trix elements and transition frequencies of a homonuclear
diatomic molecule. The spectroscopic constants for Hz,
02, Nz, and Oz, ' given in Table V, were used to cal-
culate the coe%cients G and H at T =295 K, also given
in Table V.

For H2 and Dz the vibrational and rotational transition
frequencies are high enough to cast doubt on the validity
of the assumptions leading to Eq. (15). Therefore, (y'")
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TABLE V. Raman transition frequencies and polarizabilities for fundamental and overtone vibrational transitions and rotational
transitions. These data are used to calculate the coefficients G and H in the approximate expression (y" ) =Gv '+Hv 4, at
T =295 K. For H2 and Di the values of 0, , from Eq. (13) have been slightly adjusted to improve the estimate of (y").

Bo
(cm ')

&o, t (
—2+ 4 g 2)1/2

4g
& O t

(10 4z C2 2J ')

Gas (10 "C m J cm -') (10 "C m J 'cm )

H"
2

Db
N2'
Op"'

59.3
29.9

1.99
1.44

4156
2988
2330
1556

8075
5856
4631
3089

33.8
32.7
77

122

12.58
10.48
6.25
6.15

1 ~ 10
0.75
0.24
0.12

—1.591
—0.788
—0.221
—0.159

—2.492
—0.632
—0.104
—0.030

' From Refs. 5 and 39—43 for J =1.
From Refs. 5 and 39—43 for J =2.

' From Refs. 5, 39, 42, and 43.

70—
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".) 0

40 40
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FIG. 4. Dispersion curves are shown for ( y )„„asa function of vL, for the homonuclear diatomic molecules Hz, Di, Nz, and 02
[(a)—(d)]. Experimental data for (y) are from Table III(a). The dashed lines show the least-squares fits to (y'), with coefficients
given in Table IV. The solid lines are (y) =(y')+(y" ), where (y'") is calculated as discussed in the text. The error bars for
some of the data points are smaller than the plotted symbols. The size of (y"") at optical frequencies decreases in the sequence Hz,
Di, Ni, 02. For H2, there are significant contributions to (y" ) at A, =1319 nm due to an overtone vibrational Raman band; the
closely spaced (y") resonances near 8075 cm ' actually have amplitudes » ( y'). For all these molecules, ( y"") will show vibra-
tional and rotational resonances in the infrared, and in the static limit ( y"' ) ( y').
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has been evaluated for Hz and 02 directly from Eqs.
(9)—(11},using the static polarizability matrix eleinents
calculated by Hunt, Poll, and %'olniewicz, except in the
case of the vibrational overtone transitions. For the over-
tones, the matrix elements are the static limits of the dy-
namic results from the more accurate calculation of
Schwartz and Le Roy. ' The static rather than the opti-
cal polarizability matrix elements are used since ( y'" ) at
low frequencies most critically a8'ects the extrapolation of
(y') to the static limit. The values of (yH ) and (yD )
at T =295 K determined by these calculations are given
in Table III(a). When the results of Eq. (15) for H2 and
Di are compared with the results of Eqs. (9)—(11), one
sees that Eq. (15) is significantly in error for the near-
infrared wavelengths, but it is in fact accurate to better
than 0.01X10 C m J for all visible wavelengths.

For N2 and Oz the ( y"") contribution is much smaller
(0.1% of ( y ) in the visible), so Eq. (15) is more than ade-
quately accurate for Nz and 02 at aH wavelengths of
present interest.

The analysis of the H2 and D2 data proceeds as follows.
By simple subtraction of the results in Table III(a), one
obtains the experimental values of ( yH ) = ( yH )
—(yH" ), which are then fit with a power series disper-

2

sion curve, just as in the atomic case (coeIIicients in Table
IV}. The sum of the fitted (yH ) curve and calculated

2

( y H" ) values is the desired dispersion curve for ( y H ) .
2 2

This curve is plotted in Fig. 4(a) along with the (yH )
2

data from which it was obtained. The dispersion curve
for (yH ) also serves to calibrate the (yD ) results given

2 2

120 300 — (b)

100 250—
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FIG. 5. Dispersion curves are shown for (y )„„asa function of vL, for the polyatomic molecules (a) CO2, CF4, and SF6; (b) CH4;
(c) CzH6; and (d) C,H, , n-C~H, O, and C4H6. Power law dispersion curves have been fit without separately accounting for ( y"" ) [data
in Tables III(b) and III(c); fit coefficients in Table IV]. These curves will not adequately represent (y) near vL =0. The error bars
for some of the data points are smaller than the plotted symbols. Except for ( yc„), these fits adequately represent the data. For

4

CH4, the large discrepancy for the A. = 1319 um point (excluded from the fit) indicates that ( y"" ) may significantly alter the shape of
the dispersion curve even at visible wavelengths.
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in Table III(a). Proceeding as for Hz, one obtains and fits

(yo ), yielding the coefficients given in Table IV. The
2

'

dispersion curve for ( yo ) is again the sum of the fitted
2

(yz ) curve and the calculated (yD ). This dispersion
2 2

curve for (yD ) is compared with the data in Fig. 4(b).
2

The analysis of the Nz and Oz data is exactly the same as
for Hz and Dz, except that Eq. (15), with the coefficients
from Table V, is used to calculate (y'"). Figures 4(c)
and 4(d) show the dispersion curves and the data for

(y/, )»d (yo, )
The dispersion curve for (y~ ) finally serves to cali-

brate the ratio data for the remaining molecules, with the
resulting (y) values given in Tables III(b) and III(c).
Ideally, the electronic and vibrational contributions to
( y ) should be separately dealt with in the determination
of the (y ) dispersion curves for the polyatomic mole-
cules. Expressions for the vibrational contributions for
tetrahedral and octahedral molecules have been derived,
but these expressions are very complicated, as well as re-
quiring presently unobtainable molecular property data
for their accurate evaluation. For a number of mole-
cules in this study the appropriate expressions for (y'")
have not been derived. However, in contrast to the
strong co frequency dependence of (y'") for the dia-
tomic molecules, it appears that ( y"") is nearly constant
at optical frequencies for polyatomic molecules such as
CF~ and SF6 (for ESHG). Furthermore, it is estimat-
ed that (y" ) is only about 1% of (y) for CH4 (for
ESHGj, ' ' and the same may be true for the other hy-
drocarbon molecules studied. If this is the case, a power
series dispersion curve should be an adequate representa-
tion of ( y ). Accordingly, Eq. (8) has been used to fit the
remaining data, with the fit coefficients given in Table IV.
The fitted curves and the (y) data for the polyatomic
molecules are plotted in Figs. 5(a)—5(d).

DISCUSSION

The fitted curves adequately represent the data, with
one significant exception for CH4. Though the older data
for Ar, Hz, and Nz appears somewhat ragged, the abso-
lute accuracy of the (y) dispersion curves for Ar, Hz,
and N~ (calibrated directly against Hej is expected to be
about 0.2% over the fitted range. The extrapolation to
the static limit of ( y') for the atoms and diatomic mole-
cules should be accurate to about 0.5%, but relies heavily
on the accuracy of the infrared data (the A. =1064 nm
point in particular), and in the case of the diatomic mole-
cules, also on the accuracy of the ( y'" ) calculation. For
Ne, the nonmonotonic dispersion curve increases the un-
certainty of the estimated static value of y to about 2%%uo.

However, there are several systematic defects which
should be considered. First, a recent calculation indi-
cates that the effect of pair interactions between He
atoms in a gas, at the highest densities employed in these
experiments, may increase g' ' for the gas by 1% com-
pared to the value calculated for a gas of noninteracting
He atoms. The effect is expected to be half as large for
Ne. If this calculation is correct, all the experimental

estimates of (y ) given here should be adjusted upward
by about 1%, except y~, which should only increase half
as much. Once the interaction contributions are accu-
rately known, the measured ( y ) may easily be corrected
for the interaction effects.

Second, for the dipolar species C3H8, n -C4H, 0, and

C~H6, the measured (y ) is actually contaminated by a
temperature-dependent p' t3I3kT term. This contribu-
tion had been considered previously for C3H8 and
n-C4H, O and was judged to be small ( & 3%j;33 measure-
ments of the temperature dependence of g' ' for C4H6 in-
dicate a 7+6% contribution at room temperature. By
leaving the temperature dependence of y' ' unaccounted
for, we may have incurred errors of several percent in

(y ) for these molecules. Accurate measurements of the
expected weak temperature dependence of g' ' for these
molecules would allow one to eliminate this defect.

Third, there is the difficulty of adequately assessing
( y'" ) for the polyatomic molecules, which makes the ex-
trapolation to the static limit problematic. For CH4, the
A, = 1319 nm point misses the dispersion curve by 12 stan-
dard deviations [Fig. 5(b)], which is a clear indication
that the curve should actually bend down at low frequen-
cies as in the case of Hz [Fig. 4(a)]. There are two strong
fundamental Raman bands ' near 3000 cm ' for CH4
which could make (y" ) for CH4 larger than that for Hz
(the overtone bands near 6000 cm ' probably do not play
a major role), " and significantly alter the shape of the
dispersion curve even at visible wavelengths. More infor-
mation is needed for a conclusive interpretation, especial-
ly since no discrepancy at X=1319nm is observed for the
other alkanes [Figs. 5(cj and 5(d)]. A possible way to at-
tack the problem of determining (y"") is by combining
theoretical calculations with experimental measurements
of the frequency dependence of ( y ) for both the dc Kerr
effect and ESHG.

Until the above-mentioned defects are corrected or
resolved, the effective accuracy of our results is only
about 1%, even for the atoms and diatomic molecules.
Since (y" ) cannot at present be adequately assessed for
the polyatomic molecules, we are unable to accurately
determine (y') or its static limit for these molecules.
Despite these shortcomings, the results of this work have
several interesting features and allow some conclusions to
be drawn. First of all, this work provides reasonably ac-
curate (y) dispersion curves for a large enough set of
atoms and rnolecules to allow one to pick out the excep-
tional cases. The negative A dispersion coefficient for Ne
clearly marks Ne as an exception. Also, the dispersion
coefficients for CF4 and SF6 indicate that the ( y ) disper-
sion curve for CF4 is unusually straight, while the curve
for SF6 has an unusually small initial slope. These may
be the signatures of unusually large vibrational contribu-
tions to (y ).

The experimental estimates of the static limits of (y')
for Ne, Ar, H~, and Dz allow one to assess the results of
the presently most accurate ab initio calculations for
Ne, , Ar, Hz, and Dz. All these calculations include
electron correlations and employ large basis sets. The
calculations for Ne and Ar include triple excitations in a
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coupled-cluster correlation treatment, while for H~ and

Dz the interelectronic coordinate explicitly appears in the
wave function. For H2 and Dz, (y) at optical frequen-
cies has also been calculated, but for Ne and Ar only the
static results were obtained. Converting the values of yo
given in Table IV for Ne, Ar, and H2 to atomic units
(conversion factor with p =m, is 6.235 377 X 10
C m J ), one has the experimental estimates
(y') O= 119+2 a.u. , 1167+6 a.u. , and 686+4 a.u. for
Ne, Ar, and H2, respectively. The stated uncertainties do
not include possible systematic errors in the calibration
due to the effect of He pair interactions. The correspond-
ing ab initio results are (y') &=119+4 a.u. , 1220+30
a.u. , and 671+6 a.u. The differences between the ab initio
and experimental results for (y') o are 0.0%, +4.5%,
and —2.2%%uo for Ne, Ar, and H2, respectively. The antici-
pated corrections to the experimental results, due to the
effects of pair interactions for He and Ne at high densi-
ties, would change the differences between the ab initio
results and the experimental estimates to —0.5%,
+3.2%, and —3.2%. The ab initio results for Ne seem
to have converged, and the result for Ar seems quite good
considering the large size of the Ar atom. Though these
calculations are difficult, it seems that the ab initio tech-
niques presently being used to calculate y for atoms will
be adequate even for heavy atoms. The situation seems
less satisfactory for molecules, since even a very careful
calculation for H2 apparently achieves only 2%%uo accuracy.

The experimental results for H2 may be checked by
comparing them with the measurements for D2. The ex-
perimental and ab initio results for (yH ) l(yD ) in the

2 2

static limit are 1.026 and 1.029, respectively. The agree-
ment between experiment and theory for the ratio
(yH )/(yD ) is an indication that the calculation of"2 2

(y' ) is adequate for H2 and D2, and that the experi-
ment extrapolation to the static limit is accurate. As a
further check, the experimental and ab initi'o values of
(yH ) at X=488.0 nm are 992 and 969 a.u. , respective-

ly; the —2.4% discrepancy at optical frequencies is con-
sistent with the —2.2% static discrepancy, and this again
supports the accuracy of our experimental extrapolation

to the static limit for Hz. Note that this last result is in-
sensitive to small errors in ( yH" ), which only contributes

0.6% of (yH ) at A, =488.0 nm, and that the anticipated
2

correction for He pair interactions will make the
disagreement even worse. The disagreement between
theory and experiment for H2 is larger than previously es-
timated, but the previous comparison was based on in-
correct values for yH, . It is possible that the disagree-
ment is due to the effect of pair interactions on y for H2.
If the pair-interaction effects are much stronger for H2
than for He, then they could be significant at even the rel-
atively low H2 sample densities employed in these mea-
surements.

The ab initio calculation of (y ) for the H2 molecule is
much more difficult than for an atom, since there are
seven independent tensor components of y to compute as
functions of the internuclear coordinate. Nevertheless,
even a 2% discrepancy is surprising, considering that a
basis of up to 249 explicitly electron-correlated functions
has been used to describe the wave function of this two-
electron system. For He, a basis set half this size is
thought to give 0.02% accuracy. Calculations for mole-
cules much larger than H2 usually employ a smaller basis
set of uncorrelated functions and fix the nuclei at their
equilibrium positions. ' ' Both static ' and dynam-
ic ' ' calculations of y have been performed, with '

and without ' inclusion of electron correlation.
Hartree-Fock calculations for N2,

' CH4, and CF4 (Ref.
52) give the static values of (y ) =700, 452, 143 a.u. , re-
spectively, to be compared with 917, 2590, and 985 a.u.
from the static limit of our experimental results. The
agreement is rather poor, possibly due to the neglect of
electron correlation. But even when electron correlation
is included, for example in calculations for several conju-
gated molecules, ' the accuracy of the calculated results
remains an open question.
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