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The 2s2p 'P and 'P autoionizing states of heliumlike ions are studied via an implementation of the

Feshbach projection method within the framework of Z-dependent perturbation theory. These
same states are also studied by a more straightforward {nonprojected) application of Z-dependent

perturbation theory that has features similar to those of the stabilization method. The computa-
tional and theoretical advantages of applying the Feshbach method within Z-dependent perturba-

tion theory are emphasized. Results for all two-electron ions with Z =2 to 10 are tabulated and

compared with experiment and with other very accurate theoretical results for these systems. In-

cluded in these results are estimates of the resonance positions, energy "shifts, " and widths of these

autoionizing states.

I. INTRODUCTION

Autoionizing states of atoms present special theoretical
and computational problems. Of the methods that have
been applied to the study of such atomic states, one of the
most popular and effective has been the Feshbach projec-
tion method. ' Much recent work in this area is summa-
rized in the review articles of Temkin and Bhatia. In
the present paper we study autoionizing states via Z-
dependent perturbation theory and the variational per-
turbation method. Perturbation theory is perhaps com-
putationally more naturally suited to the study of au-
toionizing states than approaches based on the variation-
al method. Indeed, the description of these states by
Fano was based on a perturbation picture of the interac-
tion between an isolated discrete state and an adjacent
continuum. The method proposed by Feshbach and ap-
plied to atomic systems by Hahn, O' Malley, and Spruch
and O' Malley and Geltman has a ready and obvious im-
plementation in perturbation theory. Indeed, the method
is even more precisely realized in perturbation theory
than in its usual variational manifestation. In particular,
it should be emphasized that the Feshbach projection
operators for multielectron systems, which for systems
with more than two electrons are difficult to construct
within the variational approach, are as easy to construct
in the variational perturbation method for an atom with
an arbitrary number of electrons as for one with two elec-
trons. The present paper presents an application of the
variational perturbation implementation of this approach
to the 2s2p singlet and triplet autoionizing states of heli-
umlike ions. The resonance positions and widths for
these states are calculated and compared with experimen-
tal values where available, and with the very accurate re-
sults of Bhatia and Temkin ' and Chung and Davis for

the neutral atom, and the comparably accurate results of
Ho for the ions through Ne +. In addition, a "nonpro-
jected" version of this calculation is performed in order
to compare and contrast this more direct method, analo-
gous to the stabilization method, to the Feshbach method
for these states. Comparison of these two results yields
estimates of the energy "shifts" for these autoionizing
states.

II. METHOD

A. Z-dependent perturbation theory

where the zeroth-order Hamiltonian is

2

Ho= g
1=1

1 q2
2

and the perturbation is

Hl= 1

~le

The nonerelativistic energy and wave function are then
given by

E= gZ "c„,
n=0

(4a)

%=gZ "P„.
n=0

(4b)

In Z-dependent perturbation theory, the nonrelativistic
Hamiltonian for an S electron atom is given, in charge-
scaled atomic units, by

H =Ho+ —H
1

42 2562 1990 The American Physical Society



APPLICATION OF Z-DEPENDENT PERTURBATION THEORY. . . 2563

The variational perturbation method consists of optimiz-
ing the nth-order variational wave function g„via a func-
tional' which yields an upper bound to c2„and an esti-
mate of c.2„+,-.

2,n —1 n

Ck 2n k i i 7 (5)

2n n

e2. +(=&0.lG(l&. &
—X ek

k=2 i =n+1 —k

In the above, 6;=H; —c.; and terms with negative indices
are to be ignored. If Eq. (5) is to yield an upper bound to
c2„ for an excited state, the approximate nth-order wave
functions have to satisfy the perturbational equivalent"
of the orthogonality conditions imposed on variational
trial wave functions:

(q ()vl)y ~())=(q(»ly(~) ) =—( y(N)lH
l

q(a) )
(N) ~(a)

&o &o

B. Feshbach projection method

The Feshbach projection method defines a pair of or-
thogonal projection operators, Q and P, such that

lim QQ~O,
pi f2 —+ 00

lim Pg~ g,
f ),f2~ (x)

Q+P=1 .

(8a)

(8b)

(8c)

For a two-electron atom, O' Malley and Geltman took
the projection operators to be P =P, +P2 P& P2,
Q = 1 Pwith P, =

l
ls (i) ) ( —ls (i) l

for an autoionizing
state lying between the n=1 and 2 ionization thresholds.
The initial computational task in implementing the
method is then to obtain the eigenfunctions and eigen-
values of H& =QHQ. The eigenfunctions are utilized to
form Q = g 4'&)(0'&l which in turn permits calcula-
tion of the "shift" b and the width I for the state of in-
terest, while the eigenvalue e& yields an estimate of the
resonance position E =e&+6. The accuracy of e& as an
estimate of the resonance position then depends on the
magnitude of the shift, A. Since the eigenfunctions of
H&& are square-integrable functions, the calculation
proceeds in the manner of a standard variational calcula-

a=1, . . . , N —1.
The superscripts in Eq. (7) are state labels with N denot-
ing the state of interest, states denoted by a being lower-
lying states. For ordinary excited states, this condition is
easily satisfied by including the exact zeroth-order wave
functions of all the lower-lying states in the basis set of
the trial wave function. Autoionizing states like the 2s2p
states of helium, however, possess an infinite number of
lower-lying discrete and continuum states and such a pro-
cedure is clearly impossible.

tion for a bound state with one additional complication:
the need to project out any 1s character from the basis
set. The optimization of any parameters in the basis set
is stable against "variational collapse" to lower-lying,
singly excited states of the system since projection has
made the trial wave function very nearly orthogonal to
all lower-lying states, bound or continuum, at least in
that region of configuration space where there is
significant overlap between Qg and the wave functions of
these singly excited states. Nevertheless, it should be not-
ed that in this standard variational approach to the Fesh-
bach method, the possibility does exist for "collapse" to
an e& corresponding to the Qg part of a singly excited
state, since these states are only approximately described
as ls in character (ls a hydrogenic orbital). ' It should
aLso be said that in practice this does not appear to be a
significant hindrance to the accuracy of the method.

Application of the Feshbach projection method within
the variational perturbation method is quite straightfor-
ward. In this instance the trial nth-order wave function
for Qg must yield an upper bound to the E2„since the
condition that the g„must satisfy, Eq. (7), involves only
the exactly known, zeroth-order wave functions for all
lower-lying states. These zeroth-order functions are pre-
cisely ls in character so that the Qf„are all independent
of these conditions. Hence application of the variational
perturbation method to the Qg„within the Feshbach
projection method yields rigorous upper bounds to the
even-order expansion coefficients of doubly excited states
without the possibility of variational collapse to lower-
lying, singly excited states. The method is thus inherent-
ly more accurate than application of the straightforward
variational method. ' It should be clear that although
the optimization of the variational wave functions is ac-
complished via a method yielding an upper bound for the
energy coefficients of even order, the approximate energy
eigenvalue obtained by summing the perturbation series
of Eq. (4a) is not necessarily an upper bound to the corre-
sponding eigenvalue of H&&.

As the variational perturbation method is particularly
suited to the study of excited states in general, it can be
expected that it should also be advantageous for the
study of doubly excited states. Indeed, the present im-
plementation of the Feshbach method can be easily ex-
tended to the calculation of more highly excited autoion-
izing states. Finally, of course, the 1/Z expansion has the
great advantage of yielding values for an entire isoelec-
tronic sequence from a single calculation.

If one now considers how these results might general-
ize for more complex atoms, the advantages of the varia-
tional perturbation method become even more apparent.
The projection operators required by the variational per-
turbation method for systems containing more than two
electrons still need only be constructed from hydrogenic
orbitals, whereas constructing the projection operators
for an N-electron autoionizing state in the variational
method will require the (N —1)-electron wave function of
the target. For example, a doubly excited state of a lithi-
umlike ion requires only terms involving is(i)ls(j),
i,j= 1,2,3 in the projection operators in place of terms in-

(' 's) - ~

volving 4'' '(i, j), which can only be known approxi-
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mately. Furthermore, the results obtained for a two-
electron atom by this method are directly transferable to
any complex atom containing the same two-electron
configuration as a subconfiguration. '

III. RESULTS AND DISCUSSION

With the exception of Table VII, where the data are
given in A, all tabulated results in this paper are ex-
pressed in atoms units. Two sets of calculations are
presented here for the 2s2p autoionizing states of two-
electron ions. The first, based on the projection formal-
ism of the preceding section, has all the characteristics of
a conventional variational perturbation calculation for an
ordinary bound state. The second, a straightforward (no
projection) calculation, is the variational perturbation
version of the stabilization method and exhibits behavior
analogous to the "avoided crossings" associated with
variational collapse in that method. Both of the present
calculations utilize variational wave functions of the form

—0.0230-

—0.0246-

—0.0250-

—0.0260-

—0.0270-

—0.0280-

—0.0290-

-0.0300-

-0.0310-

-0.0320-
.50

) l I I I

1.00 1.50 2.00 2.50 3.00 3.50

FIG. 1. The c2 optimization curves for the 2s2p P autoioniz-
ing state: solid line, nonprojected c2, dashed line, projected c.2.

f„=A +ri2B, (9a)

with A and B both of the form

n +m +I =0
c„ I( 1+P,2)r", +'rz '+'P&(cos8, z)

Xexp[ —a„(r, +r2)]cos0z . (9b)

For the projected wave functions, however, variational
convergence was found to be excellent without including
terms like r, 2B in the trial wave function. This consider-
ably simplifies the construction of Qf„. The final basis
sets utilized include terms with n +m + I ~ 12 and 14 for
a total of 504 "A and B-type" and 372 "A-type" terms
for the "nonprojected" and projected wave functions, re-
spectively. The procedure followed here was to first ob-
tain the "optimum" a& for the trial first-order wave func-
tion that yielded the minimum cz. Optimization curves
for these two calculations are displayed in Fig. 1. Optim-
ization of Ql(ti is straightforward, but optimization of the
nonprojected wave function is complicated considerably
by the appearance of singular points similar to the avoid-
ed crossings that are characteristic of the stabilization
method. In this latter case the procedure followed was to
choose an a, between —,

' and 3 which corresponded to the
minimum slope in the optimization curve, rather than the
minimum value of c2. This corresponds to somewhat ar-
bitrarily choosing one of several inflection points in the c.2
versus ai curve. Setting a„=ai, the higher-order g„and
c„are then easily generated recursively, since a single di-
agonalization of the 60 matrix is sufficient to obtain the
linear parameters for all the i)'r„. ' Energy expansion
coefficients for these two methods are exhibited in Table
I. Although the two sets of coefficients are not directly
comparable, coefficients generated by each method for
the two states considered here display similar behavior.
The convergence of the triplet state energy coefficients in
particular is remarkably rapid. The slowly damped oscil-
lation of the higher-order coefficients for the singlet state
is more typical of the behavior found for most singly ex-

cited states. '" " The only other such calculation of
higher-order coefficients for doubly excited states is due
to Drake and Dalgarno. ' Since the latter calculation,
based as it is on the method of Miller, ' utilizes an entire-
ly different projection operator, we might not expect
much similarity between the projected energy coefficients
obtained here and those of Ref. 17. In fact, it appears
that the latter coefficients are more closely related to the
nonprojected coefficients found here, at least for the low-
order coefficients.

We can also extract a few of these perturbation energy
coefficients from the complex-rotation calculations of
Ho. Those calculations extend over a sufficient range of
Z so that diff'erencing of the energy eigenvalues yields re-
liable estimates of the expansion coefficients implicit in
the data. These are also included in Table I where they
should be compared to the present nonprojected results.
In obtaining these coefficients, the contributions to the
energy of the exact zeroth- and first-order coefficients
were first removed from the data, so that the leading
coefficient was c.2. The agreement between the present
nonprojected energy coefficients and those extracted from
Ho's data is entirely satisfactory given the uncertainties
in obtaining an "optimum" c.2 with the present method
on the one hand, and the relatively large rms deviations
for the estimates of the energy coefficients obtained from
Ho's data on the other.

The accuracy of the c2 obtained here is estimated by
observing the variational convergence of c.2 as the size of
the basis set utilized for the trial, first-order wave func-
tion is increased. On this basis, the values of c,z presented
in Table I are listed to one more significant figure than
can be considered reliable. As the higher-order
coefficients cannot be more accurate than c2, all subse-
quent energy coefficients are arbitrarily truncated to the
same number of decimal places as cz, although the
highest-order coefficients listed are unlikely to be this ac-
curate.

The c2 calculated here can also be compared to a num-
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TABLE II. Comparison of some second-order results for the 2s2p states.

2s2p 'P 2s2p P
Quantity

Projected energy c2

Nonprojected energy c2

Shift h2
Width I

Present paper

—0.095 85

—0.096 76

—0.000 91
0.004 901 05

Other

—0.0955'
—0.095 598
—0.0960'
—0.096 871'
—0.000 407 731 1

0.004 796'
0.004 627

Present paper

—0.029 431 2

—0.027 739 5

0.001 691 7
0.000 329 781

Other

—0.029 44'
—Q.029 42Q 4b
—0.028 60'
—0.027 688'

0.001 697 175
0.000 325 4'

'Chan and Stewart, Ref. 19.
Knight, Ref. 21.

'Vainshtein and Safronova, Ref. 20.
Exact result of Horak and Lewis, Ref. 22.

'Obtained from the results of Ho, Ref. 9.
'Macias and Riera, Ref. 24.

ber of c.z obtained by other workers by a variety of
methods. This is done in Table II for both projected and
nonprojected e2. The results of Chan and Stewart' are
variational perturbation calculations with a hydrogenic
basis set and include both projected and nonprojected
values, while the calculations of Vainshtein and Safrono-
va are based on diagrammatic perturbation theory. The
results of Knight ' for the projected c.2 are corrected here
for the explicit inclusion of a 1s2p term in his
configuration-interaction (CI) basis. The variational con-
vergence of the present c2, together with the accuracy of
the total energies obtained with them, suggest that these
c2 are more accurate than the other cz presented in Table
II, both for the projected and nonprojected calculations.

Energy Shifts The diff.erence between the projected s„
and the nonprojected c„ofTable I is just the nth-order
contribution to the shift, 5„, of the Feshbach method.
The h2 for the two states considered here have been cal-
culated essentially exactly by Horak and Lewis and by
Sharma and co-workers. ' ' Their exact results are com-
pared to the present results in Table II. The present re-
sults for the triplet state are quite satisfactory, while the
results for the singlet state suggest larger errors in the c.2
for this state. This is more likely to be due to inaccura-
cies in the nonprojected singlet c2, given the difficulty in
optimizing cz with this method. However, comparison

TABLE III. The 6„ for the 2s2p singlet and triplet states.

with the c2 extracted from the data of Ho indicates that
the nonprojected c2 is not so inaccurate as to produce the
error observed in b2. This is confirmed by the accuracy
obtained for the total energies with this c2, especially for
the higher-Z members of the isoelectronic sequence
where errors due to higher-order coefficients are
suppressed. Nevertheless, it is difficult to ascribe an error
of 5 units in the fourth decimal to the projected c2 alone.
More than likely, this error in 62 must be shared by both
of the c.2 for this state. The higher-order expansion
coefficients of the shift can be obtained by taking the
difference of the projected and nonprojected energy
coefficients of Table I. These appear to be small in mag-
nitude and hence are probably not particularly accurate
given the limited accuracy of the c„. Nevertheless, one
can obtain an estimate of the total shift for members of
the isoelectronic sequence with Z & 10 from this data, and
they are presented in Table III.

8'idths For the 1./Z expansion, the lowest-order con-
tribution to the width is found to be of second order (in
charge-scaled atomic units):

2s2p 1skp1

~12

where $0'"p is a hydrogenic continuum function degen-
erate in energy with the $0' p state. This I 2 can be calcu-
lated exactly and details of this calculation are presented
in the Appendix, while the results are included in Table
II. Higher-order coefficients for the width are calculated
here by expanding the expression for the total width,

2s2p 'P

—0.000 91
0.001 17
0.005 07

—0.01605

2s2p P

0.001 691 7
—0.001 484 4

0.000 272 9
0.000 109 2

—0.000 111 5
—0.000 018 6

0.000 021 1
—0.000 034 3

We approximate PP (here expressed in atomic units) by

12 )Pls(Z)fkp(Z —1) (12)

The continuum function fkp(z, ) has the correct asymp-
totic behavior to represent Pg. In charge-scaled atomic
units it can be written as gkp(( (&z). In these units,

,'k =E(Z)+ —,', the—difference in energy between the res-
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TABLE IV. The I „ for the 2s2p singlet and triplet states.

o =1.00'

0.004 901 08
—0.01106

0.009 13
—0.001 74

—0.002 58
0.001 27
0.001 02

o =0.88'

0.004 901 07
—0.010 81

0.008 58
—0.001 01

—0.003 31
0.001 65
0.001 01

2s2p 'P
Ho

0.004 79
—0.009 50

0.005 63

DD'

0.004 89
—0.01046

0.006 78

MR

0.004 63
—0.008 86

0.004 99

0.= 1.00'

0.000 329 781
0.000 576

—0.000 133
—0.000 508

—0.000007
0.000 164
0.000061

—0.000057

2s2p 'P
o =0.72'

0.000 329 776
0.000044

—0.000 209
—0.000023

0.000049

HQ

0.000 327
—0.000014
—0.000091

DD'

0.000 327
0.000 152

—0.000 124

'Present paper.
Obtained from the results of Ho, Ref. 9.

'Drake and Dalgarno, Ref. 17.
Macias and Riera, Ref. 24.

TABLE V. Resonance positions for the 2s2p 'P states.

z

9
10

Projected
PP'

—0.692 54

—1.757 01

—3.318 89

—5.379 58

—7.939 62

—10.999 27

—14.558 67

—18.617 87
—23.176 97

Other

—0.692 894 7'
—0.692 773'

—1.757 243'

PP'

—0.693 05

—1.757 36

—3.31937

—5.380 15

—7.940 26

—10.999 95

—14.559 39

—18.618 64
—23.177 76

Hob

—0.693 136

—1.757 558

—3.319480

—5.380 21

—7.940 28

—10.999 96

—14.559 39

—18.618 67
—23.177 77

Nonproj ected
Other

—0.639 157'
—0.693 024'
—0.693 54~
—0.692 8"
—0.692 13'
—1.757 513
—1.758 13~
—1.754 00'
—3.320 15~
—3.314 11'
—5.380 93~
—5.373 54'
—7.941 03~
—7.932 30'

—11.000 73~
—10.991 6'
—14.560 17~
—14.550 4'
—18.61943~
—23.178 56s

Experiment

—0.693 71+0.000 55
—0.692 94+0.000 37'

—1.7565+0.002"
—1.756+0.001'

'Present paper.
Ho, Ref. 9.

'Bhatia and Temkin, Ref. 6.
Madden and Codling, Ref. 26.

'Chung and Davis, Ref. 8(b).
'Morgan and Ederer, Ref. 27.

Drake and Dalgarno, Ref. 17.
"Oza, Ref. 25.
'Macias and Riera, Ref. 24.
'Bhatia, Ref. 7.
"Carroll and Kennedy, Ref. 28.
'Zeim, Bruch, and Stolterfoht, Ref. 29.
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onance position of the 2s2p state and the 1s hydrogenic
orbital. Expanding Qg, Pg, and k as power series in
1/Z yields, in charge-scaled units,

1l =2
(13)

with 12 given by Eq. (10) with k taking on its zeroth-
order value of —,. Since the total width is to be multiplied

by Z in converting back to conventional atomic units,
I z represents the limiting value of I for high-Z ions.
These I „are presented in Table IV. Widths for these
ions are available from the calculations of Ho.
Differencing Ho's values for Z=2 to 10, one can obtain
the lowest-order coefficients of the Z expansion of I".
The values for I 2 so obtained are also presented in Table
II, while higher-order coefficients are presented in Table
IV. Also included in this table are values for the I „ob-
tained from the results of Drake and Dalgarno. ' Macias
and Riera have utilized a "discretization" method to
study autoionizing states of atoms. Their results are to
be compared to the present nonprojected results. They
extract the 1/Z expansion coefficients for the energy and
width from their results for Z=2 to 8 for the 2s2p 'P
state. Their c.z of —0.0772 is in error in the first
significant figure, but their I 2 of 0.00462 is in much
better agreement with the present exact I 2. This is prob-
ably due to their not having utilized the exact values of Ep

and c. , in obtaining their estimate of c2, while I 2 is the
leading term of the 1/Z expansion for the width.

Resonance positions. The total energies obtained by the
two methods of this paper for the 2s2p 'P and P autoion-

izing states are presented in Tables V and VI. These are
compared to theoretical values of the resonance position
obtained by other workers as well as some low-Z values
obtained primarily from electron spectroscopy or photo-
ionization experiments. The theoretical values of Ho
and Macias and Riera as well as the experimental
values are to be compared to the nonprojected results ob-
tained in the present calculation, while the values ob-
tained by Bhatia and Temkin ' with the Feshbach pro-
jection method and the results of the saddle-point method
of Chung and Davis are to be compared to the projected
results. The saddle-point method of Chung and Davis
does not precisely correspond to the Feshbach method as
implemented by O' Malley and Geltman, but the
difference apparently is rather small. In particular, it is
easy to develop the 1/Z expansion for the wave function
in the saddle-point method. One finds that the first-order
correction to the wave function differs from that of the
present method by the inclusion of a single extra term
proportional to a hydrogenic 1s2p function. The energy
values tabulated in Tables V and VI indicate that the re-
sults obtained here with the nonprojected wave function
are surprisingly good, despite the difficulties inherent in
optimizing that wave function. The agreement with the
data of Ho is particularly striking. Agreement with the
singlet P results of Macias and Riera is consistent with
errors in their values of cp, c.&, and cz. As these were ob-
tained from their data by differencing they are implicit in
their energy values. Also included for comparison are
the energy eigenvalues obtained by Drake and Dalgarno'
which appear to be more accurate than the results of Ma-
cias and Riera but not as accurate as those of Ho. Their

TABLE VI. Resonance positions for the 2s2p 'P states.

z

4
5

6
7
8

9
10

Projected
pp'

—0.761 471

—1.879 384

—3.496 955
—5.614 376
—8.231 723

—11.349 027
—14.966 302
—19.083 526
—23.700 775

Other

—0.761 491'
—0.761 457'

—1.879 395'

PP'

—0.760 44

—1.878 15

—3.495 61
—5.612 97
—8.230 27

—11~ 347 54
—14.964 79
—19.082 03
—23.699 25

Ho"

—0.760 492

—1.878 179

—3.495 632 7
—5.61? 99
—8.230 28

—11.347 55
—14.964 80
—19.082 04
—23.699 26

Nonprojected
Other

—0.760 492'
—0.760 570"
—0.760 451 1"
—1.878 15'
—1.878 251
—3.495 700"
—5.613050'
—8.230 347'

—11.347 614
—14.964 861'
—19.082 096"
—23.699 321

Experiment

—0.7605+0.0011
—0.7609+0.0011~

—1.877+0.001"
—1.881y0.02"

'Present paper.
Ho, Ref. 9.

'Bhatia and Temkin, Ref. 6.
Hicks and Comer, Ref. 30.

'Chung and Davis, Ref. 8(a).
Drake and Dalgarno, Ref. 17.
Gelebart, Tweed, and Peresse, Ref. 31.

"Oza, Ref. 25.
'Bhatia, Ref. 7.
"Zeim, Bruch, and Stolterfoht, Ref. 29.
"Bruch et al. , Ref. 32.
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TABLE VII. Comparison with observed wavelengths (in A) for the 2s2p-is2s transitions.

Z

10
11
12

13

14

15
16
17
18
19
20
21
22

PP'

77.6657

49.5175
34.2878

25.1337
19.2073
15.1525

12.2570
10.1176
8.4923

7.2287

6.2269

5.4193
4.7588
4.2118
3.7535
3.3659
3.3051
2.7506
2.5040

Zs 2p 'P —1s 2s 'S
Experiment

34.286+0.006
34.29

25.125+0.006
19.207+0.003
15.1SS'

10.119"
8.4910'
8.493"

7.2282'
7.231"
6.2133

6.230"

2.5044"

PP'

78.5216

49.9378
34.5249

25.2806
19.3046
15.2202

12.3060
10.1542
8.5204

7.2507

6.2445

5.4336
4.7706
4.2215
3.7617
3.3729
3.0411
2.7557
2.5085

2s2JD P —1s2s S
Experiment

78.512+0.01
78.530'
49 935+0 004
34.523+0 004
34.52
34.525'
25.276+0 003b

19.301+0.006
15.217
iS.224'
12.303g

10 157"
8.518"
8.5228'
8.S2i"
7.2518'
7.2S1"
6.236'

2.509'

'Present paper.
"Nicolosi and Tondello, Ref. 33.
'Goldsmith, Ref. 39.
Peacock, Hobby, and Galanti, Ref. 34.

'Feldman and Cohen, Ref. 40.
'Feldman et al. , Ref. 35.

Peacock, Speer, and Hobby, Ref. 41.
"Feldman et al. , Ref. 36.
'Aglitsky et al. , Ref. 37.
'Walker, Rugge, and Weiss, Ref. 38.
"Bitter et al. , Ref. 42.
'Turechek and Kunze, Ref. 43.

TABLE VIII. Widths for the 2s2p 'P states.

Z

4
5

6
7
8

9
10

0.= 1.00'

0.001 33

0.002 14

0.002 67
0.003 04
0.003 30
0.003 50
0.003 66
0.003 78
0.003 88

cr =0.88'

0.001 37

0.002 18

0.002 71
0.003 07
0.003 33
0.003 53
0.003 68
0.003 80
0.003 90

HQ

0.001 36

0.002 19

0.002 73
0.003 09
0.003 35
0.003 53
0.003 69
0.003 81
0.003 90

DD'

0.001 34

0.002 17

0.002 71
0.003 07
0.003 34
0.003 53
0.003 69
0.003 81
0.003 91

Other

0 001 33
0.001 373'
0.001 33"
0.001 37"

0.002 18'

0.002 20'
0.002 71"
0.003 05'
0.003 28"

0.003 46'
0.003 59'

Experiment

0.0014+0.0001'
0.0015+0.0007g
0.0015+0.0003'
0.0014+0.0007"
0.0028+0.0009

'Present paper.
Ho, Ref. 9.

'Drake and Dalgarno, Ref. 17.
Bhatia and Temkin, Ref. 6.

'Madden and Codling, Ref. 26.
'Chung and Davis, Ref. 8{b).
Hicks and Corner, Ref. 30.

"Oza, Ref. 25.
'Gelebart, Tweed, and Peresse, Ref. 31.
"Macias and Riera, Ref. 24.
"Morgan and Ederer, Ref. 27 ~

'Bhatia, Ref. 7.
Carroll and Kennedy, Ref. 28.
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results appear to be consistently too negative for both the
singlet and triplet states. This is consistent with their c2
also appearing to be too negative. The resonance posi-
tions are also compared with experimental values where
these are available. These are consistent with the theoret-
ical results which are generally of higher accuracy.

For high-Z values, experimental wavelengths for radia-
tive transitions to the singlet or triplet 1s2s state are
available. Comparisons to the present results are present-
ed in Table VII. The theoretical wavelengths are calcu-
lated using energies for the 1s2s states taken from the
work of Sanders and Knight' and including lowest-
order, one-electron relativistic corrections for both states.
These calculated wavelengths are in excellent agreement
with the observed wavelengths, with the agreement im-

proving as Z increases and the contribution of the less-
accurate higher-order energy coefficients becomes less
important.

Total widths. Finally, Tables VIII and IX present the
total widths obtained here with Eq. (11) for the states un-

der consideration. These are also compared with other
theoretical and experimental results. The values obtained
here for the widths of the 2s2p singlet state are quite
good. The results for the triplet state are less satisfacto-
ry, perhaps due to the approximate nature of the Pg uti-
lized here. Since the widths for the triplet state are an or-
der of magnitude smaller than those for the singlet, they
are more likely to be sensitive to errors in the higher-
order coefficients. However, Drake and Dalgarno' uti-
lized the same Pg with a screening parameter of 1 in

their perturbation calculation achieving better results for
the triplet state.

In the present case, we have introduced a variable
screening parameter for the continuum function alone, so
that it becomes, in atomic units, kp(Z cr). A—lthough
this function no longer has the correct asymptotic behav-
ior for Pg, it might better represent Pg in that region of
coordinate space where the integrand of the matrix ele-

ment for the width is largest. Although there is no
clear-cut way to select the optimum o. for this purpose,
the values of o. utilized in the tables were selected with an
eye toward obtaining accurate values of the width for low
Z, where the higher-order I „contribute most
significantly to the width. In doing this, a greater weight
was assigned to the widths obtained by Bhatia and Tem-
kin ' with the Feshbach method. Although it is possible
to choose a so as to reproduce a particular value of I for
a single value of Z, such a choice of a does not generally
give good values of I over the range of values of Z
presented in the tables. The 0. utilized here were chosen
so as to also give reasonable values of the width for the
larger Z. It is interesting to note that this procedure
yielded excellent agreement with the very accurate results
of Chung and Davis for the singlet state of helium. It
should be kept in mind that, for increasing values of Z,
these perturbation results will necessarily yield increas-
ingly accurate (nonrelativistic) values of the width.

IV. SUMMARY

The implementation of the Feshbach projection
method presented here has all the advantages of efficiency
and computational ease ascribed to Z-dependent pertur-
bation theory. It provides in a single calculation the re-
sults for an entire isoelectronic sequence. In addition, re-
sults obtained for an n-electron system can be directly in-
corporated (with the appropriate coupling coefficients)
into all complex systems which contain the same n-

electron configuration as a subsystem. The variational
perturbation approach is particularly suited to the study
of excited states and the doubly excited states of the type
considered here are no exception. The present method is
easily extended to more highly excited autoionizing
states. Computationally, the variational perturbation
method has advantages over the variational method as
there is no secular determinant to solve; only a simple

TABLE IX. Widths for the 2s2p 'P states.

z

3
4
5

6
7

8

9
10

0.= 1.00'

0.000 524

0.000 488
0.000 457
0.000 435
0.000 420
0.000 408
0.000 399
0.000 391
0.000 385

cr =0.72'

0.000 300

0.000 321
0.000 328
0.000 330
0.000 331
0.000 332
0.000 332
0.000 332
0.000 332

Ho

0.000 297

0.000 312
0.000 318
0.000 320 7
0.000 322
0.000 323
0.000 323
0.000 324
0.000 324 2

DD'

0.000 374

0.000 364
0.000 357
0.000 352
0.000 349
0.000 346
0.000 344
0.000 343
0.000 341

Other

0.000 327
0.000 301
0.000 328"

Experiment

& 0.000 55'
0.000 37g

'Present paper.
Hp, Ref. 9.

"Drake and Dalgarno, Ref. 17.
Bhatia and Temkin, Ref. 6.

"Hicks and Comer, Ref. 30.
'Oza, Ref. 25.
Gelebart, Tweed, and Peresse, Ref. 31.

"Bhatia, Ref. 7.
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APPENDIX

The matrix element to be evaluated for the lowest-
order contribution to the width is

2s2p 1skp1

"i2
(A 1)

where go' =2 '
[1i»~, ~z~~z~+(

—
1)'fz~~&~z. ~z~]and $0""

system of linear equations. Hence, if in the study of dou-
bly excited states no projection operator is utilized, one
has the analog of the stabilization method but without
the confusion of multiple roots. If, instead, a projection
operator of the type introduced by O' Malley and co-
workers ' is utilized, the optimization of the perturba-
tion wave functions yields rigorous upper bounds to the
even-order energy coefficients of these autoionizing
states. Finally, for systems with more than two electrons,
the projection operators required by the method are sim-
ply and exactly constructed from the known zeroth-order
wave functions of the target ion, rather than via the more
complex procedures required by the standard Feshbach
method.

In the present paper results for the resonance positions
and widths of the 2s2p singlet and triplet autoionizing
states of heliumlike atoms are presented in both a pro-
jected and nonprojected formulation. The rapid conver-
gence of the expansion coefficients for both the energy
and width of the triplet series is particularly striking.
The tables present results for the isoelectronic sequence
up to Ne +, but these can easily be extended to higher Z
with the perturbation expansion coefficients presented
here. These results are in very good agreement with ac-
curate theoretical results obtained by variational methods
as well as with experimental results, where these are
available.

The results for the nonprojected calculations are of
special interest as this particular method is extremely
simple to implement. Indeed, this method introduces
only one additional complication: the presence of avoid-
ed crossings in the optimization curve. That this might
not present serious difficulties is borne out by the accura-
cy of the results obtained here with this method.

Work is presently underway to extend the application
of the methods developed here to more highly excited au-
toionizing states of the two-electron ions and to the cor-
responding doubly excited states of the lithium isoelec-
tronic sequence.

[t(~,~~~kz~z~+(
—

1)'/k'~&~»~z~] with s=0, 1 for the
singlet and triplet states, respectively. The
represent normalized hydrogenic orbitals and

1(k
= Akr(cos8)4 2+ —~4~2ikr exp( ikr—) . (A2)

The auxiliary integrals

I„(a)=1 dx x "4 2+ —~4~2ikx exp[ (a—+ik)x]
0

can be evaluated given the recursion relation

I„+&(a) = I 2[(n —1)a—1]I„(a) n(n ——3)I„&(a)]
X[az+k ]

and the starting value

(A4)

(A5)

I (a)=6(a +k ) exp ——tan '(k/a) (A6)

Substituting values of n from 0 to 4 in (A5) yields ex-
pressions for all needed I„. In the calculation of the total
width, only the additional integrals

r

K„(a,P) = J dx x "4 2+ „~4~2ikx

X exp[ (a+ ik—)x]f dy y exp( —Py)
X

(A7)

are required. These are easily generated from the relation

K„(a,P) = [I„+ (a+P)+—mK„~(a,P)] .
1

The E„0are first obtained from the corresponding I„,fol-
lowed by an upward recursion on the second index, m.

Here, k =2 '~, A&=3 '~ k[[1+k ]/[1—exp( —2m/k)]I'~, and 4 is a confluent hyper-
geometric function. Then,

J, = —,', A I, ( [—,
' I5 (2 ) + —,'I q (2 ) ]5, 0

+( —1)'+'
—,
' II3(2)+—', [Iz(2)+I)(2)+—,'Iz( —,

'
)

(A3)
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