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Partial widths obtained by the complex resonance-scattering theory
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A complex resonance-scattering theory is developed to obtain partial widths and branching ratios
for full scattering experiments. A new formula for the partial widths which is useful in atomic,
molecular, nuclear, and particle physics is obtained. The formalism provides a simple relationship
among the previously proposed different methods for calculating partial widths. Illustrative numer-

ical examples are given, showing the stability (lack of oscillations) of the partial widths obtained by
this formula.

I. INTRODUCTION

While resonances are the "most striking phenomenon
in the whole range of scattering experiments, "' probably
the resonance partial widths —the calculation and mea-
surement of which are used to compare theory with
experiment —are the most significant output of the reso-
nance phenomenon. Partial widths represent the proba-
bility per unit time of getting a specific reaction product
in a well-defined quantum state in a full scattering or
half-collision experiment.

Different square-integrable wave-function methods for
obtaining the partial widths of the resonant decay into in-
dividual channels were described in the literature. ' Two
different procedures based on the complex coordinate
method (CCM) were proposed by Noro and Taylor and
by Bacic and Simons. A third method, similar to that of
Bacic and Simons, based on the analysis of the tail of the
complex scaled square-integrable resonance wave func-
tion, was proposed by Peskin, Moiseyev, and Lefebvre.
This very simple approach does not require any integra-
tion over the channel functions. Knowledge of the reso-
nance functions at some point in the asymptotic region is
sufhcient to yield the rates of decay.

The purpose of this paper is to represent a coherent
complex resonance-scattering theory linking the different
methods for calculating partial widths. The theory pro-
vides the conditions for the applicability of these methods
and leads to a derivation of a new formula for partial
widths and branching ratios.

II. PARTIAL WIDTHS
FOR A FULL SCATTERING EXPERIMENT

where y (x ) are the eigenfunctions of |t (x),

[f(x)—E(")]y,(x)=0 .

By substituting (((1txr ) in the time-independent
Schrodinger equation one can get a set of coupled equa-
tions given by

Hf=EP,
where E denotes the total energy of the system and

(4)

8,,
= T„+V„(r ) + et("l,

8,"=f';,(r), V, =(y;~V(x, r)iy ) .

If E & c.i."i, then the channel j is a closed channel and if
E ) c~ 1, then j is an open channel for dissociation. In a
scattering process the initial-i and final-f states are eigen-
functions of 0( x ) + f'( r ):

lk r

lt (jo))=e 'y„(x),

1f (j) ) =p,I'(r )y, (x), (5)

ttt'Il(r)=+plttik e

where (()I
l is normalized to a unit current density such

that

specific molecular mode with other internal degrees of
freedom. The eigenfunctions of the Hamiltonian are
given by

g(x, r ) = g yi (x)Pt (r ),

The Hamiltonian we shall study is

H(x, r)=T(r)+f(x)+ V(x, r),
where

$2 Q2T(r)=-
2p Bf

[ x ] are the internal (or target) coordinates and V( x, r )

describes the interaction potential of the scattered parti-
cle and the target, or the potential interaction of a

p, is the linear momentum operator, and Ak is the linear
momentum of the particle scattered to the channel j such
that

(th'k, )

E [x] (6)
2p

The probability to get from ~i ) to
~f ) in unit time is
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given by

I. .."1&f(j)lV(1+G& t )li(jo }& I', (7)

and I j j is given byJ lp

2

~« f' (J)~ IP(x', re")~P'„,&&

where P'(1+ Gz V) is the usual T operator.
By carrying out the integration in Eq. (7) along a con-

tour in the complex coordinate plane, r~r exp(i8),
the familiar Green's operator takes the form

r I,'» «
(8)

l t

or

(lob)

From the same initial state several di6'erent final states
can be obtained. That is,

li(j, )& f(j'))

Gz=—[H(x, re' ) —E]
the potential V(x, r ) takes the form f (x, re' ), and

~i (jo)) =exp[ik, r exp(i8)]y, (x),

~f (j))=/If'(re' )y, (x) .

The complex scaled eigenfunctions
~ g; )) are given by

H(x, -")il(', » =E,'ill,'» . (9)

According to the complex coordinate method, at a reso-
nance state, E, =E„—iI /2=E„„and is 8 independent.

is a square integrable function, whereas

tt'continuum~ +continuum as r ~ ~ and

g 9 ~EH=0 ~tx]~ —2i8Econtinuum ~ continuum ~j 7

«)) standing for the C product. "' If a real basis set
is used then «f ~g )) =

& f*~g ) = ffg dr. If a complex
basis set is used then the matrix element of given opera-
tor O is given by «g; ~O~Q, "))= f P; Og, dr, where

and lit; are the corresponding left and right eigen-
vectors of H(x, re' ). Let us consider the specific case of
a resonance scattering, where (i} the scattering experi-
ment is such that the total energy E is equal to the reso-
nance position, E=E„and (ii) the distances of the point
(E„,O) in the complex energy plane from the straight
lines

~
E —E('1

~
e ' are larger than I /2 [i.e.,

(E„—e("})sin(28)))I /2]. In such a case there is only
one dominant term in the series expansion of the G
operator given in Eq. (8) such that

From Eq. (10b) and Eq. (11)one can get

«f (j ) I ~(x, «' )
~ p„,&)

«f (j')~ &(x,re' )~tt„, &&

(12)

(Ak, )
E ~ tx]

2p
" 2

Note that the kinetic energy is not equal to E,—cj"' as
stated before in Eq. (6).

Therefore

(13)

This is the expression proposed by Noro and Taylor for
the calculation of branching ratios. We omit here the la-
bel j0 since under the two assumptions leading from Eq.
(7) to Eq. (10) we get that the only intermediate state in
the scattering process is the resonance state. This is a re-
sult of neglecting both the direct scattering and the back-
ground contributions to the T matrix. The physical in-
terpretation of the resonance scattering becomes clear.
While the total energy (i.e., the sum of the particle and
target energies) is taken as the resonance position, the ini-
tial state is "forgotten" during the scattering process.
This is probably true in a half-collision process when the
system is initially prepared in a resonance state.

In Eq. (12) the complex energy is not conserved since
~f ) is associated with the real energy E E„whereas-
~'�„„)is associated with the complex energy E„iI /2—
8'e postulate that in the complex scattering theory the
complex energy is conserved and therefore we introduce
the complex momentum for the final state determined by

«f (j}lV(

T( r )P)~f'(r ) = —El"1 yIf&(r ) .
2

(14)

X«Q„,~V(x, re' )i (j )))

2

+ « f (j)~ V(x, re' )~i (jo))) (loa)

—ik re'p'f' (re' }~v'p/kate ' as r~ao . (15)

Therefore, in the radial case,

Also note that in the radial case where r E [0, oo ],
Pjf' (re' =0)=0, and yet

For narrow enough resonances, I (&E„—c.~ ], it may
happen that the contribution of the direct scattering
event to the cross section is small relative to the contribu-
tion of the multiple-scattering events (i.e., Viz V terms}
(we shall return to the validity of this assumption later)

P' ' (re' )= —2i+p/k A'sin(k re' ) . (16)

Equation (12} can be rewritten by making use of the fol-
lowing derivation:



42 PARTIAL %'IDTHS OBTAINED BY THE COMPLEX. . . 257

((f (j)l V(x, re' ) g„,)) = J g,'(x)()I(,'f' (re' )[H(x, re' ) —Ho(x, re'"))g„,dxdr
all space

T

I y*(x)it)'f) (re' )g„„dxdr
2 all space

y&*(x)it)&
' (re' ) fix)+e ' P„,dxdr

all space 2p

iF —E(" J y"(x)P' ' (re' )f„„dxdr
2 all space

—2i8

I g'(x)P'f) (re' )P„g„,dxdr .
2P all space

The resonance eigenfunction of the complex scaled Hamiltonian A'(x, re' ) can be described by [see Eq. (2)]

g„„=ggr(x)4r(r ) where 4 (r)~0 as r ~ oo .

(17)

(18)

By substituting Eq. (18) into Eq. (17), making use of Eq. (14), and carrying out integration by parts, one can get that

g2 —2i 9 ()„d 'f L(re'e)
((f'(j)l &(, ")lit' )) = ' p(f"( ") " —@'( )

2(u ~ dr j dr a

When a =0 in the radial case r & [0 m] and a = —~ for the one-dimensional case, r & [ —ao, 00 ]. Note that in the ra-
dial case 0 ~(0)=0 and also d C'jl r )/dr l, =0=0, and only the upper limit, i e., r = oo, should be taken into consideration.
Consequently, from Eqs. (12) and (18) one can get

(re' )
(f)L i()

dr

(re' )
(f)L e "~i~(")'

a

dy(f)L(rei())—4& (r)
dr Q

dy L(re ie)—4& (r)

(20)

This is a new formula for the branching ratio, where
"(r) and PJ(

' (r) are, respectively, the divergent out-

going and incoming plane waves with the complex
momentum [2p(E„—('I /2 —s('))]' '. C), is a square-
integrable function from the variational solution of the
Schrodinger equation associated with the resonance com-
plex eigenvalue E„iI /2 —The ne. w partial width expres-
sion appears to be more compact (in dimensionality) than
the older one [Eq. (12)] and thus avoids the need to in-
tegrate over the target coordinates x. Note that

4 (r)~ (at)'f'(re' ) as r~oo

and therefore by substituting Eq. (21) into Eq. (20) one
can get that

it)'f)(re' )=Qp, /(rik, e

(haik, ) =E„—
2p 2

—c" where c" is the threshold .

Therefore the branching ratio is given by

totic analysis of the resonance eigenfunction:

C)&(r )
a =limJ „y(f)(re(9)

J

where

(23)

2I a

FJ, a, ,

Here la l provides the probability to decay into the open
channel j. By taking into consideration Eq. (21) and the
fact that la, l

is normalized to a unit current density, one
can see that la l

is actually the probability flux of 4 (r)
at r~ ~, namely, that the number of particles at the
quantum state j detected at r = Oc per unit time per unit
area. a can be easily obtained by carrying out an asymp-

where

R(r)= (k, )' 4, (r)
J j

(k )"' @'(r)J J

(24)

This formula has been proposed before by Pcskin,
Moiseyev, and Lefebvre and is closely related to the for-
mula proposed by Bacic and Simons for the calculation of
branching ratios.

In this section we show that there are simple relation-
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ships among the different methods for calculating the
partial widths and that the three different formulas for
the branching ratio given in Eqs. (12), (20), and (24) are
identical. Consequently, in the limit of infinite-basis-set
variational calculations the same results for the partial
widths should be obtained.

l9 a.u.

III. ILLUSTRATIVE NUMERICAL EXAMPLES

The three different formulas for calculating partial
widths and branching ratios given by Eqs. (12), (20), and
(24) are applied to two multichannel scattering problems
studied before and used as test models for new
theories. ' ' In this section we are not aiming at
presenting new results, rather at showing that indeed-
as predicted by the complex resonance-scattering theory
presented in Sec II—the same partial widths are obtained
by using any of the three formulas mentioned above. The
first model is a two-channel Hamiltonian studied by Noro
and Taylor, and by Bacic and Simons. The potential
matrix elements are given by

V, (r)=A, ; r exp( r)+E,J5;~
—for rF[0, ~]

where

A, „=1, A, ,~=A~)= —7.5 A~~=7. 5 .

The threshold energies are E„=O and E,2=0. 1 Channel
2 of the potential, V&2(r ) supports a shape resonance, but
because of the coupling to channel 1, the resonance has a
dominant Feshbach-type character.

The second studied three-channel model Hamiltonian
is of Yu and co-workers' for an HD molecule on an
Ag(111) tlat surface in the rigid rotor approximation:

2 2

H= — +B„„j (v)+ V(z, y) .2~ dA'

Here y is the orientation of the diatom, j is the rotational

l a. u.

0~ I

0.07 O.ll 0 l5 O.l9 0.25

FIG. 1. Branching ratio I", ~/r, =o of the (V=4, J=2)
HD/Ag(111) predesorption resonance obtained from Eq. (12) as
a function of the rotational angle 8 [the complex scaling factor
is expli9)] for different particle-in-a-box basis functions. L
stands for the box size functions, and the label (V,J) is ex-
plained in the caption of Table I.

angular momentum, and z C[ —oo, ao ] is the distance of
the HD center of mass from the Ag(111) surface. The
HD/Ag(111) Feshbach-type predesorption resonances
positions and widths were obtained as described in Refs.
13 and 14 by the complex coordinate method. In the two
studied cases, N particle-in-a-box basis functions (L is the
box length) were used to describe the dissociation along
the reaction coordinate (r in the Noro-Taylor model and
z, (z E [z;„,z,„])in the HD/Ag(111) model Hamiltoni-
an). N was taken as 80 and L = 16 in the NT model and
N =75, L =z,„—z;„=19 with z;„=—3 in the
HD/Ag model.

The two model Hamiltonians were complex scaled by

TABLE I. The resonance positions E„,widths I, branching ratios I &/1 o, and partial widths I 0 and I
&

for the Noro-Taylor two-

channel model Hamiltonian, and for the scattering of HD from an Ag(111) surface are presented. The branching ratios and partial
widths were obtained from Eqs. (12), (20), and {24). The label ( V,J) stands for the bound state of the freely rotating HD molecule

which becomes a resonance state (i.e., finite lifetime) as the coupling between the rotational motion of HD and the vibrational motion
of the HD/Ag(111) complex is taken into consideration.

Model

Noro
and
Taylor

HD/Ag

HD/Ag

HD/Ag

HD/Ag

Resonance

E,=4.7682

r= 144x 1O-'

(V=2, J=2)
E„=56.8 x10-'
I =3.1x10-'
(V=3, J=2)
E„=83.45 x10-'
I =2.92x 10-'
(V=4, J=2)
E„=103.5x 10-'
I-=2.36x10 '
(V=5, J=2)
E, =116.9X 10
I- =1.55 x10-'

Formula

Eq. (12)
Eq. (20)
Eq. (24)

Eq. (12)
Eq. (20)
Eq. (24)
Eq. (12)
Eq. (20)
Eq. (24)
Eq. (12)
Eq. (20)
Eq. (24)
Eq. (12)
Eq. (20)
Eq. (24)

26.8
26.9
27
0.67
0.67
0.6
0.72
0.71
0.7
0.665
0.665
0.66
0.625
0.625
0.61

r, x lo'

5.1

5.1

5

1.54
1.53
1.5
1.65
1.65
1.6
1.44
1.44
1.4
0.99
0.99
0.98

r, x 1O'

136.8
137.0
145

1.03
1.03
0.9
1.19
1.18
1.1
0.96
0.96
0.9
0.62
0.62
0.6

(r, +r, ) x 1O'

142
142
150

2.57
2.56
2.4
2.84
2.83
2.5
2.40
2.40
2.3
1.61
1.61
1.58
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FIG. 2. Comparison between the branching ratios obtained
from Eq. (20) (solid line) and Eq. (24) (dashed line) by the

asymptotic analysis of the ( V =4, J=2) HD/Ag(111)
predesorption resonance, illustrating the enhanced stability of
the results obtained from the new formula given in Eq. (20j.
R(z)=I, (z)/I o(z) is the local branching ratio as defined in

Eqs. (24) and (20), where ~ is replaced by r.

FIG. 3. Partial widths of the (V=4, J=2) HD/Ag(111)
predesorption resonance obtained directly by separate calcula-
tions of the denominator I, o(r) and the numerator I, 1(r) of
Eq. (20) [with the coefficients from Eq. (19)].

scaling, respectively, r and z by a complex factor exp(i0).
The rotational angle 0 has been optimized to give a sta-
tionary solution in the complex linear variational space,
i.e., dE„/d0=0, dI /dL9=0 when E„and I are, respec-
tively, the resonance position and width. The corre-
sponding eigenvector has been used to calculate the
branching ratios and the partial widths as given by Eqs.
(12), (20) (new formula), and (24). The results presented
in Fig. 1 constitute a representative example for the sta-
bility of the branching ratios with respect to the variation
of the rotational angle 0 and the box size L.

The results for the studied multichannel model prob-
lems are summarized in Table I. Equation (24) was ap-
plied before to these resonances. [However, the results
presented here for the HD/Ag(111) predesorption reso-
nances are more stable since we scale Z rather of the box
size L, as we did in Ref. 6.] As one can see from Table I
the results obtained from the asymptotic analysis of the
resonance wave functions Eq. (24), from the new formula
given in Eq. (20), and from the integral given in Eq. (12),
are consistent and provide a numerical support to our
proof given in Sec. II that for an infinite number of basis
functions Eqs. (12), (20), and (24) are identical and should
provide exactly the same values of the partial widths.

The partial widths and the branching ratios were ob-
tained from Eqs. (20) and (24) by the asymptotic analysis
of the resonance wave function. The main difference be-
tween the two formulas [and also between Eq. (20) and
Bacic and Simons formula] in the substitution of the reso-
nance function 4& in Eq. (20) by its asymptotical limit, in

order to get the formula of Eq. (24), which has been used
before. A comparison between the results obtained from
Eqs. (20) and (24) (see Fig. 2) clearly show that the new
formula for the branching ratio given in Eq. (20) provides
a more stable value for the branching ratio of

HD/Ag(111) predesorption resonances. The use of for-
mula (20) rather than Eq. (24) not only increases dramati-
cally the stabilization length of the plateau but also
reduces the amplitude of the oscillations obtained near
the edge of the box. The spurious oscillations in Fig. 2 on
the far right apparently come from the presence of the os-
cillating exponential in Eq. (24).

It is interesting to point out that although Eq. (20) has
been derived for the branching ratio (i.e., the ratio be-
tween two partial widths), an estimate of the two partial
widths can be directly obtained by separate calculations
of the denominator and the numerator of Eq. (20) [with
the coefficients from Eq. (19)]. An illustrative numerical
result showing the stability of the directly obtained parti-
cle widths is given in Fig. 3. The results presented in
Table I show that the sum of the partial widths, obtained
as described above, is very close to the total width given
by twice the imaginary part of the complex eigenvalue of
the complex scaled Schrodinger equation.

IV. SUMMARY

A complex scaling resonance-scattering theory has
been developed here to obtain partial widths and branch-
ing ratios for a full scattering experiment. We postulate
here that during the full scattering process, for which the
dominant intermediate state is the resonant one, the com-
plex "energy" should be conserved. It implies that not
only the energy (i.e., the real part of the complex reso-
nance eigenvalue) should be conserved, but also the life-
time of the dissociative event (i.e., the imaginary part of
the complex resonance eigenvalue) should remain con-
stant. Equation (20) is a new formula for the branching
ratio. The coherent formalism presented here provides a
simple relationship between the different procedures for
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calculating partial widths proposed by Noro and Taylor,
Bacic and Simons, and more recently by Pcskin,
Moiseyev, and Lefebvre. All formulas of partial widths
and branching ratio derived here were checked by calcu-
lating the partial widths of two multichannel model
Hamiltonians.
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