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Cold equation of state from Thomas-Fermi-Dirac-Weizsacker theory
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The Thomas-Fermi-Dirac (TFD) electronic structure model with the Weizsacker gradient correc-
tions (TFD-A,W) is employed to calculate the cold equation of state in the Wigner-Seitz spherical-
cell approximation. We demonstrate how inclusion of the Weizsacker term removes many of the
unphysical features of the TFD lattice model. Results are summarized for seven elements: '6C,
', 2Mg, 26Fe, 47Ag, 79Au, '»Pb, and '9zU. Our equation of state (computed using several values of
the Weizsacker coupling coefficient) is compared with previous computations and with experimental
data. The Weizsacker correction substantially improves the theoretical TFD equation of state at
low densities. We also calculate low-mass, equilibrium stellar models constructed from the TFD-
A,W equation of state for carbon. We find that for A, = —,

' the maximum radius of a carbon white

dwarf star is R /R o =3.9 X 10 ' at a mass M /Mg =2.3 X 10

I. INTRODUCTION

Thomas-Fermi (TF) and Thomas-Fermi-Dirac (TFD)
models have been essential tools in the study of many
electron systems such as atoms, molecules, and solids
since their conception in the 1920s and 1930s. Recently,
density-functional theory has provided a rigorous
mathematical basis for these approximations' and it has
been shown that TF is identical to the exact quantum
theory, based on the Schrodinger equation, in the limit of
large nuclear charge (Z~ao ). In the TF theory, elec-
tronic wave functions are assumed to be locally planar.
This provides a density-functional kinetic energy which,
along with the classical potential energy of electron-
electron and electron-nucleus Coulomb interactions,
forms the TF energy functional. In TFD theory an addi-
tional term is added, also based on the plane-wave ap-
proximation that represents the exchange part of the po-
tential energy.

There are several well-known physical defects with the
atomic models found using TF and TFD theory. In these
models the electron density blows up to infinity as r ~0,
i.e., at the nucleus, where it should be finite. In addition,
the electron density has a power-law tail rather than the
required exponential falloff as r~ ~. A further unphysi-
cal feature of TFD model atoms is that they must be
truncated at finite radii. Another very serious problem
is the no-binding theorem, by which molecules are impos-
sible. Originally proposed by Teller, this theorem was
rigorously proven by Balazs in the special case of a dia-
tomic molecule and more generally by Lieb and Simon.

Weizsacker sought to remedy some of these defects by
allowing the electron wavefunctions to be modified plane
waves. In the resulting TFD-A.W theory a gradient term
is introduced into the kinetic energy functional with
coeScient X (Weizsacker derived the term originally with
coupling coefficient A. = I ). In TFD-A.W theory atoms
have electronic structures in reasonable qualitative agree-
ment with quantum mechanical predictions. The elec-
tron density approaches a finite density at the nucleus

and falls off exponentially far from the nucleus. Most
significantly, binding of atoms can occur so that mole-
cules are possible.

The Weizsacker correction has been formally justified
by a number of authors on the basis of gradient expan-
sions (see discussion and references in Parr and Yang'
and Lieb ). This technique truncated at second order
leads to a value of A. = —,

' for the Weizsacker coupling
coefficient. Yang confirms this result with a path in-
tegral derivation of the first-order density matrix. There
are other frequently cited values of A, arising both from
semiempirical and theoretical considerations. Yonei and
Tomishima quote a value of k= —,', first based on numeri-
cal solutions of atomic models without electron-electron
repulsion and then based on solutions of the full TFD-
A,W equation compared with Hartree-Fock calculations
of the total energy for neutral, closed-shell atoms. '

Lieb does a large-Z analysis of the TFD-A, W theory for
atoms and arrives at A. =0.186. . . . However, there is no
theoretical justification for using this particular value for
calculations of atoms under pressure.

Jones and Young" use the linear response function for
a uniform electron gas to argue that the Weizsacker
coefficient should be —,

' for long-wavelength perturbations
(high electron density) and I in the short-wavelength lim-
it (low electron density). An explicit form for A, as a func-
tion of density was found by Kahn and Ying' by fitting
to induced dipole moment data. Another choice of A, is
discussed by Brack' who attempts to incorporate
higher-order effects (from the gradient expansion) and
discusses X=1.4/9 —1.5/9. Other numerical solutions to
the full TFD-A, W equation have been found by Stich
et al. ,

' for neutral atoms and positive ions. Yang
solves the equation for rare-gas atoms for a variety of
values of k. Engel and Dreizler' derive a relativistic ver-
sion of the TFD-kW equation with A, = —,

' and solve it for
neutral atoms and positive ions. This analysis is extend-
ed' to include external, time-independent electric and
magnetic fields. There also exist approximate solutions
for diatomic molecules. '
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The crucial ingredient for building models of planets,
brown dwarfs, and cold white dwarfs is the equation of
state for cold, degenerate matter. ' Feynman, Metropo-
lis, and Teller' (hereafter FMT) used both the TF and
TFD models to construct equations of state at high pres-
sure. They adopted the familiar Wigner-Seitz approxi-
mation to calculate the electronic structure. In this ap-
proxirnation the actual lattice cell is replaced by a neutral
sphere consisting of a cloud of Z electrons surrounding a
point ion of charge Z at the center. Adjacent cells do not
interact with each other. FMT implement this spherical
cell model by replacing the zero pressure condition used
to establish the surface of the free TFD atom with the
condition that the gradient of the total electrical poten-
tial (i.e., the electric field) be zero at the cell boundaries.
To generate an equation of state, the rnatter density is
varied by changing the cell size, and the resulting pres-
sure is obtained from the value of the potential at the cell
surface (see Sec. II). They performed this calculation for
several values of Z, supplementing the work of Slater and
Krutter and of Jensen. A similar computation for 26Fe
is given by Harrison et al. ,

' who use the equation of
state to construct zero-temperature white-dwarf models.

A refinement of the pioneering FMT calculation was
performed by Salpeter and Zapolsky. They attempt to
correct the considerable errors in the TFD pressure-
density relation for heavy elements at low pressures by
adding a correlation energy correction. Using the results
of field-theoretical calculations of Gell-Mann and
Brueckner for the correlation energy of a high-density,
homogeneous electron gas, Salpeter and Zapolsky imple-
ment two alternative corrections to improve the TFD
equation. In the first they assume that the correlation en-
ergy is local, i.e., it is a function of the electron density at
a given radius, but do not numerically integrate the re-
sulting TFD-like equation but rather obtain approximate
solutions. In their second approach the correlation effect
is treated in an average way. A mean correlation correc-
tion to the pressure based on the average electron density
in the cell is added to the usual TFD surface pressure.
They find that this latter method agrees considerably
better with experimental data in most cases. In a later
paper the correlation corrected equation of state is ap-
plied to the determination of the mass-radius relation for
planets and cold, white dwarfs.

Ebina and Nakamura carry out a similar calculation
and find that Salpeter and Zapolsky overestimate the
effect of correlation in their approximate local calculation
and even more so in their average treatment. Even with
the addition of correlation, the unphysical aspects of the
TFD model remain in these equation of state calcula-
tions. Near the origin of each cell the electron density
blows up and zero pressure TFD cells are identical with
TFD atoms.

A further refinement of the equation-of-state calcula-
tion can be made by employing the TFD-A.W statistical
model in conjunction with the %igner-Setiz spherical-cell
approximation. Several authors have performed calcula-
tions of this sort. Perrot solves the TFD- —,

' % model as
a fourth-order ordinary differential equation (ODE) and
gives results for several elements for fairly low compres-

sions. In a second paper he generalizes his results for
low, finite temperatures. In this case the gradient correc-
tion is a function of electron density. More does a de-
tailed study of aluminum in the TFD-A, W model. He
compares against augmented-plane-wave (APW) band-
structure calculations and looks at the effect of varying
the %eizsacker term. He finds that A, =0.483 gives the
best fit (with the APW calculations) for the electron
structure near the nucleus. Yonei, Ozaki, and Tomishi-
ma consider an iron atom in a heat bath and investigate
the effects of exchange correlation and the Weizsacker
correction over a wide range of temperatures and
compressions. These calculations are relevant to hot
dense plasmas. Yonei employs a simple relativistic
correction to TFD-A, W theory: The kinetic energy func-
tional is modified but relativistic corrections to the
Weizsacker and exchange terms are neglected. The
high-pressure equation of state for iron and gold is calcu-
lated using a Weizsacker coefficient k= —,

' (again because
of the good fits it gives to atomic energies) and finds that
relativistic effects are indeed important, as expected, but
only at very high compressions.

In this paper we apply the nonrelativistic TFD-A, W
model to calculate the cold equation of state for several
elements. Of greatest interest to us are the elements and
parameter range appropriate to matter in cold, degen-
erate stars like white dwarfs. Though our physical model
is highly idealized, our numerical code is rugged and can
achieve high accuracy with modest resources. It can also
be extended in a straight forward manner to treat rnul-
tidimensional cases (i.e., nonspherical lattice cells). We
show that the inhomogeneity correction removes the ma-
jor physical defects of the TFD lattice electronic struc-
ture. Atoms are infinite and zero-pressure cells are true
condensed states. More significantly, the TFD-A,W model
improves the equation of state at very low pressure,
bringing the theoretical results into closer agreement
with experimental data. We examine the effect of varying
the Weizsacker coeScient A, . As expected, the Weizsack-
er coeScient A, , required to obtain good agreement with
experiment, decreases as heavier atoms (with higher elec-
tron density) are considered. Similarly, TFD-—,'W theory
performs best (in computing zero-pressure densities) for
elements with outer electron shells that are either almost
empty or almost closed.

In another paper ' we plan to repeat our calculations
with the TFD-A.W model supplemented with correlation
corrections and compare our results with more sophisti-
cated treatments based on integrating the Kohn-Sham
equations. (The latter account for the effects of shell
structure, which are important for finite Z at the very
lowest pressures. ) We conclude that the gradient
correction alone represents a very substantial improve-
ment to the low-pressure equation of state. The TFD-
XW model is both empirically and theoretically well
motivated. It is straightforward to implement in any cal-
culation involving an equation of state, particularly when
a large dynamic range of density it required (e.g. , for stel-
lar structure calculations). In a planned paper we use a
similar model to study high-Z matter in the presence of
very high magnetic fields relevant to neutron star atmo-
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spheres.
In Sec. II we present the basic equations of the TFD-

kW statistical model and specialize them to the case of a
spherically symmetric Wigner-Seitz lattice cell. In Sec.
III we discuss our numerical method and describe checks
on the accuracy of our lattice solutions and pressure com-
putations. In Sec. IV we present numerical results for
our equation of state and compare them with low-
pressure data for several elements. We also calculate
low-mass, equilibrium stellar models based on the TFD-
—,'W and the TFD-—,'W equations of state for carbon and
compare them with earlier calculations.

II. BASIC EQUATIONS

A. TFD-A.W model

The total energy in the TFD-A.W statistical model may
be written as a linear sum of kinetic, potential, and ex-
change components E =E& +E +E, . The kinetic ener-

gy is written as a sum of the plane-wave electron contri-
bution and the in homogeneity correction term of
Weizsacker (we use atomic units fi= m, =e = 1

throughout)
r

Ek = f ai, n' +Ra., d r,(Vn)
n

where n (r) is the electron number density and A, the gra-
dient coupling coefficient. The potential energy is

E=— —+ —V, ndr,Z 1
(2)

r 2

+'~ r y + ——Vo y=0. (8)
U

The corresponding boundary conditions are

dy y (r)y=Oat r=O, = at r=r0.lr
Equation (8) for the density function y(r) must be

solved self-consistently with the potential function U(r).
The potential is given by Eqs. (3) and (7) which, using
Poisson's equation, may be rewritten,

fp fp
U =4~ f y'"dr' rf, dr—'

r r
(10)

where

V= —+V,=Z
r

is the total electrostatic potential.
Consider the appropriate boundary conditions that we

must now impose on Eq. (6). We adopt the Wigner-Seitz
spherical-cell approximation, which, e.g. , produces excel-
lent agreement with calculations of Madelung (Coulomb)
energies of bcc, fcc, and hexagonal lattices at high pres-
sures. To implement this we assume that the charge is
spherically distributed about the nucleus and at the
boundary of the cell, r =r0, we impose the symmetry
condition dn /dr =0. We also assume that the density is
regular at the origin (i.e., n is finite as r ~0).

With the standard substitutions y =rn ' and U =rV
we arrive at the form of Eq. (6) that we solve numerically:

4A.K —K r
d'

2

where Z is the ion charge and

V, = —f, dr' (3)

under the total charge constraint

Z=4~f 'y'dr
0

is the electron potential ~ The Dirac exchange energy is

E, = — ~, n d r. (4)

The numerical coefficients appearing above are
ai, =

—,', (3a ) ', K; =
—,', and v, =

—,'(3/m)' . With the con-
straint that f n d r=z (i.e., a Wigner-Seitz cell must be

neutral), minimization of the total energy with respect to
the variation of n leads to the variational principle

6E+ V,6Z =0,
where V0 is a constant Lagrange multiplier. This varia-
tional equation results in the master equation for the
TFD-A.W model

p/3 g V n 1 (Vn )
3 Kkn Ki

n 2 n

—V ——'~ n' +V =0a 0

(6)

for a neutral cell. Equation (1) guarantees that both the
electric potential and electric field are zero at the bound-
ary of a cell. When Eq. (11) is satisfied, it also ensures
that V~ —Z/r as r~O. The matter density p in the
Wigner-Seitz approximation is given by

Am~p=, =—m&n,
4vrr0/3 Z

(12)

where 3 is the atomic weight of the nucleus, mz is the
baryon rest mass (in units of m, ), and n is the mean elec-
tron number density in a cell.

B. The pressure

Once we have solved for the electronic structure of a
cell we have three computationally different, but
mathematically equivalent, ways of obtaining the pres-
sure. For cold matter the first law of thermodynamics
gives P = —dE/d V, where dE is the change in the ener-
gy of the Wigner-Seitz cell induced by a change in its
volume d V, keeping the charge fixed. Direct numerical
implementation of this equation in the form of a finite
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difference P = b—.E/bV requires calculation of at least
two neighboring cell models (see Sec. III). Alternatively,
it is possible to derive formulas for the pressure based
only on local quantities at the cell surface

P=(—'~ n'" —-'a n'" —2k~ V'n)k 3 a i rO

—(K rl Kk n —Von )„

(13)

(14)

where P0= —', Kkn is the pressure of an ideal, uniform
electron gas.

Finally, a third way to get the pressure is to use the
linear-scale-factor method to obtain a global virial rela-
tion

—', PV= —,'(E~+E, }+Ek, (16}

where V=4mro/3 is the cell volume. This formula is
also derived in the Appendix. It reduces to the usual viri-
al relation for a free atom when P =0.

III. NUMERICAL METHOD

In our numerical solution of the nonlinear TFD-A, W
system we have found it most effective to work with the
linearized version of Eq. (8). Letting y =yo+by with by
small yields the linear form

y — »~ r '"y4"-d'
Kj2 9Kkry0

dr

(See the Appendix for a derivation. ) In the limit A. =O the
surface formula (13) reduces to the familiar results for the
TFD case' ' ' . Equation (13) may also be written as

f= =1——'(3m n) ' [I+(3n ln) ' )t.V n]
P
P 4 ro

y10 0' 7y00 +0' 3y0n (18)

From y ~0 we compute U& and repeat the above iteration
scheme to find a consistent y&„and V0. This process con-
tinues until y&0 and y~, 0 converge, yielding the desired
solution for electron structure. It is interesting to note
that the stability and rate of convergence depend rather
sensitively on the coefficients appearing in Eq. (18).

Several tests were used to determine the accuracy of
the code. First, by performing runs at several grid reso-
lutions we verified that our implementation of the finite
difference scheme was indeed accurate to second-order in
the range of grid sizes between 500 and 10000 points.
We then made detailed comparisons with the tabulated
electronic structure given by Tomishima and Yonei' for
neon atoms (by putting our outer boundary at a very
large value ro =15) and found agreement to within
0.02%. We also compared with Yang's table of total en-
ergies of neon for different values of A. and found agree-
ment to similar accuracy in all cases.

As we wished to make detailed comparisons with TFD
lattices, we also constructed a code to repeat the FMT
calculations. Their model only requires a straightforward
ODE integration, thanks to the simple algebraic relation
between the charge density and the potential in TFD
theory. We carefully checked that in the limit A. ~O the
results from our fu11 TFD-kW calculations agreed with
those from TFD {see Fig. 1). We also verified that our

value of the density y0, we calculate the total charge. If
the charge represented by y0& differs from Z, the desired
nuclear charge, we choose a new value for V0 and repeat
the procedure until the total charge represented by some
y0„converges to Z. Note that the potential is kept fixed
at its original value U0 through this part of the pro-
cedure. We then form a new guess for the density func-
tion taking a linear combination of the form

——'Kr y — ——V y
-23 23

9 a 0 0

ZOK
—4/3 7/3 + 8 —2/3 5/3 (17)

I I I I

J

I I I I

]
I I I

~~A =- 0.08—
0,005 ~

which we finite difference using a standard second-order
scheme and solve by iteration. Our radial grid typically
consists of 1000 points. We find that for the most accu-
rate calculation of pressure it is best to arrange the grid
such that half of the available grid zones are placed with
uniform spacing out to a radius of 0.05r0-0. 15r0 from the
origin. The other half are joined on smoothly and distri-
buted out to r0 with an arithmetically increasing grid sep-
aration.

Our procedure for solving the fundamental coupled
system consisting of Eqs. (8) and (10) follows closely that
of Tomishima and Yonei' and Yang. We begin with an
initial density profile guess, y00, which we take to be an
exponential with a scale length appropriate for a TFD-
A.W atom (ro= ao ). We then calculate the potential, Uo
using Eq. (10). With this value of Uo we guess a value of
the Lagrange multiplier V0 and solve Eq. (8) by iterating
Eq. (17};each iteration requires solution of a simple tridi-
agonal system. When Eq. {17)has converged to a new

0.02
6 —""

C

bG0 1 I I
[

t I I
l

I I I
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I

0

FIG. 1. The electron density as a function of radius (both in
atomic units). Profiles are computed using TFD-A,W theory for
Wigner-Seitz cells of &6Fe with radius r0=1.5. Curves are
shown for four different values of A, , the Weizsacker coupling
constant. The inset shows the near-origin behavior.
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three different methods for calculating the pressure all
yielded the same result. By calculating the energy of two
different sized cells one may use the first law,
P = —hE/AV, to obtain the pressure. This result can be
compared against the surface formula and the virial
based calculation. We found that, as expected, all three
methods converged to second order. However, for a
given grid resolution the surface formula was by far the
most accurate, especially for low densities at which
P~O. The reason for this is that both the virial and first
law formulas involve taking the small differences of large
numbers obtained from integrals over the entire electron
structure. The kinetic and potential energies must be cal-
culated with extremely high precision for these methods
to give correct results as P~O.

IV. NUMERICAL RESULTS

4
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A. Equation of state

Consider the defect in TFD theory electronic structure
near the nucleus. In Fig. 1 we plot the electron density as
a function of radius for Wigner-Seitz cells of radius
ra=1. 5 for 26Fe. Curves are shown for four values of k.
Clearly for this medium density cell (p=45 gem ) the
structure near the cell boundary is similar, but the four
cases diverge considerably near the nucleus. As A, ap-
proaches zero the electron density at the nucleus becomes
greater and the turnover to constant density at r =0
occurs at smaller values of r. In the limiting TFD case
A, =O, the density is obviously diverging as r~O. Note
that the electron density at the outer boundary becomes
slightly smaller as 3, is decreased so all the cells have the
same value of total charge.

In Fig. 2 we show the variation of the electron density
profile and pressure with cell radius for 6 C. Results are
plotted for the TFD- —,'W model. As the cell radius ro is
decreased (i.e., as the mass density increases) the electron
density profile becomes more and more homogeneous
[Fig. 2(a)]. At sufficiently small rp, it approaches a uni-
form electron gas. In Fig. 2(b) we plot the dimensionless
pressure parameter f, defined by Eq. (15), as a function of
the cell's mass density for the TFD- —,'W and TFD-9
models. As expected the function f approaches unity as
the mass density increases and the density profile be-
comes increasingly uniform. The corresponding pressure
curve for TFD theory is also shown for comparison. The
curves converge as p becomes large.

In Fig. 3(a) we plot the equation of state for 6 C, z6Fe,
and zz U calculated from both TFD theory and TFD-A, W
theory with three different values of A. : —,', —,', and —,'. The
choice k= —,

' may be thought of as a reasonable upper
bound; A, = —,', the preferred value for free, closed-shell

atoms, has good empirical support' and is close to the
value 0.186 obtained by Lieb from the large-Z analysis;
and k= —,

' is the commonly accepted theoretical predic-
tion of gradient expansion formalism. Also shown for
comparison (the heavy solid lines and open points) are
corresponding experimental data compiled from several
sources. ' In Fig. 3(b) we exhibit the equation of

FIG. 2. (a) The electron density as a function of the radius
(both in atomic units) for several 6 C Wigner-Seitz cells with
varying radii, r0. The electron structure is calculated with
TFD- —,'W theory. Note that the density profiles become more

and more uniform as the cells becomes smaller (higher mass
density). (b) The nondimensional pressure function f as func-
tion of matter density for 6 C. Curves are shown for calcula-
tions based on TFD (dotted curve), TFD- —,'W (dashed curve),
and TFD- —'%' (solid curve) theory.

state over a larger mass density range and compare the
results of TFD, TFD- —,'W, and TFD- —,'W. Clearly for car-
bon and iron, the TFD-A, W equation of state with k=

3

provides the best empirical fit to the low-pressure data in-
cluding the limiting behavior as P~O. As the pressure
increases all cells converge as the Weizsacker correction,
as well as other interaction terms, diminish in relative im-
portance. For uranium, the highest Z case, the agree-
ment is best with A, = —,'.

It seems fairly evident that the A, necessary to get
agreement with experiment at low pressures decreases as
Z and, thus, the average electron density increases. The
indication is that for cases where TF statistical theory in
general is not very accurate —low Z and partially filled
shell —increasing the value of A. can at least superficially
improve results. If we compare the zero-pressure density
predictions of Salpeter and Zapolsky, who used TFD
with (unrealistically large) average correlation corrections
with the results of TFD-—,'W theory we find that the latter
equation of state is slightly worse for iron (at low pres-
sures) but better for uranium and considerably better for
carbon.

It should be noted that our calculations are not strictly
valid for uranium; the inner electrons become relativistic
even for uranium atoms and our TFD-A, W model does
not account for relativistic effects. Consider, for exam-
ple, the magnitude of the nondimensional relativity pa-
rameter x =@I/m, c, which measures the degree to which
a Fermi gas is relativistic. Here ip&=(3' n )' is the elec-
tron Fermi momentum. Evaluating x for electrons near
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FIG. 3. (a) Theoretical equations of state are shown along with experimental data for 6'C (diamond data), 26Fe and» U. For each
element four theoretical equation-of-state curves are shown: TFD (dotted curve), TFD-9W (solid curve), TFD- —,

'W (long-dashed

curve), and TFD-3 W (short-dashed curve). The heavy solid lines are low-pressure data taken from Salpeter and Zapolsky (Ref. 22)

for uranium and iron and from Aleksandrov et al. (Ref. 37) for carbon. The open triangles, squares, and pentagons are high-pressure

shock data from Marsh (Ref. 36). (b) This plot is similar to 3(a), showing a larger range of the equation of state. Curves for TFD
(dotted), TFD- —,'W (solid), and TFD- —,

' W (dashed) are shown.

the nucleus of a TFD-—,'W zero-pressure uranium lattice
cell gives x =2.73, which is marginally relativistic. How-
ever, evaluating x for the mean electron density inside ro
gives x =6.3 X 10 r 0 ', which is quite nonrelativistic
when ro) —,', . So it is not surprising that Engel and

Dreizler' show that the difference in total energy be-
tween a uranium atom calculated with a relativistic
versus a nonrelativistic TFD- —,

'W model is only 4%.
Similarly, since it can be computed from the surface den-

sity of electrons, the pressure is largely independent of
whether or not the innermost electrons are relativistic.

Further support comes from calculations of Yonei. He
shows that the pressure difference between relativistic
and nonrelativistic TFD- —,'W calculations for gold at 500

g cm (the highest compressions we graph for heavy ele-
ments) is only about 2%. We thus conclude that our
nonrelativistic equation of state is fairly reliable, even for
uranium, at low pressure and density, p ( 1 X 10 g cm

In Table I we show the zero-pressure densities for
several elements calculated with TFD-A, W theory (A, = —,',
—,', and —,') compared with results from TFD theory, TFD
theory with average correlation corrections, and experi-

TABLE I. Zero-pressure densities (in g cm ') for seven elements are shown from experiment (Ref.
36) from TFD, from TFD with average correlation corrections (see Ref. 22), and from TFD-A.W theory
for several values of A.. Note that for TF, zero pressure occurs at zero density.

Model

Experiment
TFD
TFD+ correlation
TFD-9 W
TFD- —'W
TFD- —'W

12C

3.19
0.57
1.3
1.25

1.86
2.94

Mg

1.74
0.90
2.4
1.94
2.83

4.48

26Fe56

7.86
1.74
5.5
3.58

5.18

7.99

108A
47

10.5
3.04

10.0
5.93
8.48

12.9

'"Au
79

19.2
4.83

19.5
9.62

13.7
20.6

207pb
82

11.3
5.12

20.4
10.0
14.2
21.4

236U
92

18.7
5.70

24.0
11.2
15.9
23.8
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ment. TFD- —,'W theory is quite accurate for some ele-

ments but overall TFD-—,'W is the most consistent; for the

seven elements shown here TFD- —,'W theory predicts the
zero-pressure density with an average error (compared
with experiment) of 32% compared with an average error
of 39%%uo for TFD- —,'W theory and 68% for TFD theory.
One also notes that TFD-—,'W theory does best for the ele-

ments which have outer shells either nearly closed or
nearly empty, '„Mg and ',,'Pb, and worst for 47 Ag and

79 Au which have partially filled outer shells. This is con-
sistent with the view that A. = —,

' is exact in the high-

electron-density limit and that TFD-A, W theory does not
account for shell effects like spin-orbital coupling. In a
forthcoming paper ' we plan to incorporate correlation
corrections and repeat this comparison. A satisfactory
theory must account for the experimental zero-pressure
densities of all the elements. It is clear that, while the
gradient correction greatly improves the agreement, it
alone cannot consistently reproduce the zero-pressure
laboratory data.

In TF and TFD theories in the Wigner-Seitz approxi-
mation, the lattice cell of zero pressure corresponds iden-
tically to the free-atom configuration. For TF, this cell,
denoted by an asterisk, extends out to infinity (ro ~ oo );
the corresponding surface electron density n ' and lattice
matter density p* are both zero. For TFD, the P =0 cell
occurs at a finite value of ro =re (Z), corresponding to a
nonzero value of n "(ro)=2.13X10 (in atomic units}
and p'=p'( A, Z). In both cases the electron density is
automatically guaranteed to be smooth across the cell
boundary [i.e., n'(ro)=0] for all P ~0 by virtue of the
surface boundary condition V'(ro) =0.

In TFD-kW theory, as in TFD, the zero-pressure lat-
tice cell occurs at a finite value of ro =ro (l, A, Z) and,
hence, a nonzero value of n'(r )oand p"=p'(A, , A, Z).
However, by contrast with TFD, this Wigner-Seitz cell is
not the free atom of TFD-A,W theory, since the latter ex-
tends to infinity with an exponentially decreasing electron
density. Instead, the P =0 lattice is a truly condensed
state of matter, distinct from the free atom, when the
Weizsacker correction is included. Smoothness across
neighboring cells [n'(ro)=0] is imposed by the surface
boundary condition (9) on the second-order density equa-
tion. As in TFD, the TFD-kW pressure P becomes nega-
tive in the range r p & p'p & ~ so there is a density regime
within 0&p &p' for which cells cannot exist. [The ex-
istence of a negative pressure domain at large rp and
small, but nonzero, n (ro) is evident from Eq. (14), since
Vo&0 for large cells. ) However, P =0 when ro=~ and
n (ro) =0 in TFD-AW by Eq. (14), so that the free atom
extending to infinity is well defined. At infinity the cell
and atom boundary conditions are, of course, equivalent.

B. Applications to stellar models

Finally, we employ our equation of state to construct
models of cold, spherical stars in hydrostatic equilibrium.
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FIG. 4. (a) The mass-radius relation (in solar units) for cold

6 C equilibrium stars computed using the TFD (dotted curve),
TFD- —,

' W (solid curve), and TFD- —,'W (long-dashed curve) equa-

tions of state. The final curve (short-dashed) shows the result
for an equation of state of ideal, cold, degenerate electrons
(P =P0, A /Z =2). (b) The central density (in g cm ') is plot-
ted against the mass for carbon stars computed using TFD (dot-
ted curve), TFD- —,

' W (solid curve), TFD- —,
' W (long-dashed

curve), and ideal electron (short-dashed curve) equations of
state.

The Newtonian equilibrium equations are given by

dP(r) M(r)p(r)
p2

dM(r) =4~r'p(r),
dr

(19)

(20)

where M(r) is the mass interior to radius r, Equations
(19) and (20) are integrated from the stellar center at
r =0, where M(0)=0, p=p(0), and P =P(p(0)), out to
the surface at r =R, where P =O=p and M(r)=M (see
Ref. 18 for detailed discussion and references on cold, de-
generate stars). Figure 4(a) shows the resulting mass-
radius relation for carbon white-dwarf models. Curves
are shown for the TFD, TFD- —,'W, and TFD-—,'W equa-
tions of state. Figure 4(b) shows the relation between the
central mass density p(0} and the total mass. For com-
parison, the curves for models constructed from an ideal
electron gas equation of state (P =Pa and 3/Z =2) are
plotted. These models are polytropes of index —', and

correctly describe nonrelativistic stellar configurations of
high density and pressure. We focus on carbon stars,
since most white dwarfs are believed to be predominantly
carbon. ' We find that the mass-radius relationship from
TFD-kW theory agrees very closely with that given by
Zapolsky and Salpeter for TFD with average correla-
tion corrections. In particular, we find that for k= —,

' the
maximum radius of a carbon white dwarf is
R,„=3.9 X 10 R , which occurs for a mass
M =2.3 X 10 Mg.
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(A 1)

where c. is the total energy density defined by
rpE = fp'sd r with the total energy F. given by Eqs.

(1)—(4}. For the TFD-A, W model energy this becomes

First we derive a surface pressure formula following
the derivation for TFD in the work of Gombas. The
pressure of a cell is given by the first law of thermo-
dynamics as P = —dE/d V. This may be computed as

P= — Kkn —K, n — —+ —,V, n
5/3 4/3 Z r dr —'Kjn ——'K n —AK — —+—'V n
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p an, 2/3 1/3 (Vn) Z
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and

1 a
(V }2 2V

Vn an
n aro n arp

2V n Bn

n arp

+ (Vn)
n2 arp

(A4)

where we have used the boundary condition Vn =0 at
the cell surface in the first term. Using the relations

EI, =4nkv; f r dr .
R(Vn)

1 o n

For the contracted cell

(A7)

of Eq. (6) again yields Eq. (14).
It is straightforward to derive the virial pressure for-

mula (16), using the linear-scale-factor method of Fock.
Assume a contraction of a cell by a factor l '. The den-
sity then scales as n&(r)=l n (Ir) It is s. imple to show
that under such a contraction the total kinetic energy
scales as Ek =1 Ek, the potential energy scales as
E'=lE, and the exchange energy scales as E,'=lE, .
For example, consider the Weizsacker contribution to the
kinetic energy functional

and using Eq. (6) we arrive at [the first term on the right-
hand side of Eq. (A4) vanishes under integration] Ek =4+XK, 2r2dr .

1 o nI

With a change of variables r'= lr this becomes

(AS)

+—f r drVo
"o, an

rp

(A5)

R [V„n(r')]
Ek =4m.Air;, l r' dr'=l Ek

o n(r')

We then have for the total energy

(A9)

Using the fact that the total charge stays fixed when the
cell is compressed gives us

az= = a=0=4m. r drn
aro aro o

Application of the first law,

dE'= —Pd V',

(A10)

(Al 1)

=4am(ro)rp+4m r dr2 Bn

O Bro
(A6}

which when substituted in Eq. (A5) leaves us with only
surface terms. Upon another use of Eq. (6), we arrive at
our final surface pressure formula Eq. (13). Substitution

gives us

2IEk+E +E, =31 PV, (A12)

using the volume scaling relation VI =1 V. Setting
I =1 in Eq. (A12) yields Eq. (16).
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