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A four-parameter potential function is introduced for bond-stretching vibration of diatomic mole-
cules. It may fit the experimental RKR (Rydberg-Klein-Rees) curve more closely than the Morse
function, especially when the potential domain extends to near the dissociation limit. The corre-
sponding Schrodinger equation is solved exactly for zero total angular momentum and approxi-

mately for nonzero total angular momentum.

I. INTRODUCTION

In recent years the large-amplitude vibration of mole-
cules has received significant attention.'”* For bond-
stretching vibration, investigators often use the Morse po-
tential’®

Uy(r)=D,[1—e "'}, (1)
where D, is the dissociation energy, r, is the equilibrium
bond length, and

=2D,a?=U"(r,) 2)

is the force constant, which is related to the equilibrium
angular frequency w, and reduced mass p by the Dun-
ham formula

ko =poy . (3)
The Morse potential has better large-amplitude behavior
than the harmonic-oscillator potential. Using the Morse
wave functions as a basis one achieves a fast convergence
in the calculation, e.g., diagonalization of a Hamiltonian.

However, the Morse function still shows a large devia-
tion from the experimental curve. In Ref. 6 comparisons
for 19 states of diatomic molecules give that the average
absolute deviation of the Morse function from the
Rydberg-Klein-Rees (RKR) curve’ is 3.68%. In addi-
tion, Varshni and Levine have proposed the potential
functions

2
r, _ 2,2
Up(n=D, |1--"e bytrmre) @)
and
2
r, PP— P
UL(r)=D, |1~ e ARG I (5)
where

p=2+HA2—a)A'?=2)/(A'*—1),

by=1A2=1)/r},
R (6)
bsz—l(Al/Z_l)/rp
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The average absolute deviation of these two functions de-
crease to 2.31% and 1.99%, respectively. However, the
Schrodinger equation for these two potentials can hardly
be solved exactly.

Moreover, when the domain of the potential extends to
near the dissociation limit, the deviations of these three
functions from the RKR curve become very large. Table
1 shows that the deviations of Morse, Varshni, and
Levine functlons reach about 50%, 34%, and 37% at
r=3.49 A for the X E+ state of Cs,, and in the domain
from 3.49 to 11.53 A the mean absolute deviations are
16.1%, 10.3%, and 11.4%, which are still very large. In
Table II are collected the mean absolute deviations of 15
molecular states from the RKR curves. The domains of
the potentials are indicated by the E_, /D, column
where E_, is the highest level in the RKR turning
points. Another series of calculations?’ give that the
mean-square deviations are 30-60 % more than the mean
absolute deviations in Table II. It shows that for the
most states the deviations of the Morse potential become
very large when we consider a large-domain potential.

II. FOUR-PARAMETER POTENTIAL

Now we introduce a potential function
—b(r—r,)
l—e ¢
—b(r—r,)
1—ce ¢

2
], lel <1 (7

with
b=a(l—c). (8)

Just as in the above three potentials, it satisfies Egs. (2),
(3), and
Ur,)=U'(r,)=0, U(w)=D, . 9)

The higher-order derivations are

U"'(r,)=—6D,(1+c)a’*=(1+c)Uy'(r,) , (10)
U¥(r,)=2D,a*(7+22c +7c?)
=(1+Zc+cHUP(r,) . (11)

This means that the above four functions have the same
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TABLE I. Deviations from the experimental RKR curves of four potentials: Uy, Morse; Uy, Varshni; U;, Levine; U, the four-
parameter potential in this work. The parameter c is determined by minimizing the mean absolute deviation of U from Uggy and is
listed in Table II.

Molecular r Urkr Uy — Ugrkr U, —Ugkr U, — Ugrkr U— Uggr
state n (A) (cm™1) (ecm™1) (cm™!) (cm™") (ecm™Y)
Cs, X ! 2; 137 3.49228 3629.099 1813.3 1224.5 1348.97 —24.32
120 3.508 79 3512.575 1707.72 1151.32 1268.75 —24.27
80 3.61506 2772.466 1179.58 799.47 878.93 16.45
40 3.84221 1559.92 462.35 313.12 343.79 23.53
0 4.5408 20.981 0.56 0.37 0.41 0.08
0 4.7607 20.981 —0.52 —0.34 —0.38 —0.09
40 5.97807 1559.92 —242.36 —145.36 —163.51 —76.69
80 7.007 17 2772.466 —414.07 —213.19 —248.35 —151.03
120 8.96329 3512.575 —224.438 —48.43 —72.97 —61.1
137 11.53216 3629.099 —42.25 10.52 6.43 —0.09
I, XO;L 108 2.268 67 12 543.9343 2462.22 727.65 346.59 —42.93
90 2.271 14 12 340.1776 2404.09 712.6 340.74 —35.93
60 2.29798 10272.6273 1843.11 566.2 283.43 25.36
30 2.37018 5932.678 823.24 273.93 150.03 69.94
0 2.618 39 107.0981 2.1 0.88 0.6 0.65
0 2.71804 107.0981 —2.1 —0.94 —0.66 —0.8
30 3.21879 5932.678 —766.98 —392.16 —3014 —454.8
60 3.696 10272.6273 —1157.5 —483.68 —332.68 —708.48
90 4.938 31 12 340.1776 —158.75 96.31 127.37 —25
108 9.0775 12 543.9343 3.23 34 34 3.36
ICl 4’ 3[12 38 2.306 4803.73 967.61 320.69 104.83 —100.93
30 2.312 4539.68 963.94 359.61 157.54 —31.64
20 2.34 3664.63 711.22 276.65 129.95 4.29
10 2.404 2134.22 308.67 122.02 57.73 14.35
0 2.596 111.85 0.79 —1.17 —1.88 —1.99
0 2.744 111.85 —2.79 —0.88 —0.18 —0.33
10 3.145 2134.22 —221.7 —91.11 —42.1 —91.18
20 3.533 3664.63 —294.83 —50.52 35.64 —97.1
30 4.257 4539.68 —29.6 146.63 192.38 82.19
38 5.551 4803.73 45.6 69.08 70.83 59.84

TABLE II. Mean absolute deviations in AU, = | U, — Ugkr |/D,; Uy, Morse; Uy, Varshni; U, , Levine; U, this work. Parameter ¢
is determined by minimizing the mean absolute deviation AU. E_,, is the highest level in the data used.

Molecular AUy AUy AU, AU

state (%) (%) (%) (%) c t P Xq E.../D, Ref.
Li, X 12; 8.36 6.63 7.70 2.14 —0.136 500 42.6527 355.126 —1.91000 0.9998 9
Na, X IE; 9.62 6.38 7.58 1.39 —0.205716 62.7609 367.847 —4.77172 0.9961 10
K, X 12; 10.35 6.68 7.69 1.31 —0.266 348 75.8911 360.824 —10.8183 0.8306 11
Rb, X 12; 12.26 7.84 8.87 1.52 —0.282493 106.608 483.991 —14.6941 0.8388 12
Cs, X '2; 16.12 10.30 11.44 1.20 —0.289021 134.755 601.000 —18.0989 0.9944 8
ChL X ’2; 6.06 1.08 1.11 1.89 —0.096 988 66.0428 746.980 —7.61698 0.9995 13
Cl, B*11(0}) 5.30 2.30 2.51 1.30 —0.104 742 23.6854 249.817 —44.0794 0.9990 14
I, XOg+ 8.03 2.70 1.58 1.38 —0.139013 102.703 841.504 —39.2103 0.9997 15
ICl X 12; 5.68 1.30 1.44 1.97 —0.086212 84.1287 1059.96 —9.12219 0.9970 16
IC1 4°1I, 8.42 3.96 235 0.76 —0.167208 30.9785 216.249 —154.182 0.9934 17
ICl 4'°1, 7.73 3.11 1.78  0.98 —0.157 361 37.5172 275.932 —87.8769 0.9853 18
HF x'z* 448 3.14 3.00 1.96 0.127772 27.3624 186.788 0.753235 0.9928 19
H, X ]2; 5.76 7.53 4.48 2.65 0.170 066 20.9596 102.285 0.563034 0.9922 20
cox'zst 0.87 3.05 227  0.36 0.044 6246 87.3418 1869.91 0.532232 0.6995 21
XeO d'Z™" 6.78 5.13 6.18 3.69 —0.110404 7.9588 80.0484 —641.956 0.9476 22

Average 7.72 4.74 4.67 1.63 0.9511
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first and second derivations at r,, determined by experi-
ments, but have different third and fourth derivations.
The latter expressions in Eqgs. (10) and (11) show the rela-
tion. The parameter c is adjustable and we choose it to
minimize the absolute deviations. The results are given
in Table II. We see that the mean absolute deviations of
this potential are much less than that of the Morse poten-
tial for most states.

Another favorable character of this potential is the ex-
act solvability. Firstly let us consider the Schrdédinger
equation for vibration of diatomic molecules with zero
angular momentum

# d?

o g2 TUWTE [¥=0. (12)
,

Let
x=cexp[—b(r—r,)], xqo=cexplbr,), (13)
then the domain of r, r €[0, « ) becomes

(i) x€(0,xy] for c>0;
(14a)

(i) x €[x,,0), for ¢ <0.

From the calculation we know that x,<1 if ¢ >0 and
xo << —1if ¢ <0 for most diatomic molecules. Since our
potential fits the experimental curve closely, it is possible
that our analysis is based on a real potential. For a real
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diatomic molecule when r —0, the potential energy goes
to infinity, and the wave function goes to zero. In a con-
tinuation, the wave function is zero also for » <0. There-
fore we have, in fact, a physical condition

¥Y=0 for rE(— ,0). (14b)
We now weakened the condition (14) to be
(i) x€[0,1], Y|, —o=¥|,—,=0 ifc>0 (15a)

(i) xE[—,0], ¥| __.=¥| _,=0 ifc<0. (15b)

One can check in the later Eq. (22) or (32) that the solu-
tion solved by the modified condition (15) is consistent
with (14) in a high accuracy because of the quickly de-
creasing factor (1—x )¢ with 2p~ 10° and p, =sgn(c )p.

Using the variable x the Schrodinger equation (12) be-
comes

d> 1 d t*(1—-0x)*, A
e T L 21 (16)
dx? xdx xXx—1)? x?
with
t=QuD)'?/(#b), Q=1/c, (17)
E=E \, E;=#%/(2u) . (18)

For the condition (15a) the general solution of Eq. (16) is

W=x"(1—x)"2*P[ AF(a,B,y;x)+Bx Fla—y+1,8—y+1,2—7:x)],

where

po=(2=M"2 p=[14+t2Q—171"% y=1+2p, o=(12Q*—1)'"?, (19)

a=4+pytp—0o, B=1+p,tp+to,

and F(a,B,y;x) is the hypergeometric function. W|, _,=0 requires B =0, then ¥ can be written as

'y ly —a—pB)
I'(y—a)l(y—p)

Y= Axp0(1_x)(1/2)+p

Fla,B,a+B—y+1;1—x)

+(1—x)

v—a-pT(Y)Ta+B—y)
C(a)T(B)

Fly—a,y—B,y—a—B+1;1—x)

For a real molecule a+[—y =2p>>1. Hence x — 1 leads to divergence of W except for a or 3 being a negative integer.

Letting a = —n, we get the eigenvalue

Ay =3t2Q+ )= Hp+a)—Lp+a) 2 Q1)

=(p+7a) QA 2+ L +27p)— LA 2+ 1+2mp)] ,

The latter expression of (21) is favorable in numerical computation for the cancellation of the large ¢* terms. The eigen-

function is

W, =N,x""(1—x) V2 PF(—n,B,,7,:%)

(22)

where F becomes the Jacobi polynomial with energy-dependent indices; pg,, B,, and v, is expressed as in (19) and (20)
with A, instead of A. The normalization constant is calculated to be
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[ b TQpou+n+1) T(2p+n+1+2p,,) 2p+2n+1+2p,, |

n! T(2p0,+1) T(2p+n+1TI'(2py,) 2p+2n+1

n

For the condition (15b) the general solution is
W=x"(1—x)1/2"P[ AF(a/,B,y;%)+Bx PFla’—y+1,B—y+1,2—y;x)],
with
a'=3+tpo—pto, B=1tpy—p—o.

VY|, —o=0 leads to B =0 again, then we see that x — — « makes ¥ — « except for a or B being negative integers. Let-

ting a’= —n, we obtain the eigenvalue expressed by (21) with the replacement of p by —p. The normalization constant
is
—in 172
N | e TP Tpoutnt 1) T(2p—n) 2p—2n—1-2p,, 04)
" n! ['(2pp, 1) T(2p—n—2p,y, ) T'(2p,,) 20—2n—1
The eigenfunctions satisfy the orthonormalization
fd 1 v v —s [0,1] ifc>0 25)
P plx T mEnT0m Dy 0] ife <0,

The wave functions may be used as a basis for large-amplitude vibration of molecules. Matrix elements of functions in
this basis will be discussed elsewhere.?’

III. SOLUTION FOR NONZERO ANGULAR MOMENTUM

The Schrodinger equation of vibration with nonzero total angular momentum J and neglected nuclear spin is
d* L,

dr* r?
where L; is a given function of J. The equilibrium rotation constant is

B, =#/Q2ur}) .

ﬁZ

- +U(r)—E
2p

v=0, (26)

Expanding r ~2 as

r2=r 1207 (= Q) (30 T b T (1= 0x ) ] 27)

and neglecting the small terms B,L,(1—Qx)™, m >3, which contribute an energy of order (w,/D,)*B,L, and
w?D, *(B,L,)*, we get an effective potential

U,=D,(1—x) 2 Ay+ A, x+ 4,x?), (28)
with

TABLE III. Comparison of mean absolute deviations of large-domain potentials with that of small-domain potentials.
AU, =|U,— Ugggr|/D,; Uy, Morse; Uy, Varshni; U, , Levine; U, this work.

Molecular AUy AUy AU, AU
state n (%) (%) (%) (%) c E ../D, Ref.

ICl 4'°1, 0-10 2.41 0.95 0.43 0.40 —0.168 583 0.4377 18
0-20 5.33 1.99 0.88 0.75 —0.165757 0.7516
0-30 7.08 2.71 1.57 0.79 —0.162 225 0.9311
0-38 7.73 3.11 1.78 0.98 —0.157 361 0.9853

Cs, X 12; 040 4.46 291 3.21 0.42 —0.315730 0.4274 8
0-60 7.39 4.79 5.30 0.74 —0.307473 0.6065
0-80 10.29 6.61 7.34 1.06 —0.300 856 0.7597
0-137 16.12 10.30 11.44 1.20 —0.289 021 0.9944

COo x'z* 0-28 0.60 2.19 1.65 0.19 0.045503 8 0.5670 23

0-37 0.87 3.05 2.27 0.36 0.044 624 6 0.6995 21
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TABLE IV. Experimental molecular constants used in this work.

State r. (A) D, (cm™") o, (cm™") Ref.

Li, X ‘E; 2.67324 8516.78 351.390 9
Na, X 'E; 3.07908 6022.6 159.177 24
K, X's; 3.92443 4440 92.3994 11
Rb, X ’2; 4.2099 3950 57.7807 12
Cs, X 12; 4.648 00 3649.5 42.0203 8
ClhL X ‘25 1.987 20 20276.44 559.751 13
Cl, B’II(0,") 24311 3341.17 255.38 14
I, XOg+ 2.666 40 12 547.335 214.5208 25
ICl X'3* 2.32091 17 557.6 384.27 17
ICl 4°M, 2.685 3814.7 211.0 17
ICI 4'°M, 2.665 4875.52 224.57 18
HF X '3* 0.916 81 49 384 4138.32 19
H, X '2; 0.741 599 38297 4403.21 20
CO X'3* 1.128 32 90529 2169.8136 26
XeO d'=* 2.85230 693 156.832 22
B.L, c?+2c—3 , ,(1—c)?

Ag=14—p= |1+ +3 el

2_ PRY)
Ay=—0 |2+ 2L |ae 14 L ellzc) H
A bre b r,
B,L 2_ 5. a2
2 ey | 5 3¢°—2c—1 (1—c¢)
4 =Q7 |14 = et =+ pEw ] :

A similar operation gives the J-dependent eigenvalue

En.I:EfAnJ ’

Ay =1tH Ag+ A))—Hpy +7)—Lpy+7) A, — A4y)*,

with

pos=sgn(clpy, py=[i+1( Ao+ A4, + 4],

The eigenfunction is

W, =N,x"(1—x)"

with
Pony =12 A=A, )",

/2)+pJ
CF(—n,BYuiX)

Bu=1+n+2po,;t2p, vu=112pg,; -

For the zero spin case we have L; =J(J +1). Writing E,; as the Dunham form

EnJZ 2 Y,,,,(n+%)

m,l>0

mylg+1),

we have the Dunham coefficients

2
_ #a% ¢ t %% | 1+c _
= 20102 — Ly= L 4
Yo=E/p “(+Qt°— L) 2w | 4 a - +0(t )],
_ _yell+ec+ce?) _
Yio=E/[1p. 314(Q2—1)2—%pc]=‘ﬁa)E 1—t ZW (2 4)] )
_ L3 442 g2 Pa’ 24 3,-2.2 1+c | —4
Yy=E/[—5—3p "t7(Q —1)]——2;7 —l—c—c"+3t7% g +o0t %,
_ _ 1+c¢)? 5 ¢ 22 _
Yo=Ep St4Q2—1)2=E 1< —-= +ot™Y |,
0= Espct(Q T =ep 8 (1—c)?
1 _5 c(l+c) —4
=B, [1—5t 73—+ .
Yo =8, |1= 71 (1—c)br, ot )]

(31

(32)

(33)

(34)
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IV. REMARKS

In Table I are listed the deviations from the RKR
curves for five levels of three molecular states. The pa-
rameter c¢ is determined by minimizing the mean absolute
deviation of the four-parameter potential. We see that in
the inner wall of the potential (r <r,) the deviations of
the Morse potential become larger when the vibrational
quantum number increases. This is true approximately
for all of the 15 molecular states considered here. In the
outer wall (r>r,) the deviations do not show the same
trend. For most states here the above trend is preserved
for the energy levels below 0.8D,, and the deviations go
to zero when the energy levels go to D, because of Eq.
(1). For the A'’Il, state of ICl as well as the ground
states of HF and CO the deviations exhibit a minimum in
the domain r, <r < . In any case the deviations of the
four-parameter potential are less than that of the Morse
potential except for a few levels, and the mean absolute
deviations of the four-parameter potential are much less
than that of the Morse potential, as shown in Table II.
The improvement is most significant for the ground states
of heavier alkali-metal dimers and I, as well as the 4 *II,
and 4’ °TI, states of ICI.

Tables I and III also present information on the com-
parison for the deviations of large- and small-amplitude
vibrations. Although there is some complexity of the de-

2529

viations in the outer wall of the potential, it is shown
clearly in Table III that the mean absolute deviations of
the Morse potential become larger for the vibrations of
larger amplitudes (larger vibrational quantum numbers)
and become very large for the potential domain extending
to near the dissociation limit, while the mean absolute de-
viations of the four-parameter potential are still small.

For a list of experimental molecular constants used in
this work please see Table IV.

In summary, the four-parameter potential may fit the
experimental RKR curves more closely than the Morse
potential; especially for large-amplitude vibrations its de-
viations are still much less than that of the Morse poten-
tial. Moreover, the corresponding Schrodinger equation
can be solved exactly for J=0 and be treated precisely
for J#0. The orthonormal eigenfunctions may be used
as basis functions in the analytic evaluation of the large-
amplitude bond-stretching vibrations and the couplings
with other modes.
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