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Wigner symbols, quantum dynamics, and the kicked rotator
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Using the kicked rotator as an example, we show how to apply the formalism of Wigner symbols
to the study of quantum dynamics. This approach provides a simple and direct method of compar-
ing quantum and classical dynamics. We investigate in detail the leading quantum effects for small

values of A and discuss the time scales at which quantum effects appear.

I. INTRODUCTION

Progress in understanding nonintegrable classical
dynamical systems' has, in recent years, stimulated con-
siderable interest in the corresponding quantum systems.
In particular, much work has been devoted to investigat-
ing relationships between the classical and quantum dy-
namics of such systems. Important subjects of investiga-
tion include the qualitative differences between a system's
classical and quantum behavior, the time scale at which
quantum effects become significant, and how quantum
effects can be calculated for small values of A.

Insight into these issues may be found by using a for-
mulation of quantum mechanics that resembles, as much
as possible, the usual formulation of classical mechanics.
A conventional method of doing this is to construct wave
packets that are initially localized around a particular po-
sition and momentum. The evolution of such a wave
packet is then compared to the classical trajectory begin-
ning at the same position and momentum. While this ap-
proach has proved useful for many applications, we advo-
cate, in this paper, an alternative approach that we be-
lieve can give a simpler and clearer comparison of quan-
tum and classical dynamics.

The central idea is to directly calculate the time depen-
dence of quantum operators, using the phase-space repre-
sentation associated with the works of Wigner and
Weyl. ' For very small A', quantum operators represent-
ed in this manner (sometimes referred to as Wigner sym-
bols) reduce precisely to their classical counterparts plus
corrections, which are typically of O(fi ). Wigner sym-
bols thus provide a quantum generalization for any classi-
cal quantity that has an associated quantum operator.
The differences between quantum and classical dynamics
may be distinguished by, for example, comparing the
Wigner symbols for the position and momentum opera-
tors with the classical position and momentum trajec-
tories.

The use of Wigner symbols has three principle advan-
tages over the use of wave packets. First, in using
Wigner symbols the only parameter added to the classical

parameters is A, In contrast, with wave packets one must
also specify, at least, their initial widths. Second, wave
packets usually spread out and eventually are no longer
sharply localized around a particular position and
momentum, making dubious a comparison with an indi-
vidual classical trajectory. With Wigner symbols, this
spreading problem does not exist. Third, by employing a
phase-space representation for quantum operators the
difference between quantum and classical mechanics may
be separated into two parts. One part arises from the
difference in the phase-space distribution functions al-
lowed for quantum and classical systems and is not essen-
tially related to the dynamics. The other part, that
which is obtained by calculating Wigner symbols, con-
tains all the dynamical information. Making this separa-
tion can clarify the origin of quantum effects.

While the basic formalism of Wigner symbols is well es-
tablished, it has not, to our knowledge, been previously
applied to the calculation of dynamical properties for
nonintegrable quantum systems. In this paper, we
demonstrate how to do this, using as an example the
kicked rotator, a model frequently employed in the inves-
tigation of nonintegrable dynamics. This model consists
of a particle that is periodically "kicked" and is governed
by the Hamiltonian

2 + oc

H = +E cos(x) g 5(t n), —
2 oo

where x is the particle's position, p is the particle's
momentum, and K is the kicking strength.

For the kicked rotator, we show explicitly how to cal-
culate Wigner symbols, and we study in detail the leading
deviation for small A of symbols from their classical lim-
its. We find that the asymptotic time dependence of the
leading deviation depends only on general features of the
classical trajectory. We also discuss how to estimate the
time scale at which quantum effects begin to be important
and present a calculation of a so-called quantum cross-
over time. The object of this paper is to demonstrate the
utility of Wigner symbols for studying quantum dynam-
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ics, as weil as to give new results for the kicked rotator
relevant for small values of A.

In Sec. II, we review the basic formalism of Wigner
symbols. In Sec. III, we give, for the kicked rotator, a
practical method for calculating Wigner symbols and
present typical numerical results, which we compare to
the corresponding classical ones. We then, in Sec. IV,
consider in detail the leading quantum correction to a
classical trajectory and discuss the time scales at which
quantum effects become significant.

II. WIGNER SYMBOL FORMALISM

For a system consisting of a single particle, a dynami-
cal quantity A =F(x,p) (e.g., the particle's energy) can
classically be regarded as a function A (xo,po, t)

F(x (t—),p (t)) of the particle s initial position xo, initial
momentum p0, and the time t. Similarly, a quantum
operator A =F(x,P—

) can be regarded as a function
A (xo,Po, t) =F(x(t—),P(t)) of the initial position operator
xo ——x(0), the initial momentum operator Po=P(0), and
time. We assume that A is Hermitian, that the function
F(x,p) does not have an explicit iil dependence, and that
[x,P ]=i fi

Since the position and momentum operators do not
commute, the function A is well defined only if an opera-
tor ordering is specified. Weyl ordering is obtained from
the prescription

A(t)= fdx, dpoA(xo po t)

X
I A.[x(0)—x ]+iy[P (0)—p ]

e
(2') " (2.1)

dae ' x0+a 2A t x0 —e 2, 22

where the state x ) is an eigenstate of the initial position
operator. The Wigner symbol of any Hermitian operator
is real.

This way of representing a quantum operator is useful
because the Wigner symbol A(xo, po, t) is a natural gen-
eralization of the classical A (xo,po, t). For small iii, one
can show

A (xo,po, t) = A (xo,po, t)+0 (A' ) . (2.3)

Furthermore, the average of A over an initial state lgo)
may be expressed as

& A(t) &—= f dx dx'&noix &&xlA«)lx'&&x'lqo&

= f dxodpoA(xo po, t)p(xo, po), (2.4)

where P is the Wigner function of l go ), given by

—(i /fi)apo
p(xo po)= e

(2iriri)

X &x, +ay2i@o&& i(oixo —ay2& . (2.5)

where d is the dimension of the system. Defined in this
manner, we refer to A as the Wigner symbol for A. To
find A, one takes the Wigner transform of A:

A (xo,po, t)

Equation (2.4) is very analogous to the classical expres-
sion for the average value of A over a distribution of ini-
tial conditions.

In Eq. (2.4), the fi dependence of A's expectation value
has been divided into two parts, one due to the Wigner
function p and one due to the Wigner symbol A. The
Wigner function, as we have defined it, is independent of
time and has no connection to the system's Hamiltonian.
It merely represents choice of initial state. Its A depen-
dence arises from the basic rules of quantum mechanics
that constrain the possible forms of p. For example, p
cannot be chosen to be a 5 function in both the position
and momentum variables, as this would violate the
Heisenberg uncertainty relation. The Wigner symbol, on
the other hand, depends essentially on the Hamiltonian
and contains dynamical information intrinsic to the sys-
tem. By comparing Wigner symbols directly with their
classical limits, one may distinguish quantum effects par-
ticular to a system's dynamics from ones due solely to the
general restrictions quantum mechanics places on phase-
space distributions.

The phase-space formulation of quantum mechanics
developed here is distinct, but complementary to, one
which uses time-dependent Wigner functions as the cen-
tral dynamical objects. ' Our approach corresponds to
the Heisenberg picture of quantum mechanics, while the
use of time-dependent Wigner functions corresponds to
the Schrodinger picture. In previous studies of quantum
dynamics, the Schrodinger viewpoint has predominated.
In the following sections, we show how practical calcula-
tions can be done within the Heisenberg framework.

III. CALCULATING WIGNKR SYMBOLS
FOR THE KICKED ROTATOR

The essential features of the kicked rotator's dynamics
are contained in a map that gives the position and
momentum just before a kick in terms of the position and
momentum before the previous kick. This map is found
by integrating the equations of motion corresponding to
the Hamiltonian (1.1) over one kicking period, leading to
the so-called standard map"

xn+1=xn +pn +»
p„+,=p„+K sin(x„),

(3.1)

with x„being the position and p„ the momentum before
the nth kick.

The dependence of a dynamical quantity
A„=F(x„,p„) on the initial position and momentum can
be obtained from the recurrence relation

A„+,(xo,po) = A„[xo+po+K sin(xo), po+K sin(xo)],

(3.2)

which follows from (3.1) and the fact that an (n + 1)-step
evolution from (xo,po) is the same as an n-step evolution
from (x &,p &

). Moreover, by applying (3.2) to the cases
with A„=x„and A„=p„, (3.1) can be derived from (3.2).
Thus (3.1) and (3.2) provide equivalent representations of
the kicked rotator's classical dynamics.
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Quantum mechanically, the evolution of an operator
over one kicking period is given by' '

A„„=O'A„U, (3.3)

where 0 is an evolution operator defined as

20
(a)

—i /4(PO/2) i /AK COS(XO)v=e e (3.4)

Using Eq. (2.2) to express (3.3) in terms of Wigner sym-
bols, one finds, after some algebra,

A +&(xo po)= g JI[2K sin(xo)/A']

X A„(xo+po+fil /2, po+A'I /2),

(3.5)

-20
100 200

where JI(x) is a Bessel function. The recurrence relation
(3.5) is a quantum generalization of (3.2), reducing to (3.2)
in the A'~0 limit. For large I, the Bessel functions de-
crease rapidly and only about 4K/fi terms contribute
substantially the sum in (3.5).

The numerical evaluation of (3.5) is especially simple
for quantities with the symmetry

20
(b)

An(xo~po)= An(xo+2n~po)= A (xo~po+2~), (3.6)

which is preserved by the dynamics. This symmetry can
be exploited by choosing A equal to a "resonant" value of
4ma/b, where a and b are positive integers. ' Any other
value of A may be approximated to arbitrary accuracy by
using sufficiently large a and b. '

For these resonant values of fi, (3.5) becomes

b —
1

A„+](xo po ) = g QI(xo ) A (xo+po +fil /2 po+fil /2)
1=0

(3.7)

with

2mlm
Q, (xo)= —g cos.

b 0 b

-20

20
(c)

100 200

2vlm+—cos x+

277l21
cos x0

(3.8)

which now contains a finite number of terms. Further
simplication occurs if po is approximated by a number
2'j /b, where j is an integer. The recurrence relation
(3.7) is then equivalent to a map of a b X b matrix and is
straightforward to evaluate numerically. The symmetry
(3.6) applies in particular to the momentum step
p„+,(xo,po) —p„(xo,po), from which the momentum
symbol can be obtained. In fact, the signer symbol for
any operator that is a polynomial in x and p can be found
by iterating b X b matrices.

In Fig. 1, we show the time dependence of a typical

-20
100 200

FIG. 1. A classical momentum trajectory and its correspond-
ing momentum symbol for K=2.5, x0=1.0, and p0=20m. /67; (a)
is the classical trajectory, (b) is the momentum symbol with
A'=8m. /67=0. 38, and (c) is the symbol with %=212m/67=9. 9.
As fi is increased the momentum symbol's time dependence
evolves from chaotic, in the classical limit, to simple and quasi-
periodic, for large values of A.
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momentum symbol for two values of A, as well as the cor-
resPonding classical trajectory (K= 2.5, xo = 1.0,
po=0.94}. The symbols were calculated by using (3.7)

with b=67. The classical trajectory, Fig. 1(a), is chaotic.
For small A, the momentum symbol also appears irregu-
lar, as in Fig. 1(b), but as fi is increased it becomes more
regular as suggested by Fig. 1(c).

A Fourier transform in time of the momentum symbol
consists of sharp peaks, indicating quasiperiodic dynami-
cal behavior. For small A, many peaks have a substantial
weight, while for large A only a few are significant. In the
A~O limit, the number of important Fourier peaks may
diverge, leading to chaotic classical motion. The suppres-
sion of the chaotic behavior of the kicked rotator by
quantum effects can be understood in terms of a localiza-
tion argument due to Grempel, Prange, and Fishman. '

IV. QUANTUM CORRECTIONS FOR SMALL A

We now consider the leading deviation of a Wigner
symbol for the kicked rotator from its classica1 limit.
These deviations, generally of O(A' ), represent the first
quantum corrections to the classica1 motion. Here we re-
strict ourselves to the position and momentum symbols,
although the method we use may be extended to other
Wigner symbols.

The position and momentum symbols have the expan-
sions

x„(xo,po) =x„(xo,po)+R a„(xo,po)+O(vari ),
(4.1)

Jy (xo Po)=P (xo Po)+Pi P„(xo Po)+O(A ),
where a„and P„are the coeKcients of the leading quan-
tum corrections. These coefficients may be obtained by
iterating the map &x ~go) =

1/4
/p px

exp « —xo) 2 (4.5)

from (4.2) are small, and the quantum and classical tra-
jectories nearly coincide. However, as time increases, the
quantum corrections tend to grow and eventually become
important (see Fig. 2). For small fi, it is the asymptotic
behavior for large time of the corrections which is of in-
terest. ' Numerical study of (4.2) indicates the asymptot-
ic form of the corrections depends only on the general
character of the classical trajectory. Specifically, we find
for a generic quasiperiodic classical trajectory that, on
the average, ~a„~ and ~P„~ increase proportionally to n,
while for a chaotic classical trajectory they increase pro-
portionally to e ", where o. is the largest Liapunov ex-
ponent for the classical trajectory. Equations (4.1) then
suggest that the time at which the Wigner symbols begin
to deviate significantly from the corresponding classical
trajectories scales as A for quasiperiodic trajectories
and as —(2/3o )ln(vari) for chaotic trajectories. ' Clearly,
the quantum corrections to a chaotic classical trajectory
increase much more rapidly than those for a quasiperiod-
ic trajectory.

Figure 3 gives a comparison of the quantum correc-
tions computed from (4.2) with exact results obtained
from Eq. (3.7) for two trajectories with %=1.5 and
iii=4~/250=0. 05. We define the quantum deviation
5„=(p„—p„)/k . For small n, b, „ is approximately
equal to P„but as n increases the deviation grows and
can no longer be obtained from (4.2). The deviation for
the chaotic trajectory (squares) initially grows much fas-
ter than the deviation for the quasiperiodic trajectory
(circles).

As an illustration of how to apply these results, we
consider a wave packet that initially has the Gaussian
form

~n+i ~n+~n+i ~

(4 2) where A, is a real parameter. From Eq. (2.5), one finds the

with the initial condition ao=Po=0. In (4.2),

KW„= E( 6ik„I;X[r~~sln(x„)x„pl+ )cos(x„)x„kx„I 1

I I I
[

I I I

i
I I I

where we use the notation

Bf(xo, ioo)
f, i«o uo)=

BXp

af (x„J,)

f,2«o Jo)=
Bpp

f, q(xo po)=[f, (xo po) jq

(4.3)

(4.4)

I f l I I I I I I

for any function f (xo,po). In (4.3},the indices i,j,k, l are
summed from 1 to 2, and e,- is an antisymmetric matrix
with e11 622 and @12= &21 1 ~ can be calculat-
ed from the classical map (3.1). While (4.2) may be de-
rived from (3.5), a more direct derivation is given in the
Appendix.

For short times, the quantum corrections obtained

l0 20 30

FIG. 2. Momentum symbol (%=4~/250, solid line) with the
corresponding classical trajectory (dashed line) for I( =1.5,
xo =3.0, and po=~. The momentum symbol follows the classi-
cal trajectory for several iterations, but then begins to deviate.
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FIG. 3. Logarithm of the deviation b„—:(p„—p„)/fi' for a

quasiperiodic trajectory (K=1.5, xo=3.0, and po=~, circles)
and a chaotic trajectory (K=1.5, xo =2.0, and po = n", squares).
The solid lines are exact calculations with %=4m./250, and the
dashed lines are the approximations obtained by using the fi ex-

pansion coefficient f3„

lo9„(n)

FIG. 4. Logarithm of the quantum correction a„ for the last
bounding KAM trajectory (K =0.971 635. . . , xo =~, and
p„=3.737 998. . . ). Only points from the curve's upper en-

velope are plotted (solid line). The dashed line is a least squares
fit of slope 6.2, showing that the correction increases approxi-
mately as n' "'.

corresponding Wigner function to be

p(x,p) = exp ——(x —xo) — (p —
po ) (4.6)

The average position of this wave packet as it evolves in
time is, as follows from (2.4),

(x(t)) = f dx'dp'x(x', p', t)p(x', p') . (4.7)

We now ask how this average position differs, for small
A', from the average position found from the classical evo-
lution of a phase-space distribution that is initially set
equal to the Wigner function (4.6). In other words, we

compare the wave packet's average position with that ob-
tained from Eq. (4.7) when x is replaced by the classical
position x. Using (4. 1) one finds that the difference be-
tween these quantum and classical average positions is

simply A' a„(xo,po) plus terms of higher order in fi.
Hence the time at which the average position of the
Gaussian wave packet begins to deviate substantially
from the classical average is the same as the time at
which x„(xo,p&&) begins to deviate substantially from

x„(xo,po). We note that this time cannot be obtained
from the usual semiclassical treatment of Gaussian wave
packets, since the average position in this approximation
is just the classical x„(xo,po). '

As a further example, we apply Wigner symbols to esti-
mate the so-called-quantum crossover time for the kicked
rotator. The crossover time may be defined, somewhat
loosely, as the time at which there appears a significant
qualitative difference between the kicked rotator's classi-
cal and quantum behavior. For values of K greater than
I(, :—0.9716. . . , this is conventionally taken as the time
at which the average momentum of a quantum wave
packet ceases to exhibit the diffusive behavior observed
classically. ' [If K is less than K„classical Kolmogorov-

Arnol'd-Moser (KAM) trajectories bound the momentum
and this criterion does not apply. "]

The classical diffusion rate for E K, is determined
essentially by the dynamics in the vicinity of the cantorus
remnant of the last bounding KAM trajectory to disap-
pear (which it does at K =K, ). Since this last KAM tra-
jectory plays a central role in determining the kicked
rotator's qualitative behavior, it is reasonable to postulate
that the time at which quantum corrections to this tra-
jectory become significant should correspond to the quan-
tum crossover time. Numerical calculations obtained
from Eq. (4.2) for the leading quantum corrections to the
position and momentum symbols indicate that these grow
proportionally to n" where v=6. 2+0.1 (see Fig. 4). 's

Equations (4. 1) then imply a crossover time proportional
to R ' ', which is consistent with both numerical simu-
lations and with the result of Fishman, Grempel, and
Prange, ' who use a renormalization argument to find a
crossover time scaling as A

' ', with v'=6. 1.

V. CONCLUDING REMARKS

Both classically and quantum mechanically, there are
two complementary perspectives from which one may
discuss dynamics. The usual classical approach is to cal-
culate trajectories for individual particles. Alternatively,
one may study the evolution of a distribution function of
phase-space points, by solving, for example, Liouville's
equation. In quantum mechanics, the viewpoint analo-
gous to the classical trajectory approach is the Heisen-
berg picture, while the Schrodinger picture is analogous
to the classical distribution function approach.

Since many of the important concepts pertaining to
nonintegrable classical dynamical systems (e.g. , the dis-
tinction between regular and chaotic dynamics) are most
easily understood from the trajectory viewpoint, it seems
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natural to employ the Heisenberg picture in comparing
quantum and classical dynamics. Nevertheless, this is
rarely done, perhaps because of a lack of practical tech-
niques for applying the Heisenberg approach. In this pa-
per, we have sought to develop such techniques, using the
model of the kicked rotator.

Our basic method is to calculate directly the time
dependence of the Wigner symbols corresponding to
quantum observables. When quantum mechanics is for-
mulated in this way, its relationship to classical mechan-
ics is very clear. Each Wigner symbol corresponds to a
unique classical quantity, allowing the comparison be-
tween quantum and classical dynamics to be made simply
and unambiguously. For example, the Wigner symbol
corresponding to the derivative of a classical trajectory
with respect to its initial position Bx(t)/Bxo, which is
relevant to the calculation of Liapunov exponents, is sim-

ply the derivative of the position symbol r)x(t)/Bxo.
How to make such a connection in the language of
Schrodinger wave functions is less obvious.

In addition to giving a practical algorithm for calculat-
ing Wigner symbols for the kicked rotator, we have also
studied the behavior of the position and momentum sym-
bols for small values of R. We find that the asymptotic
behavior of the leading quantum corrections for these
Wigner symbols depends only on the general character of
the corresponding classical trajectory, and we have
shown that these corrections can be used to find the time
at which quantum effects become significant. In particu-
lar, the quantum crossover time for the kicked rotator
with E ~ K, can be estimated from the deviations to the
last bounding KAM trajectory.

While in this paper we have restricted ourselves to the
kicked rotator, the Wigner symbol approach can be ap-
plied to many other systems. This method is especially
useful when a comparison of classical and quantum dy-
namics is desired. We anticipate applications both to
questions concerning the qualitative dynamical behavior
of simple quantum systems and to the development of
practical quantitative calculational techniques.

vidual operators A and 8, and the Wigner symbol for
their product Ak =0. This is given by the so-called "e
product"

a a a aC(xp, pp) = A (xo,po)exp
2 ax, ap, a&, a~,

XB(xo,po)

A(xp po)4B(xp po) (A 1)

1 ihA(xo,po)eB(xp, bo)= g, [A,BI„,pn~ 2

where

(A2)

[AB—:Y (
—1)

m =0 ppg gn
—m

pm gn gn
—m

Xp Pp Xp Pp

(A3)

[ A, B I, is simply the conventional Poisson bracket.
Evaluating a e product of two Wigner symbols to order n
in A requires derivatives up to order n.

We now consider the A' expansion for the Wigner sym-
bol of some analytic function of an operator F( A ). The
Wigner symbol for F( A ) may be written F( e A (xp, po)),
where F( e A (xp, po) ) is defined in terms of F's Taylor ex-
pansion and the rules

eA(xp, pp):A(xp pp),

[4 A(xp, pp)]—:A(xo, pp)e A(xp, pp), (A4)

[~ A(xo po)]3:—A(xo po)~ A("o po)e A(xo po)

with the arrows indicating on which sides the derivatives
act. ' The e product, like the operator product, is asso-
ciative but not commutative. Note that the e product
reduces to an ordinary product for Pi=0.

Expanding the exponential in Eq. (Al), we obtain the fi
expansion

n
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F(+ A(xo, pp))=F(A(xp, pp)

+[4 A (xo pp) A (xp pp)])

F'"'( A (xo,pp })
1

nt

X[e A(xo, pp) —A(xo,pp)]",

APPENDIX

Here we present a derivation of map (4.2), which gives
the leading quantum corrections for the position and
momentum symbols. We begin with some general con-
siderations pertaining to the R expansions of Wigner sym-
bols. In developing such expansions, it is convenient to
have a relation between the Wigner symbols for two indi-

(A5)

where F'"'( A) is the nth derivative of F( A }. Then n= 1

term vanishes identically. Using (A2), each term of the
right-hand side of (A5) can be further expanded in
powers of fi. To O(A' ), one finds that only the first three
nontrivial terms (i.e., n =0,2,3) contribute, with the
higher-order terms being of 0 (R ) or smaller. Evaluating
these gives
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2

F(e A(xo, po))=F(A(xo, po)) — e;kejt A;~(xo, po)[ —,'F '(A(xo, po))A &~(xo,po)

+ —,'F '(A(xo, po))A /, (xo,po)A /(xo, po)]+O(A' ), (A6)

where we have used the notations of (4.4).
The dynamics of the quantized kicked rotator follows from the operator map

lxn+ j xn ~~n+1

p„+,=p„+K sin(x„),

which is the quantized form of (3.1) and is equivalent to (3.3). Taking the Wigner transform of this map gives

xn +1 xn +En +1

p„+,=p„+K sin(ex„) .

Applying (A6) and (4.1) to (A8), and extracting the terms of 0 (fi ), leads directly to (4.2).

(A7)
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