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The propagation of an ultrashort ionizing electromagnetic pulse in a uniform plasma is investi-
gated. It is shown that together with frequency up-conversion there is a strong compression of
the pulse. This phenomenon occurs due to an alternative mechanism involving self-steepening and
field collapse with wave energy trapping into a singularity.

The recent progress in relativistic electronics' and fem-
tosecond laser techniques’ has stimulated investigations
on the interaction of ultrashort electromagnetic pulses
with matter. The form “ultrashort,” of course, has to be
defined separately for each frequency range. However, in
a physical sense, this term characterizes a number of pro-
cesses with evolution time scales that are smaller than the
relaxation time for the medium. The nonlinear response
turns out to be nonstationary. After the passage of the
pulse, the medium will remain in the excited state for a
long time. In that sense, with respect to the ultrashort
time interval, the medium has a long memory.

One of the main nonlinear processes that dominates at
high intensities of the radiation concerns the ionization of
a medium by a short electromagnetic pulse. Previously,
most interest in the theoretical and experimental research
was focused on studies of the frequency spectrum of the
radiation that ionizes the medium, at first the phenom-
enon of supercontinuum generation® and recently the
strong frequency up-conversion of a laser-pulse propaga-
ting through a gas.* Contrary to these studies, the present
paper will discuss the possibility of a significant change in
the spatial structure of a pulse traveling through, and ion-
izing, a medium. In particular, it will be shown that dur-
ing this additional ionization of a previously created plas-
ma, a new nonlinear process will take place. It simultane-
ously combines the phenomena of self-steepening and
wave collapse, resulting in a continuous narrowing of the
pulse and wave-energy concentration in extremely
compressed field bunches.

In order to understand the process of self-steepening to-
gether with electromagnetic energy capture, we introduce
a perturbation in the group velocity of a wave in a plasma,
ie.,
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where o is the wave frequency, @, is the plasma frequen-
cy, c is the velocity of light, N is the plasma density, and
index zero denotes unperturbed values. Both the electron
density and the radiation frequency increase due to the
ionization.> The frequency increment accumulates over
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the propagation path, whereas the maximum density per-
turbations are defined by the local action of the electric
field when the pulse passes through a given point. There-
fore, the density perturbations will be comparatively small
for sufficiently short wave packets. In this situation, even
in the absence of initial frequency modulations, the second
term in (1) dominates, which means that the group veloci-
ty increases with frequency. For wave-packet collapse
with nonzero energy capture, a mechanism for the non-
linearity which ensures a linear frequency self-modulation
within the packet is needed. Because the frequency in-
crease is proportional to the density growth rate, the ion-
ization nonlinearity can play this role. It is, however,
necessary to choose an optimal initial shape of the pulse
for each specific type of ionization.

In order to investigate the nonlinear dynamics of the in-
teraction we now introduce a model which will lead to a
general description for both the electron impact and the
field ionization processes. For this purpose we propose
that the variation in plasma density during the time the
pulse passes through a given point is small, i.e., 6N
=N—No<Ny. Considering rapidly developing processes
where relaxation and transport phenomena can be
neglected, we can then use the relation

%]:/_ = V,‘Nm . (2)
For electron impact ionization we should in (2) replace
N, by Ny, whereas for field ionization N,, stands for the
neutral atom density. The ionization frequency is written
in the form v; =vof (| E |¥/E§$), where vy is a constant, f
is a dimensionless function which is supposed to be grow-
ing, i.e., 8f/d|E| >0, and E is the characteristic field
for which the ionization frequency changes significantly.
In addition, we require that the ionization frequency is
zero in the absence of the wave, i.e., £(0) =0. This model
describes, for example, multiphoton (or tunneling) ioniza-
tion. Besides, in the case of electron impact ionization,
the model is also valid for some particular electron distri-
bution functions.

Because the dielectric constant is almost unchanged
within the pulse, all variations of the wave-packet parame-
ters are important only at distances exceeding the initial
pulse length. Significant modifications of the shape of the
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envelope are possible even for slight changes of the fre-
quency. This fact permits us to adopt a simple parabolic
equation for the electric-field envelope. Thus
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where €=1—w2o/wd is the dielectric permittivity of the
unperturbed plasma, and where the local time t=¢
—2/vg0 is supposed to start from the time when the pulse
arrives at a given point z in the plasma. Equation (3)
neglects wave-energy dissipation connected with the ion-
ization and the electron collisions. This is correct if the
imaginary part of the dielectric permittivity is less than
the variations in ¢ that are caused by the frequency up-
conversion, i.e., v/wo has to be much smaller than dw/wo,
where v is the effective dissipative frequency.

We now normalize 7 by (No/eN,vowd) 13 4 by
2c03 e’ N IN Y w2vg’?, and introduce
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and A=E/E,. Equations (2) and (3) can then be rewrit-
ten in the dimensionless form
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Let us now define the position in time of the intensity dis-
tribution center, as well as the shift of the central frequen-
cy, by means of the expressions
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where Aq=[Zwdt Aexp(iQt) is the Fourier spectrum
of the electric-field envelope. The pulse energy wy
=[>.dr|A|*is conserved in the parabolic approxima-
tion. These integrals are related as
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Thus, the rate of central frequency shift along the z coor-
dinate is proportional to the intensity center “accelera-
tion.” The signs of these values are fixed for the ioniza-
tion nonlinearity. With increasing frequency the elec-
tromagnetic pulse travels with increasing velocity.

The possibilities for pulse compression during the ac-
celeration process can be studied within the nonlinear
geometrical optics approximation. By writing the com-
plex electric-field amplitude in the form A(z,t)
=yexp(—i¢), we obtain a system of two equations for
the two real functions p=y?/2 and ¥ = —29¢/37. Thus
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Equations (7) and (8) are valid if the wave amplitude
is not too small. Specifically, we require that f(2p)
> 8(p 282 '2/§72)/91. This inequality is not satisfied
at the periphery of the field distribution where the solu-
tions of (7) and (8) must be matched to those of the full
parabolic equations.

If we imagine that the space and time coordinates in
Egs. (7) and (8) are interchanged, we describe a one-
dimensional ideal-fluid model. The right-hand side in (8)
can then be interpreted either as an external force of the
form —2pf or as an internal *“gas” pressure, P=2 [ dtpf,
that is nonlocally related to the density. Due to this non-
locality, Egs. (7) and (8) do not have Riemann wave solu-
tions. However, similar to what happens in ideal-gas dy-
namics, the nonlinear evolution is characterized by the
formation of singularities. When the frequency within a
packet, corresponding to the gas velocity V, is a linear
function of 7, i.e, ¥V~ (1t — 19), the field distribution con-
denses at the point 7 =1, whereas z grows so that a finite
part of the wave energy is captured within the singularity,
i.e., the gas density approaches infinity locally.

Self-similar collapsing solutions with increasing linear
frequency self-modulation can be found if the ionization
frequency has a power-law dependence on the amplitude,
i.e.,, f=p”, where p > 0. The solutions can then be writ-

ten as p=(r—19) "Pu(z) and V= —(r— 10)v(z), where

the functions u(z) and v(z) satisfy the equations
(o +1)/pluv ©)
dz

and
ﬂ=v2+2u”. (10)
dz

Below we shall just analyze the case p=1. The intensity
distribution then has an area conserved triangular form.
The solution with the boundary conditions u(z¢) =u¢ and
v (Zo) =01is

(2140) l/2(2 —Zo) "J:)

Near the coordinate z=z* =z¢+ (x/8ug)"/? where col-
lapse occurs, we have

u(z)=1{8G*—z)ml/*—2)I} !

and v(z) = (z* —z) ~'. The duration T of the pulse and
the central frequency shift A@ are then determined by the
asymptotic expressions

TG—z¥)=G*—2)Bwelnll/G*—2)1}'2  (12)
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and
Aw(z— z*) =23 {wolnl1/G* =) 2. (13)

Now we must reconsider the conditions for the geometri-
cal optics approximation, and by means of the self-similar
solution, the scale for the critical-field localization. It
then turns out that the dispersive term in (8) cannot be
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neglected at the front of the pulse where (79— 7)* < 1/2u.
During the field collapse the approximation improves, but
as the })ulse duration 7 simultaneously decreases as
(wo/u) %, a limitation on the minimum pulse duration
is Tmin=1/(2w)"2. The maximum frequency shift
for the critical compression remains finite, A@max~ [wo
xIn(16w)1'72, so that our parabolic approximation is
correct. Similar estimates of the critical values can be
made for any power dependence (p=1) of the ionization
frequency.

In addition to the collapsing structures discussed above,
there are also self-similar solutions to Egs. (7) and (8).
They describe extending triangular wave intensity packets
with linear frequency self-modulation. In this case the ex-
pressions for 7 and the frequency shift can be written in
the asymptotic (z— o) form

7(z) = (4/2/3)w{*z Inz (14)
and
A@(z) = % Qwylnz) 2. (15)

We have also complemented our analytical work by
means of a numerical analysis of the evolution of a Gauss-
ian wave packet, using Egs. (4) and (5) with f(]A4]%)

=|A4|% The behavior of the front part of the pulse then
confirmed the above analysis, and thus described a col-
lapse of the intensity distribution with capture of about
30% of the wave energy within a very short time scale.
The dispersive term stopped the self-compression process
at Thin=To/15, and was also responsible for a slight
modulational instability. The dispersive effects of the
plasma on the lengthening of the pulse were of little im-
portance. The pulse evolution beyond the coordinate z*
where collapse occurs, resembled qualitatively the dynam-
ics of an expanding triangular packet formed by the
remaining part of the Gaussian pulse.

Finally, let us propose some experimental situations of
relevance to our presented analysis. Considering free-
electron laser radiation with wavelength A =2x/ko=1 cm,
pulse duration 79=3 ns, and flux intensity 10® W/cm? in
a plasma with vo=10" s~! and ¢=0.25, we obtain a
compression of the pulse up to 200 ps at a distance z* =5
m. Similarly, for a Ne laser with A=1 um, T(=0.5 ps,
and flux intensity 10'* W/cm? in a gas with vo=10""s !,
€=0.3, pressure 100 atm, and N, = Ny, we find the
values Tmin=30 fs and z* =0.2 cm. Collisional absorp-
tion may begin to play a role in limiting the pulse power at
higher densities than those above.
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