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Spiral-wave dynamics in a simple model of excitable media: The transition
from simple to compound rotation
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Two-dimensional reaction-diffusion equations with simple reaction kinetics are used to study the
dynamics of spiral waves in excitable media. Detailed numerical results are presented for the
transition from simple (periodic) rotation to compound (quasiperiodic) rotation of spiral waves.
It is shown that this transition occurs via a supercritical Hopf bifurcation and that there is no fre-
quency locking within the quasiperiodic regime.

While pattern formation in reaction-diffusion systems
has been of interest for many years, ' only recently have
experiments been conducted in spatially extended systems
for which the decay to thermodynamic equilibrium is
prevented by the continuous flow of fresh reactants. 2 In
these experiments, the spatiotemporal patterns that arise
from the interplay of reaction and diffusion exist as truly
asymptotic states. Moreover, well-defined control param-
eters exist experimentally and it is possible to investigate
transitions between different dynamical states.

Of current interest is an instability exhibited by spiral
waves in two-dimensional reaction-diff'usion systems with
excitable chemical kinetics. The instability is as fol-
lows: for some values of the system parameters, spiral
waves undergo rigid, periodic rotation. As a control pa-
rameter is varied, the periodic rotation gives way to two-

frequency, quasiperiodic rotation. These two states of
spiral-wave rotation have been called simple and com-
pound rotation, s respectively. While there is some evi-
dence to suggest that the transition from simple to com-
pound rotation occurs via a Hopf bifurcation, ' ' neither
experiment nor simulation has, thus far, been conclusive
as to the nature of this bifurcation. Here we use a simple
model of an excitable chemical reaction as the basis for
investigating the transition to compound rotation.

The model we consider consists of two chemical species,
u and v, which obey the reaction-diffusion equations

8u -f(u, v)+V'u, -g(u, v)+V'v.8v

8t rit

The local reaction kinetics are given by

f(u, v) -—u(1 —u)[u —u, t, (v)], g(u, v) =u —v,
1

where uo, (v) (v+b)/a, and a, b, and e are parameters.
The parameter e is typically small so that the time scale of
u is much faster than that of v. The local kinetics, i.e., the
dynamics in the absence of spatial derivatives, has a stable
but excitable fixed point at the intersection of the null-
clines f(u, v) 0 and g(u, v) 0 (see Fig. 1). Models of
this kind have long been used to study excitable sys-
tems.
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FIG. 1. Illustration of the local reaction kinetics. The axes
are the concentrations of the chemical species u and v. Shown
are the system nullclines: the v nullcline, g(u, v) 0, is the line
v u, and the u nullcline, f(u, v) 0, consists of three lines,
u 0, u 1, and u uiq(v) (v+b)/a. An excitable fixed point
sits at the origin where the u and v nullclines intersect. uth is the
excitability threshold for the fixed point. Initial conditions near
the fixed point and to the left of the threshold decay directly to
the fixed point. Initial conditions to the right of the threshold
undergo a large excursion before returning to the fixed point. 8'

denotes a small "boundary layer" within which the system
spends most of its time.

The advantage of our model kinetics is that the reaction
terms can be time stepped with little computational effort.
At any fixed spatial location, the system spends almost all
its time within a small "boundary layer" near the left
branch of the u nullcline (Fig. 1). Equivalently, at any in-
stant in time, almost all spatial points are within this
boundary layer (see Fig. 2). Thus, efficient time stepping
of the kinetics is obtained with the algorithm

if u" & b, then

nuI+~0

v"+' -(1—at) v",
otherwise,

utg (v"+b )/a

v" +' -v"+at(u" —v"),
u"+' -u"+ (at/e) u "(1—u") (u" —uu, ),
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where u" and U" are the value of species u and u at the nth
time step (as some point in the spatial domain), ht is the
time step, and b is the size of the boundary layer. Very
little error results from setting u"+' =0 within the bound-
ary layer, and yet, the advantage gained is that almost
every step of our model kinetic requires just one condition-
al evaluation and one floating-point multiplication.

The simulation of (I) is as follows. The Laplacians are
evaluated by finite differences on a regular square grid us-

ing the nine-point formula"

6h V u;j Z&rsui+r, j+s 20uij ~

2 2

t,S

and similarly for V v;j, where u;, is the value of u at grid
point (i,j ), h is the grid spacing, and where A„4for the
four nearest neighbors, A„ 1 for the four diagonal next-
nearest neighbors, and A„, 0 otherwise. This choice of
A„, gives a rotationally invariant Laplacian to 0(h ).
No-flux boundary conditions are imposed on the domain
boundary. The diffusion terms are time stepped by the ex-
plicit Euler method and the reaction time terms are
stepped by (3). Operator splitting is used: the reaction
and diffusion terms are updated in alternation. There are
seven parameters for the problem: the four "physical pa-
rameters" a, b, e, and L (l. being the area of the square
domain), and three "numerical parameters" ht, b, and N,
where N is the number of spatial grid points.

Figure 2 shows a spiral wave obtained from our simula-
tions. The wave is executing compound rotation: the
wave rotates, and as it does, its shape changes near the tip
of the spiral. Figure 3(a) shows the path taken by the
spiral tip over the course of four wave rotations. (Despite
its appearance, the tip path is not a closed curve and after
a long time the path covers an annular region. ) We take
the spiral tip to be the intersection of the two contours
u 2 and f(u 2, v ) 0, where f is given in (2). Other
definitions have been used, ' ' and while they all give ap-
proximately the same tip, we have found that our
definition best serves our purposes because it is the least
sensitive to the effects of spatial discretization.

Tip paths are shown in Fig. 3 for three values of the pa-
rameter a. Shown are paths both in the "laboratory"

(a)

FIG. 2. Spiral wave from simulation. (a) and (b) are gray-
scale contours of the species u and v, respectively. The wave is
executing compound rotation. The tip path is shown in Fig.
3(a). Throughout the white region in (a), u is within the bound-
ary layer illustrated in Fig. 1. The parameters for the simula-
tion are a 0.3, b 0.01, e 2.5 x 10, L 15, ht 1.39
x10 ', N 181, and 8 10

(a) (b) (c)

FIG. 3. Paths of the spiral tip. (a)-(c) are paths in the "lab-
oratory" frame. (a) and (b) correspond to compound rotations
and (c) to simple rotation of the spiral wave. (a) and (b) are
not exactly closed curves (see Fig. 5). The parameter values are
the same as in Fig. 2 except that (a) a 0.3, (b) a 0.309, and
(c) a 0.318. (d)-(e) are the paths of (a) and (b) as seen in

the rotating frame. The relationship between the laboratory
frame (x,y) and the rotating frame (x',y') is illustrated at the
lower right-hand side. At each parameter value, the (x,y) coor-
dinates are centered with respect to the tip path. The angular
velocity iu~ is the mean angular velocity of the tip in the (x,y)
system, and the radius r

& is the median radius of the tip in the
(x,y) system. The length scales of plots (a)-(c) are the same,
as are the length scales of plots (d) and (e). Line segments
denote unit length. The path in (c) is very nearly a circle and is
seen as a point in the (x',y') system. The dashed circle in (d) is
added to emphasize that in the rotating frame the paths of com-
pound rotations are not circles.

frame (coordinates stationary with respect to the domain
boundary) and in a rotating coordinate system (x',y').
The situation is as follows. Near the center of the grid,
the system is not sensitive to the square boundaries of the
domain, and hence as regards tip motion, the problem has
an approximate rotational symmetry. The simple periodic
rotations are, to a good approximation, rotating waves'3

and the corresponding paths are circles in the laboratory
frame. The compound rotations are (approximately)
modulated waves, and hence there is a rigidly rotating
reference frame (x',y') in which they are seen as period-
ic. '3 In the rotating frame these tip paths are not circular,
and hence in the laboratory frame, the paths correspond
ing to compound rotations are not epicycloids This is to.
be expected in that no symmetry in the problem dictates
that the paths in the rotating frame be circular. Near on-
set, paths in the rotating frame will generically be ellipti-
cal.

To provide evidence that a supercritical Hopf bifurca-
tion is responsible for the transition indicated in Fig. 3, we
have computed the decay rates to the simple rotations on
one side of the transition, and we have computed the am-
plitude ratios of the two modes of compound rotations on
the other side of the transition (see Fig. 4). The ampli-
tude r& of the primary mode is the median radius in the
laboratory frame (Fig. 3). The amplitude ("radius") of
the secondary mode r2 is defined to be the maximum value
of x' for the path in the rotating frame. For example, the
dashed circle in Fig. 3(d) has radius r2. Decay rates have
been obtained by perturbing the spiral waves from the cir-
cular orbits and fitting the asymptotic decay back to cir-
cles r2(t„) exp( —Xt„),where r2(t„)is the nth relative
maximum of x' (at time t„),and k is the decay rate (i.e.,
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FIG. 4. (a) Amplitude ratios r2/r ~ (points) for compound ro-
tations and decay rates X (squares) to simple rotations, as a
function of the parameter a. Linear extrapolation to zero decay
rate gives the bifurcation point as a, 0.31105+(2X10 ~).
(b) log-log plot of the amplitude ratio vs distance from the bi-
furcation point. The best-fit line to the 14 points closest to the
transition gives an exponent of 0.49+ 0.02, where the uncertain-

ty derives from the uncertainty in a, . The curve with best-fit ex-
ponent is shown in (a). A supercritical Hopf bifurcation is

clearly indicated by the data.

minus the real part of the bifurcating eigenvalue).
The amplitude of the secondary mode grows from zero

at the same point, a„where the decay rate goes through
zero. Near the bifurcation point, the growth of the sec-
ondary mode is given by a power law with exponent ——,

' .
The frequencies of both modes behave regularly through
the transition (not shown, but see Fig. 5). These observa-
tions provide the first conclusive evidence that the transi-
tion from simple to compound rotation occurs via a super-
critical Hopf bifurcation.

The frequency ratio in the quasiperiodic regime is
shown in Fig. 5. The primary frequency ro~ is the rota-
tional velocity of the (x',y') coordinate system (Fig. 3).
We take the secondary frequency to be ro2 =2m/r, where r
is the period as seen in the rotating frame (x',y'). The
secondary frequency has been defined differently else-
where; ' ' our choice of ro2 is standard for modulated
waves. ' As in experiment, there is no evidence of fre-
quency locking between the primary and secondary
modes. ' Most notably, there is no indication of entrain-

FIG. 5. Frequency ratio co2/co~ for compound rotations as a
function of the parameter a. The frequency ratio 4 corresponds
to a closed five-lobed tip path. There is no evidence of frequency
locking. The frequency ratio crosses the value —,

'
transversely

and any mode locking at this low-order frequency ratio must
occur on an interval smaller than 0.1% in the parameter a.

ment as the frequency ratio crosses 4. At such a low-
order frequency ratio, any tendency which the system
might have to mode lock should be most pronounced. 's It
is clear from Fig. 5 that the degree of frequency locking in
compound rotation is negligible.

We have presented a numerical study of the transition
from simple to compound rotation of spiral waves with a
view to characterizing the bifurcation underlying this in-
stability. By measuring not only the amplitude ratios for
compound rotations, but also the decay rates to simple ro-
tations, we have obtained the first definitive evidence that
a supercritical Hopf bifurcation gives rise to compound
rotations. In addition, we have shown that the two fre-
quencies of compound rotation do not entrain. We note
that recently Kessler and Levine' have shown that planar
traveling waves can also undergo a Hopf bifurcation.
While at present it is not possible to relate directly the bi-
furcation of planar waves to the Hopf bifurcation exam-
ined here, heuristic arguments suggest a connection be-
tween the two bifurcations' and this might be exploited
in the future to provide an analytic treatment of the
spiral-wave instability.

We have benefited greatly from discussions with A. Ar-
neodo, B. Dornblaser, W. D. McCormick, W. Reynolds,
G. Skinner, H. L. Swinney, and G. Zanetti. We are
grateful to H. C. Qthmer for communicating results prior
to publication. D.B. is supported by DARPA Grant No.
N00014-86-K-0759 and NSF Grant No. ECS-8945600.
M.K. and L.S.T. are partially supported by NSR Grant
No. DMS-8901767.

'A. M. Turing, Philos. Trans. R. Soc. London, Ser. B237, 37
(1952); A. Zaikin and A. M. Zhabotinskii, Nature (London)
225, 535 (1970); A. T. Winfree, Science 175, 634 (1972); O.
E. Rossler and C. Kahlert, Z. Naturforsch. 34A, 565 (1979);
K. I. Agladze, A. V. Panfilov, and A. N. Rudenko, Physica
29D, 409 (1988);J. Ross, S. C. Miiller, and C. Vidal, Science
240, 460 (1988); J. J. Tyson and J. P. Keener, Physica 32D,
327 (1988).

See, e.g., Z. Noszticzius, W. Horsthemke, W. D. McCormick,

H. L. Swinney, and W. Y. Tam, Nature (London) 329, 619
(1987); Q. Ouyang, J. Boissonade, J. C. Roux, and P. De
Kepper, Phys. Lett. A 134, 282 (1989).

iV. S. Zykov, Biofizika 31, 862 (1986).
4W. Jahnke, W. E. Skaggs, and A. T. Winfree, J. Phys. Chem.

93, 740 (1989).
sE. Lugosi, Physica 40D, 331 (1989).
6T. Plesser, S. C. Muller, and B. Hess, J. Phys. Chem. (to be

published).



2492 DWIGHT BARKLEY, MARK KNESS, AND LAURE'i I E S. TUCKERMAN

76. S. Skinner and H. L. Swinney, Physica D (to be published).
sThe term meander was used by A. T. Winfree [Science 181,

937 (1973)] to describe nonrigidly rotating waves. More re-
cently the terms compound circular motion and compound ro-
tation have been used to describe deterministic two-frequency
rotations (see Refs. 3-7).

9See, e.g. , R. Fitzhugh, Biophys. J. 1, 445 (1961); J. J. Tyson
and P. C. Fife, J. Chem. Phys. 73, 2224 (1980); E. Meron and
P. Pelce, Phys. Rev. Lett. 60, 1880 (1988).

' It should be noted that problems can arise in our model if the
system gets close to the "corners" where the diagonal segment
of the u nullcline intersects the vertical segments. There are

no such difficulties for the spiral waves presented here.
"Handbook of Mathematical Sciences, 6th ed. (Chemical

Rubber, Boca Raton, 1987), p. 657.
'2H. G. Othmer (private communication).
'3D. A. Rand, Arch. Ration. Mech. Anal. 79, 1 (1982).
' Our secondary frequency equals the sum of the primary and

secondary frequencies in Refs. 4 and 7.
'5This is also evident to a lesser degree in Ref. 4.
~sV. 1. Arnold, Geometric Methods in the Theory of Ordinary

Differential Equations (Springer, New York, 1983), Chap. 6.
'~D. A. Kessler and H. Levine, Phys. Rev. A 41, 5418 (1990).




