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Mobility of singularities in the dissipative Ginzburg-Landau equation
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The velocity of a vortex solution of the real and complex dissipative Ginzburg-Landau equation
in a weak external field is obtained by combining the method of matched asymptotic expansions
with the numerical solution in the core region. The velocity of two interacting vortices as a func-
tion of their separation is estimated using the quasistationary approximation of the phase field.

Dynamics of topological singularities (defects) is a ma-
jor outstanding problem of the theory of nonequilibrium
patterns. Defects are necessarily present in realistic con-
vective or reaction-diffusional patterns, and play a crucial
role in the overall organization of patterns in extended
systems and their long-time evolution. The most efficient
(and, at sufficiently high aspect ratios, the only practical)
tool of description of large-scale dynamics is given by
phase equations governing smooth modulations of a basic
short-scale structure.! Phase equations have a universal
form dependent on the symmetry of the underlying sys-
tems. The same symmetry properties determine the char-
acter of singularities.?> At the same time, in the immedi-
ate vicinity of singularities, the phase equations break
down, thus forcing one to revert to nonuniversal short-
scale dynamics. So far, due to the inability to incorporate
realistic description of defects into large-scale phase-
dynamical computations, applications of phase equations
has been very limited, and computations of distorted pat-
terns had to employ short-scale grids and be restricted to
model equations and moderate box sizes. >

A rational approach to large-scale computations calls
for the use of phase equations everywhere except the vi-
cinity of defects. The latter, being localized objects (“par-
ticles”) with a well-defined structure, should respond in a
prescribed way to local values of a smooth phase field. A
relationship between the force exerted by this field and the
defect velocity (if one is found) would determine the
equation of motion of singularities. In its turn, their dis-
placement would affect the phase field governed by long-
scale equations. The crucial step towards the realization
of this approach is to define the effective particle-field in-
teraction by matching the short-scale solution near the
core of the defect with the outer smooth phase field.

We shall work with the simplest pattern-forming
model—the two-dimensional (2D) dissipative Ginzburg-
Landau equation (DGLE)

u=Viutu—|ulu, 1)

which can be rewritten using u =pe’® as a pair of real
equations

p=V2p+(1—|Ve|?—p?)p, 2)
6=V20+2p " 'Vp- V9. 3)

In the context of reaction-diffusion systems, this equa-
tion can be derived by bifurcation expansion in the vicini-
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ty of a cusp singularity. Studies of defects in Rayleigh-
Bénard convection patterns* involved a much more com-
plicated fourth-order Newell-Whitehead-Segel amplitude
equation. The DGLE model turned out, however, to be
applicable near the onset of convection in liquid crystals
under conditions when a definite orientation of convection
rolls is induced by boundary conditions.>

A stationary defect with the topological charge n corre-
sponds to a circulary symmetric vortex solution of Egs.
(2) and (3) that is given,® in polar coordinates (r,¢), by
0=n¢ and the amplitude p =po(r) that verifies

po+r " po+ (1 —n? ~2—p§)po=0. @)

We shall further restrict to |n| =1, since defects with
higher charges are unstable. It is also sufficient to consid-
er explicitly the solution rotating in the positive sense
(n=1), its counterpart being just the complex conjugate.
The solution of Eq. (4) with |n| =1 is a monotonic func-
tion with the asymptotics po=ar (where a is a constant
determined numerically) near the origin, and po=1
—Lr 240G "% at r— oo,

One could be tempted to look for a perturbed solution,
corresponding to the defect slowly propagating with a con-
stant speed ev under the action of a weak externally im-
posed phase gradient €A, by rewriting Eq. (1) in a gauged
form

ev-Vu+ |V+ieA|2u+u—|u|*u=0, (5)

and expanding (5) in ¢ around the quiescent vortex solu-
tion ug=po(r)e”®. The two components of the gradient
Vuo=(epo+itr ~')e’ (where ¢, £ are, respectively, the
radial and circumferential unit vectors) are eigenfunctions
of the linearized Eq. (1) with the zero eigenvalue, that
correspond to the symmetry of (1) to planar translations.
One could attempt, therefore, to compute v by applying
the solvability condition Re [ Vizy d *x =0, where the over-
bar marks the complex conjugate, and y=(v+2iA)-Vug
is the inhomogeneity in the first-order expansion of (5).
The attempt fails, since the integral diverges logarithmic-
ally at large distances. The same problem arises when one
adopts an approach that utilizes the existence of a poten-
tial £ generating the evolution equation u = —45.L/éu.
We note in parentheses that the difficulty disappears when
(1) is replaced by the Ginzburg-Landau equation in its
original (conservative) form,” with iu rather than # in the
left-hand side; the velocity can then be just gauged away
by setting A= — 5 v, and the vortex remains symmetric
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as it moves along a constant phase gradient.

Using a nonintegrable eigenfunction to derive a solva-
bility condition is, of course, a mathematically dubious
procedure. One can argue, however, that the logarithmic
divergence should be viewed with caution, since the zero-
order phase gradient decays to O(e), i.e., becomes compa-
rable with the first-order correction at r=0(e ~!). Intro-
ducing a long-scale cutoff at this distance and identifying
the expansion parameter € with v = | v| gives immediately
the mobility relationship | A | & vlnuy; it is also easy to see
that the vortex migrates in the direction normal to the im-
posed phase gradient. Bodenschatz, Pesch, and Kramer?
have arrived at this result with more precision and in-
genuity by using in the solvability condition the zero-order
solution only up to an intermediate distance 1 <ro<<v ™!,
and replacing it onwards by the asymptotic solution with
p=1 and 0 verifying the phase equation, written in the
coordinate frame comoving with a vortex steadily propa-
gating along the y axis as

v, + 0, +6,,=0. (6)

This procedure ensures convergence, but still lacks
mathematical justification. The solvability condition does
not operate here in a proper context of a regular perturba-
tion scheme, but attempts to incorporate, together with
the zero-order solution, also a long-distance tail of the
very first-order solution whose existence it is supposed to
ensure. We shall seek therefore an alternative approach
based on a more reliable method of matched asymptotic
expansions.® This method, though being somewhat more
laborous for the particular problem in question, does not
hinge upon the Hermiticity of the linearized equation that
makes the conjugate eigenfunction readily available, or on
the existence of a potential.

We start with Egs. (2) and (3), assuming, without loss
of generality, that the defect propagates along the y axis,
and rewriting them in the comoving frame as

vp,+V2p+(1—|VE|2—pHp=0, @)

00, +V20+2p " 'Vp-Vo=0. (8)
Let

p=po(r)+vy(r)sing, 8=¢+vy(r)cos¢. )

Then the first-order equations read

v +r T+ —2r 2= 3p8)y+2r “2pox+pi=0.

(10)
an

Note that we use ungauged equations; the weak external
phase gradient driving the vortex with the prescribed ve-
locity will be further determined by matching conditions.
The cosine function in the expression for @ indicates that
the computed gradient will be directed along the x axis;
trying first-order functions with the sine and cosine
switched between p and 6 would just yield equations lack-
ing a forcing term.

The asymptotic expressions for the phase function y at
r— oo (the outer limit of the inner solution) following

2'Hr T = r T+ 200 ooy +r TPy) +r T =0,
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from Eq. (11) is

(12)
(13)

x=br—3rinr+¢,
S=—13r 'In’+Qb—1)r 'Inr+cr "3+ -,

where b,c are indefinite constants that have to be fitted to
the numerically computed solution. We integrated Egs.
(10) and (11) numerically with the initial conditions
2(0) =y (0) =y'(0) =0, that are required to remove the
singularity at r— 0. The numerical integration cannot
actually commence at the origin where Eqgs. (10) and (11)
are singular. Instead, the power expansion has to be used
to advance to an appropriate starting point; this expansion
gives, in particular, —y"(0) =p((0) =a. The value of
2'(0) has to be adjusted iteratively in such a way as to ap-
proach the required asymptotic function (12). There is a
unique value of x'(0) insuring the convergence, and it has
to be fine tuned with an increased precision when one
wishes to extend the integration interval to larger . The
solution eventually diverges due to numerical instabilities.

Though only two leading terms in (12) are required for
matching, more have been added for practical reasons
stemming from the fact that, in contrast to the classical
method, the matching is assisted by solving the inner
equations (10) and (11) numerically. The asymptotic
series is expressed, in fact, in powers of r ~21nr, and, say,
at r~10, the error still runs in a few percentage points if
only the two leading terms are used. Rather than extend-
ing the integration to longer intervals, one can keep the
limits short, and use the full expression of (12) and (13)
with two numerically fitted constants. The numerical
solution (solid line) and the matching asymptotic solu-
tions (dashed lines) for the phase and amplitude functions
are shown in Fig. 1. The value of the numerical constant
obtained by matching is b =0.309.

This constant has to be further connected to the extrin-
sic phase gradient by solving the outer phase Eq. (6),
which is rewritten using extended variables X =vx, Y =vy
as

Oy +0xx+6yy =0, (14)

and taking the inner limit of the outer solution at R=vr
— 0.

In the presence of defects, the phase is not defined glo-
bally as a continuous univalued function. It is convenient,
therefore, to replace it in the outer region by the dual
function ®(X,Y) that satisfies’

¢y+¢xx+¢yy-2n'8(X)5(Y) s (15)

(16)

Using Eq. (16) in the contour integral $V8- dl and apply-
ing the Gaussian theorem we see that this integral equals
27 as required, by virtue of Eq. (15). It is easily checked
that Eq. (14) is satisfied automatically due to (16), while
the integrability of Eq. (16) is insured by Eq. (15). The
solution of Eq. (15) in the infinite region is

&= —exp(— + Rsing)Ko(+ R),

(Dy+d)= —0,\/, ¢X=9y.

an

where K is a modified Bessel function. The components



10.0

0.0 V L — o

S0 _ 10,0 1.0

FIG. 1. The numerical solution for (a) the phase and (b) am-
plitude first-order functions (solid line), and matching asymp-
totes using Eq. (12) with one matching constant (---) and Egs.
(12) and (13) with two matching constants (----).

of the wave vector read from (16) and (17) are
0x=A+ 5 exp(— 5 Rsing) [Ko(§ R) —singK (+ R)],

(18)
0y = 3 exp(— ¥ Rsing)cos¢K (§ R) ,

where an arbitrary constant phase gradient 4 directed
along the X axis (representing the external phase field)
has been added. Using the asymptotics of Bessel func-
tions at R—0, Ko(z)=—In($z)—C (where C
=(.577... is the Euler constant), K;(z) =z ~! and re-
verting to the inner variables yields

6, =—r "'sing+ 3 v[24 —In(§ vr) — C+sin%g],
(19)

6, =r ~'cosp— 3 vcosgsing .

These expressions, representing the inner limit of the
outer solution, have to be matched with the outer limit of
the inner solution read from Egs. (9) and (13). The inner
expression for 6, is identical to the above, and the expres-
sion for 0, reads

0, =—r "'sing+ L v(2b—Inr —cos?¢) . (20)
Matching both expressions yields
A=1%1In(v/ve), (#3))

where
vo=4exp(l —C—2b)=3.29.

The result coincides with that computed by Bodenschatz
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et al.’ using the integral solvability condition. Note that
the analytical form of the mobility relationship is univer-
sal, and only the number v, depends on the numerical in-
tegration in the core region. If the algebraic nonlinearity
in Eq. (1) is replaced by another smooth function vanish-
ing at |u | =0 and 1, nothing changes except this numeri-
cal value.

The above computation can be extended in a straight-
forward way to the complex Ginzburg-Landau equation

(CGLE)
u=0+imVau+U+iu—0+iv) |ul?u, (Q2)

provided it is restricted to the case of a vanishing group
velocity v=7. Using u=pe’ and transforming to the
comoving frame, we rewrite Eq. (22) in the form [cf. Egs.
(7) and (8)]

8(p, +1p6,)+V?p+(1—|Ve|2—pH)p=0,

5(8,—np " 'p,)+V20+2p "'Vp-Vo=0,

(23)
(24)

where 6=v/(1+7n2). The zero-order solution remains
unchanged; furthermore, the first-order terms proportion-
al to n in (23) and (24) can be removed by the gauge
transformation u— ue ~®’, or by 68— 6+By with B
= £ nb. This means that in the complex case the motion
across the phase gradient [governed, as in the real case, by
the mobility relationship (21), modified by changing v to
0] is complemented by the motion along the phase gra-
dient.

Suppose that the external phase gradient at the core of
the defect is due to a fixed defect with the charge n =11
placed at a distance » =0O(e ™') in the positive y direction.
Then the driving gradient is directed along the x axis and
equals A =vA=—nr 'sing=nr "'=0(¢). According
to the mobility relationship (21), the induced velocity is
defined implicitly by vIn(vo/v) = —2n/r. The mobile de-
fect (supposed to be positively charged) is repelled by the
like charge (n=1), and is attracted to the opposite charge
(n=—1). In the case of the CGLE, the velocity along
the y axis is reduced by the factor 1+72, and a circum-
ferential velocity component inversely proportional to 7 is
added.

The realistic case when both defects are moving
presents a far more difficult problem, since the phase field
induced by each defect at the core of another one depends
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FIG. 2. Quasistationary velocities for attracting (solid line)
and repelling (dashed line) vortices.
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on its velocity and, strictly speaking, on its entire past his-
tory of accelerations. A marked asymmetry of the phase
field (19), that decays at large distances exponentially
ahead and algebraically behind the migrating vortex, ac-
counts for the asymmetry in interaction of defects of like
and opposite charges. A rough estimate can be given by
assuming that the quasistationary phase field correspond-
ing to the instantaneous velocity is observed at each loca-
tion. The migration velocity as the function of the instan-
taneous separation between the vortex cores is obtained
then by computing with the help of Eq. (19) the value of
the phase gradient due to one of the vortices at the core of
another one, and using it in the mobility relationship (21).
For oppositely charged defects moving towards each other

L. M. PISMEN AND J. D. RODRIGUEZ 42

the phase gradient generated by one of the defects at the
location of the other defect is 6, (r, + z), while for like-
charged ones, moving apart, it is 8,(r, — 3 7). Quasista-
tionary velocities in both cases are shown in Fig. 2. A
stable quasi-stationary solution exists only beyond a cer-
tain separation; at shorter distances velocities are large,
and the entire approximation scheme breaks down, so that
results should be discarded when the curves in Fig. 2 start
to rise sharply. As expected, the velocities of mutually re-
pelling vortices are much larger, at a comparable distance,
than of attracting ones.

This work has been supported by the United States-
Israel Binational Science Foundation.

TA. C. Newell, in Propagation in Systems Far from Equilibri-
um, edited by J. E. Wesfreid et al. (Springer-Verlag, Berlin,
1988), p. 122.

2N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).

3H. S. Greenside and W. M. Coughran, Phys. Rev. A 30, 398
(1984).

4E. Siggia and A. Zippelius, Phys. Rev. A 24, 1036 (1981); Y.
Pomeau, S. Zaleski, and P. Manneville, ibid. 27, 2710 (1983);
G. Tesauro and M. C. Cross, ibid. 34, 1363 (1986).

SE. Bodenschatz, W. Pesch, and L. Kramer, Physica 32D, 135

(1988).

SE. Greenberg, SIAM J. Appl. Math. 39, 301 (1980); P. Hagan,
ibid. 42, 762 (1982).

TE. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (Per-
gamon, Oxford, 1980), Pt. 2.

8M. Van Dyke, Perturbation Methods in Fluid Dynamics
(Academic, New York, 1964).

9E. Dubois-Violette, E. Guazelli, and J. Prost, Philos. Mag. A
48, 727 (1983).



