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Self-organized criticality in sandpiles: Nature of the critical phenomenon
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We identify the avalanche boundaries in a class of sandpile models, and derive their dynamics,
which consist of birth, death, and coalescence events. We then introduce and study a simple
"trough" model based on these boundary dynamics. We prove that the trough model has a phase
transition, and that at and below the critical point, troughs become extinct in the thermodynamic
limit. Numerical results suggest that sandpile models are associated with such a critical point,
and that the observed scaling behavior results from finite-size eAects.

In nature, many dissipative dynamical systems are seen
to exhibit scale-invariant characteristics that are indica-
tive of traditional equilibrium systems at a critical point.
Recently, a series of cellular automata, referred to as
"sandpiles, "were introduced, "which have generated in-
terest because they seem to exhibit "critical" fluctuations
as the result of a dynamical threshold instability, rather
than the tuning of a parameter. The term "self-organized
criticality" was coined to describe this behavior. It was
suggested that events of a wide range of sizes persist in
these and related systems because the attractor of the dy-
namics is minimally stable. 3

The purpose of this Rapid Communication is to eluci-
date the nature of the scaling behavior in the sandpile
models. We begin by proving that in the sandpile models
there exists a set of domain walls, which we call troughs,
which bound the regions that can experience avalanches.
Moreover, we show that the dynamics of these troughs is
governed by a simple set of rules involving birth, death,
and coalescence events. We then introduce the trough
model, which is a caricature of the sandpile models based
on the dynamics of the domain walls. We prove that the
trough model has a phase transit~on with the density of
the troughs as an order parameter, and that, in 'he ther-
modynamic limit, the trough density goes to zero at the
transition point. Finally, we show that the observed scal-
ing behavior at the critical point is a consequence of
finite-size effects.

The relation to the original sandpile models is as fol-
lows. First, we claim that sandpiles on a torus also under-

go a transition at which the domain-wall density tends to
zero. Second, our simulations of sandpile models strongly
suggest that the behavior of the domain walls is related to
the trough model at its critical point Of course, the pre-.
cise values of the critical exponents for the trough model
differ from those of the specific sandpile model studied

here, just as different sandpile models belong to different
universality classes. Nevertheless, the qualitative features
of the phase transitions are similar.

For this discussion, we will consider the simple one-
dimensional "limited local" sandpile models with the fol-
lowing rules. Two positive integers z, and n are pre-
scribed. The system consists of L consecutive sites: i 1

to L. The height h(i) is the number of grains of sand on
site i, and the slope is z(i) h(i) —h(i+1). We assume
the system is closed at the left boundary (i =0), and open
at the right (i L+1). Sand is dropped one grain at a
time onto a randomly chosen site. The system is then ex-
amined, and if any slope exceeds the threshold value z„n
grains fall onto the next site to the right. As a result

z(i) —z(i) —2n,

z(i 1)—z—(i —1)+n,

z(i+1) z(i+1)+n.
Equation (1) is somewhat modified at the boundaries, e.g.,
when i L, z(i) decreases by only n and n grains fall off
the pile. Equation (1) is iterated until all of the sites are
below threshold, at which time another grain is added.

In the sandpile model described above, we define a
trough to be any site i for which the slope z(i) is n or more
grains below threshold. We now prove that avalanches
are terminated at troughs, and derive trough dynamics.
To this end we relabel the slopes by —~, . . . ,z, —n t
(trough), —~, . . . , z, s (stable), z, + 1 —2n, . . . , z,nT (high —trough), z, +1 n, . . . ,z, —m (margin-
ally stable), z, +1, . . . , z, +n F (falling). The follow-

ing theorem describes the resulting configuration after an
avalanche [i.e., the iteration of (I)].

Theorem. Suppose that a grain of sand is added so that
z(i) & z, . Denote the positions of the first troughs to the
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left- and right-hand side of i by iL and iR, respectively,

and define ic=—iR —i+iL to be the reflection of i in the in-

terval [iL,iR]
Case I. When itt «L the avalanche is confined to the

interior of the system, and the final slope configuration

after the avalanche is unchanged except for

z(iL) z(iL)+n (t m or t),
z(i) z(i) —n (F m),

z(t'c) z(ic) n (m

z(itt) Bitt)+n (t m or t),

(2)

where sites iL and iR become marginally stable unless they
were deep troughs (z «z, —2n) initially. Equation (2)
also applies when the avalanche region extends to the
left-hand side boundary omitting the change at z (iL =0)—

Case 2. When the avalanche extends to the right-hand
side boundary the above holds, with the exception that
z(ic) and z(itt=—L+1) are unchanged, and D n(i —iL)
grains of sand fall off the pile.

Remark. The sandpile models have traditionally been

simulated in the limit of adding sand at an infinitesimal

rate, so that all avalanche durations are less than the time
between them. This theorem shows explicitly how the dy-

namics may alternately be viewed such that sand is added

at a fixed finite rate, but the avalanches are instantaneous
and long range, since they may extend to a trough arbi-

trarily far away.
Summary of Proof Equation . (1) implies that the

evolution of a site depends only on its value and that of
its two neighbors. For Case 1, it can be verified that
the only nonstatic configurations which can evolve from
the initial configuration, which is of the form
tmm. . . mmFmm. . . mmt, are

(1)sFs T, (2)smF F, (3)FTF F,
(4)stF s, and specifically (4a)sTF m,

where we have shown what the middle site (indicated by
an underline) becomes on the next time step. We estab-
lish the results of the theorem by tracing the evolution of
the avalanche. The disturbance propagates out, reflects at
the troughs at iL and iR, adding slope to these sites, and
ends by coalescing and depositing a trough at ic That.
sites other than i, iL, itt, and ic are unchanged follows

from the fact that sites change by integer multiples of n. ~
This theorem implies that during avalanches troughs

are removed and added at precise locations. However, in

terms of the configuration before the initiating grain of
sand is dropped, two cases arise. In the first case, the left
trough exists prior to the addition of the initiating sand,
and the trough coalescence described in the theorem re-
sults in the net removal of one trough. %'e call this a
coalescence event. In the second case, the initiating grain
of sand results in the formation of both a falling site and a
trough immediately to the left, so that compared to the in-

itial configuration there is no net change in the number of
troughs; the right trough simply moves one step to the left.
We call this a slide event. In addition to causing
avalanches, dropped sand can give rise to a trough, which

we refer to as a birth event, or if the dropped grain lands

on a trough it can remove it, which we describe as a death
event.

We proceed to now define the trough model, which is a
stochastic process designed to capture the essential behav-

ior of troughs just described in a more tractable two-state
system. Slide events and the phenomena of deep troughs,
which require more than one death or coalescence event to
be removed, are ignored in this formulation. We also ig-
nore certain short-range interactions which arise because
potential birth sites for troughs actually involve pairs of
sites. None of these simplifications is believed to alter the
essential features of the system.

The trough model is defined on the one-dimensional in-

teger lattice. To each site is associated a 0 (vacancy) or a
1 (trough). The rules are the following: (i) Birth: vacant
sites are filled at rate k; (ii) Death: occupied sites become
vacant at rate b; (iii) Coalescence: at each vacant site i at
rate 1, the nearest trough to the left- and to the right-hand
side of i are removed, and i is filled. Unlike the sandpile
model, the trough model has as tuning parameters the
birth and death rates X and b.

We now consider the infinite system, 4 in which the or-

der parameter is the equilibrium density p of troughs.
Below we prove that there is a phase transition at k =1.

Theorem. Consider 8 & 0. When k «1 the system goes
extinct in the sense that in any translation-invariant equi-
librium measure the density is p 0. Conversely, when

k & 1 the system survives and the density is given by

Remark. Note that the transition becomes discontinu-
ous as b~ 0, and that for each b & 0 the order parameter
exponent is P l.

Proof. Denote a general configuration by g and the
configurational probability distribution of the system at
time t by P, . Let p, P, ((,(i) 1), and define l tobe the
event that a trough is at site i, and the next trough to the

right is at site i +1 We have.

dpi k(I —p, )+ (1 —
p, ) —bp, —2 g (l —1)P (l) .

dt I I

(4)

The following identities are easily verified: gt-iP, (l)
p, and gt- i lP, (l) =1. When X & 1, setting dp, /dt 0

in Eq. (4) and using these identities yields the equilibrium
density given in Eq. (3). Furthermore, Eq. (4) implies
that if the density is ever greater (less) than p, it increases
(decreases) monotonically to the equilibrium value. It is

also clear that if k«1, then dp/dt & 0 whenever p & 0,
implying extinction. Thus the critical point is A,, =1,
where troughs become extinct.

Remark. It is also possible to use the diff'erential equa-
tion for P, (I) [analogous to (4) for p, ] with convexity ar-
guments to establish bounds on the moments of P(l) that
exist in equilibrium for given values of X,.

Next we direct our attention to the trough model on
finite sets, where the single-site density will clearly be pos-
itive for any positive birth rate. Nonetheless, the density
of troughs p(L) in a system of size L exhibits markedly
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different asymptotics in the different regimes. For con-
venience we consider the case of open boundary condi-
tions: a coalescence event occurring beyond the left- or
right-most trough causes the trough to vanish (corre-
sponding to the open boundary at i L in the sandpile
model). Our numerical simulations verify that the scaling
behavior does not depend on whether the boundaries are
closed or open. The open boundaries simplify the analysis,
because the rate at which a trough is added or removed
depends only on the number of troughs in the system.

Theorem. In a finite system of size L with open bound-
ary conditions, for b & 0 the density of troughs p(L) is
asymptotically

L 'if)&1
p(L)- ~ L '' if X 1 (5)

CI, if X&1.

Sketch of Proof. Denoting the total number of troughs
in the system by n [p(L) n/Lj, the transition rates are
(i) n n+ I at rate (L —n)A„(ii) n n —1 at rate
n8+ (L —n). From these rates it is possible to calculate
the equilibrium distribution of the number of troughs.
Standard asymptotic methods applied to the resulting ex-
pression for the density yield (5).

The theorem implies that when k & 1 the expected
number of troughs is bounded uniformly for all sizes L, so
that the characteristic separation is of order L, while for
A, & 1 the characteristic distance between troughs remains
finite. The only possible regime with nontrivial scaling is

1, where the number of troughs is diverging but the
density is vanishing in the limit.

We will now discuss the sandpile models in the context
of the above results on the trough model. Numerical re-
sults imply that the domain walls in the sandpile models
are at a critical point analogous to A, 1 in the trough

model. Figure 1 illustrates that in both cases the density
of troughs p(L) tends to zero as L with 0&8&1.
Note that 8 prescribes the proper scaling for the continu-
um limit. In Fig. 2 we compare the distribution of
amounts of sand falling off the pile with the corresponding
quantity for the trough model. The multifractal scaling
curves are qualitatively very similar. Since the exponents
and the scaling functions are different for the two models,
they are not in the same universality class—this is expect-
ed since we have neglected some dynamics (e.g. , slide
events) in constructing the trough model.

The trough model has a tunable parameter )I„which the
sandpile models seem to lack. However, if we consider the
sandpile models on a finite set with periodic boundary
conditions, it is clear from Eq. (1) that total slope is con-
served. This allows us to fix the average slope s. It is
found that there is a critical value s, so that if s & s, the
domain walls go extinct, while if s & s, then they persist in

large systems. Furthermore, simulations indicate that as
the size of the original sandpile models diverges, the aver-
age slope converges to s, . This convergence of the open
systems to the critical point of the closed systems can be
explained by noting that, if the mean slope is too great,
troughs begin to die (avalanches occur) reducing the
slope, while if the slope is too small, the trough density be-
comes nonzero, and large avalanches become rare causing
the slope to increase. (See Ref. 2 for similar arguments
involving conservation laws. )

Conclusions The dyna. mics of a certain class of sand-
pile models has been shown to be controlled by special
sites, called troughs, which determine the avalanche
edges. This sensitivity to troughs may explain the lack of
scaling behavior in laboratory experiments on real sand,
where we expect inertial effects would allow large cas-
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FIG. 1. Trough density vs system size for the sandpile model

with z, 2 and n 2 (solid line) and the trough model at X 1

and b 1 (dashed line). In each case for large L, h(L) ~L
where for the trough model 8 0.5, and for the sandpile model
8=0.34.
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FIG. 2. Multifractal fits to the distributions F(D,L) of
amounts of sand D n(i iI ) falling off th—e pile as the result of
a single avalanche for system sizes L 32-2048. Results for the
sandpile model (lower curves) are qualitatively similar to the

corresponding results for the trough model at X-b I (upper
curves). A standard multifractal fitting form is used (Ref. 2),
with Do 0.54 and Lo 0.29 for the trough model and Do= 1.1
and Lo 0.30 for the sandpile model.
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cades to overwhelm troughs. Another signature of the
lack of inertial effects in the sandpile model may be relat-
ed to the fact that the net effect of an avalanche on the
system is relatively minor —involving the change in slope
of, at most, four sites. This is significantly different from
the model studied in Ref. 6 where scaling behavior arises
as a result of inertial effects and slipping instabilities, re-
sulting in the amplification of spatial irregularities during
an event.

We have also established a relation between observa-
tions made about the domain walls in a class of one-
dimensional sandpile models and the critical behavior of
troughs. We suspect that other versions of sandpile mod-
els and generalizations to higher dimensions can be
identified with variants of the trough model. The dynamic
selection of a critical point is vaguely reminiscent of the
way in which invasion percolation, a dynamic growth pro-
cess, selects the critical point of ordinary static site per-

colation. ' On the other hand, our results are quite
different from those obtained in Ref. 9 for a driven
diffusion equation, which by construction has no charac-
teristic lengths or times. We conclude that scaling behav-
ior of the distribution of avalanches in the sandpile models
results from the observation of a critical system on a finite
set, which would, in fact, be extinct on the infinite lattice.
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