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Instability of a strongly inhomogeneous plasma

Yu. M. Aliev
P N .Le. bedev Physical Institute, Academy of Sciences of the U S S. R. ., M. oscow, U SS.R. .

G. Brodin
Department of Plasma Physics, Umea University, S-90187 Umea, Sweden

(Received 2 January 1990)

The stability of a plasma boundary in the presence of a powerful p-polarized electromagnetic
wave is studied. It is shown that surface waves that are coupled to plasmons localized in the
plasma-vacuum transition layer can be excited. The growth rate that is calculated turns out to be

larger than the corresponding value obtained without taking nonlocal effects of the transition layer
into account by a factor proportional to the wavelength of the pump wave divided by the width of
the boundary region. The threshold is accordingly significantly lower. We believe that the present

theory will be useful for the explanation of several nonlocal optical effects arising near the surface of
solid-state plasmas.

I. INTRODUCTION

The stability properties of a plasma boundary in the
presence of an intense p-polarized electromagnetic wave
have been of interest for many years in connection with
the problem of confinement of a dense high-temperature
plasma by radiation. ' Later, in connection with laser-
fusion studies, the same problems appeared when a
powerful heating Aux of radiation was applied. Near the
critica1 point a jump in density then arose. The interac-
tion of radiation with strongly inhomogeneous plasmas is
also of interest for probing ionospheric inhomogeneities.
Furthermore, development of the theory of nonlinear in-
teraction between radiation and surfaces of solid-state
plasmas is important for the diagnostics of solid-state sur-
faces. '

Most of the previous theoretical works consider the
case when the electromagnetic pump was an s-polarized
wave. For the p-polarized wave the theory turns out to
be more complicated and less developed. We will show
that it is necessary to take into account the finite width of
the plasma-vacuum transition layer in which volume
plasmons can be localized. In this article we will also
demonstrate that the nonlinear parametric interaction of
a p-polarized wave with the plasma boundary in the tran-
sition layer gives rise to the excitation of volume
plasmons which are coupled to the surface waves. A
nonlinear dispersion relation will be derived from which
we calculate the growth rate and the threshold of the in-

stability. The growth rate thus found is larger than the
corresponding value obtained without taking nonlocal
eAects of the transition layer into account by a factor pro-
portional to the wavelength of the pump wave divided by
the width of the boundary region. The threshold is corre-
spondingly lower.

II. DERIVATION OF THE DISPERSION RELATION

z & 0 there is vacuum and for z )d the unperturbed den-
sity is constant. In the transition layer 0(z (d, no(z)
may vary arbitrarily. However, we assume d to be small
compared to the wavelengths involved in the problem.
Furthermore, we neglect ion motion and consider a cold
electron plasma. The latter approximation is possible if
the Debye length of the electrons is much smaller than d.
This condition is fulfilled for many plasmas. '

A plane p-polarized wave is supposed to be obliquely
incident from z = —~. We define the x axis to be in the
polarization plane of the pump wave. By using the z
component of Ampere's law and the momentum equation
together with Gauss law we easily find that

a a—+u, u, +co (z)v,
at ' az

(VXB),=
qc

holds in the transition layer. Here m and q are the mass
and charge of the electron, co~ [=(notI /e„rn)' ] is the
plasma frequency, c is the velocity of light, B the magnet-
ic field, and v, the z component of the velocity of the elec-
trons. In deducing (1) we have, according to our assump-
tion above, noted that 0/Bz acting on v, and E, (E is the
electric field) is much larger than 8/c)x in the transition
layer. Similarly we have

(VxB),=
Bv, Bv,

+co (z)+ +v,
qc- Qt~ ~ Bz Bt Bz

Vg,

where the index I denotes the component perpendicular
to the z axis. It turns out to be convenient to introduce
Lagrangian coordinates zo and ~. Accordingly we define

z =z, + f u, (z(t'), t')dt' (3)
()

and

We consider a plasma with a nonuniform density
profile no(z) that can be divided into three regions. For In this coordinate system, Eqs. (1) and (2) are written

(4)
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BB

Bx

and

By

m BUz
2

+~ Zp+ U dt Uz

qc
(5)

and

kp =k1 +k,

k, +k2 =0.
BBi

7X +V XB,
ZO

m B
+P2& zp+ udge' + v2, (6)

where Z is the unit vector in the z direction. We will use
the lowest-order expansion of these equations, overlook-
ing the case where the strongly nonlinear electron
response, due to the steep density profile of a CO2-laser-
produced plasma, causes the generation of high harmon-
ics of radiation. ' Accordingly we assume that, in addi-
tion to the pump wave with frequency coo and parallel
wave number ko„ there exist wave perturbations with in-

dices 1 and 2 satisfying the matching conditions

Representing all quantities as

2 i(k x+k y —co rj
u, = g u„(zp)e '" " ' +c.c. ,

g=0

etc. , where c.c. denotes complex conjugate, we write Eqs.
(5) and (6) as

~ . m
k&„B&y &k~~B~z 2 cu, e, (zo)

qc

I CO~ Bco&+ (zo)u2, up,
N2NO ZO

(10)

COO
—

C01 +F02, (7) and
I

BB,i m B"
ZX +ik, 2 XB„=—

p2, e, (zo)v, ~
—i

ZQ qc Bzp COO

U 2z Vpi BUO, BV2,+l Cd() v22 l p)2 vp2
Zp zo

where e, (=1—co~(zp)/p2, ) is the dielectric function of
the cold plasma and k1i=k1 x+ki, y. When deriving
(10) and (11) we have neglected terms proportional to the
square of the pump field. In the equations above and
elsewhere we can use uo, (zo)=uo, (z) since higher har-
monics of the pump wave are unimportant. The same ap-
proximation is not possible to make for the perturbations,
however, and therefore our change of coordinate system
is meaningful. The advantage with the Lagrangian coor-
dinates is that Eq. (10) is very simple. In contrast, in Eu-
lerian coordinates, additional terms proportional to
(Bu2, /Bzp)up, aPPear in the corresPonding equation.
This difference is of importance since near the zero of e1

I

Bv li qik1iXv1 +ZX + B1i=0,
Bzp m

(12)

we find that B,2 [ =(B,„+B, )' ] satisfies

the nonlinear terms are of the same order as the linear. A
perturbational method is thus not applicable. Further-
more, the additional terms appearing in Eulerian coordi-
nates makes the exact solution very complicated and
presumably impossible to handle analytically in the fur-
ther calculations.

Proceeding by making use of the law of generalized
vortex conservation

c2

k 1i Q l B91i&„+
e, ' Bz e, Bz

m a

qc Bzo

u 2z "ox
2

Bzp Q) 2

V2iUoz

Ct) p

BUO BU2+ l COOV2i l C02 Vpi
Zp Zp

m ~1k,i Bco2

2
V 2z Uoz

qc co2cooE1 Bzo
(13)

Integrating Eq. (13) twice across the transit layer, dropping terms proportional to k~d, except the term which corre-
sponds to the linear damping, we obtain

~p[k 2$ (~2 /& ) ] '
'Iruoz (d)[kii X &22(d) 1Z

D, B,i(d) +
k 1iC02

where

mk1i~, d Boo U2, vp,
2

2 dZO,
qc ~2 o p Bzo

(14)

1/2
copE( coo, d )

ko
C

1/2

+e(cop, d) k p
C

(15)

and
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(k, i —
cu, e, (d)/c )'

e, (d)

1/2
C01+ k, ~—
c

2 d dZP—k ll (16)

is the dispersion function for surface waves. Using Eq. (14) together with the formula obtained by permuting the in-
dices in that equation we find

[k —(cu /c )]' [k —(co* /c )]' (k, lc ) co~ Iu

1 2 2 2 2 e2 1l
k1j.k 2&~&~2

mk„co, D2 d Bco
dzo +

qc co,*coo o Bzo

~lt)g'lt2y[k (g (cu2j/c )] Kvp d c)cup v) up
dzo . (17)

qC k 21M]Q)2

Furthermore, from (10) and the corresponding equation
for index 2 we have

E162
Oct)

p

Bzo

qC

m C02

2 2 2 e2
I vo, I cuocu&cu2

lk2gE(BQJ (d) k,~(a,' /d. )u ',B„+
1O

(18)

where we have approximated 81~ and 82j by constants in
the boundary region. The left-hand side of Eq. (18) de-
scribes the nonlinear decay of the pump wave into
plasmons localized in the transition layer, whereas the
right-hand side is due to the coupling to the global sur-
face waves. Similarly the left-hand side of Eq. (17) de-
scribes the decay into surface waves and the right-hand
side represents the coupling to the plasmons. If we disre-
gard the right-hand side terms in (17) the resulting ex-
pression agrees qualitatively with previous works for
plasrnas with sharp boundaries. " We have here neglect-
ed terms of the same order as the nonlinear terms of the
left-hand side of Eq. (17) when deriving (13). The agree-
ment with the earlier papers is thus not exact. Our
reason for keeping such terms in (17) was just to make
the physical picture of the present process clearer. In-
stead we have to use the opposite approximation, i.e., we

omit all the nonlinear terms on the left-hand side of Eq.
(17), since we have the maximum growth rate for pertur-
bations having equal frequencies co„=Reve]=Reco2. In
this case the nonlinear terms in (17) that represent the
coupling to the plasrnons are larger than those of previ-
ous works by a factor of the order of 1/kd, as will be
demonstrated below. Thus we note that the results ob-
tained in the sharp boundary limit cannot be recovered
when d approaches zero. The reason is that it is very
difficult to analyze such limits in a proper way since the
excursion length of the electrons in the boundary layer

then cannot be treated as a small parameter.
Considering the situation when Re~1=Reco2, we find

from (17), (18), and the corresponding equations with per-
muted indices the dispersion relation

(a~,'/az, )v„dz,
D1„D2„= 2 2 2 64cu„o e, ez —(c)cu /c)zo) Iv„, /4cu„

(19)

where

D1,2n

k ) 2g d (Bco /c)zo) I up I dzp=D1,+
4co„p e, 2[@,e2 —(c)co /c)zp) Ivp, I /4co„]

(20)

( D i
— i'A ) ( D+2k 2i A )

—F
I

=0, (21)

where

Formally we have introduced an ambiguity by consider-
ing the case Redo, =Reco2 since the poles of the integrals
in Eqs. (18) and (19) now will appear on the real zo axis
for certain parameters values. If we instead let Redo,
=Reco2+Aco and we take the limit Am~O, this difficulty
could be handled, although the sign of the nonlinear part
of the dispersion function in (20) may depend on whether
Aco~O from the plus or minus side. The solutions to the
dispersion relation are of course not affected by this
choice.

To solve the integrals in (19) and (20) we first observe
that the main contribution comes from zo values close to
the resonant surface z„defined by e(co„,z„)=0. This al-
low us to extend the limits of the integrals to infinity, use
E

) p
= ( d co~ /ciz o ) ( z p

—z„)/cu „+2i y /cu „, where y = Imco, z,
and approximate the other functions of zo by constants.
The dispersion relation (19) then reduces to

and

a(c)cu /c)zo)Iuo, I 1

16cu„((y/ „) i [[(c),'/c)z, )'I.„I'/16 '„]—(y2/cu'„)I '")
[ [(c)cu,'/az, )'Iu„'/16 '„]—(y'-/ „')I '"

~k'„k„uo, I

16[y' —(c)co /c)z ) Iv, I /16'„]

(22)

(23)
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In the formulas above all z0-dependent functions are to be evaluated at the resonance surface z0=z„. Furthermore,
vo, (z„) is given by

2iqek0 E0 [[coom(coo, z )d)/c ]—ko„]' '
uo, (z„)= 1+

2 2 2 1r'2
maroon(coo,

z„) e(coo, z & d) I [coo~(~o,z (0)/c ]—ko, I
' (24)

DiDq I [(Bco~/Bzo) duo, i /16'„]—
y ]'

~(k~~D, —k, ~D2 ) vo,+
8

=0 . (25)

If both D, and D2 are nonresonant, the last term is a fac-
tor of order k~d smaller than the first term and the ap-
proximate expression for the growth rate used to derive

where E0 is the electric-field strength of the incident

pump wave.
To find the solutions of the dispersion relation we first

observe that for y =(Bco~/Bzo) ~vo, ~
/16~v„, (21) reduces

to

(25) is thus valid. The mechanism of this instability is the
same as for the two-plasmon decay. ' However, previous
authors considering this process in inhomogeneous plas-
mas' have assumed the opposite ordering of wavelengths
and inhomogeneity scale lengths. Thus our result de-
scribed by Eq. (25) is new.

If we had included electron-ion collisions, then y
would have been replaced by y+ v, , /2, where v, ; is the
electron-ion collision frequency. The threshold electric
field could then be determined from Eq. (25) together
with (24). Considering now the case when both perturba-
tions are resonant, i.e., D, z(coo/2, ko /2, k~ 2 ) =0, we
find that (21) reduces to

BD1

Bcd )

(y —yg)=—
77k

&& [ voz [

6 1j24I y —[(Bco~/Bzo) uo, ~ /16'„]] 'r
( Bco' /Bz, )v, )

4~,'(y+ I
y' —[(B~'/Bz )'(uo, ('/16~v„'] I

'r') (26)

where the linear damping rate of the surface wave yz is

k
1mf" (27)

BD
1 /BCO1 0 e]

We cannot solve (26) analytically. However, it is clear
that we now have a slightly higher growth rate than for
the nonresonant case and that it is increasing with k1~.
Furthermore, for large k1~ the perturbations are electro-
static. The maximum value of y is obtained for
k&~)&(Benz/Bzo) ~vo, ~/ro„. Numerically we find that the
growth rate here may be enhanced by a factor =1.7 as

compared to the nonresonant case, i.e.,

rd=

2~r ~e-i

1.7(0~ /Bzo )

as follows from (28).

(29)

III. CONCLUSIONS

In this paper we have found an instability mechanism
of a diffuse plasma boundary excited by electromagnetic

7 Bop
y =

~ vo. ~

(28)m
4 2 ~ 0

where y is the maximum value of the growth rate. We
note that this means that, since we do not have

y »(Bc@ /Bzo)~vo, ~/co„ for any k values, the excitation
of surface waves for the present conditions is always cou-
pled to the two-plasmon decay process as can be seen
from Eq. (26). We stress that it is not sufficient to take
the linear damping of the surface waves into account to
obtain the threshold of this instability, as electron-ion
collisions also must be included. The result for the
threshold is

I

radiation. The thickness of the transition layer has been
assumed to be much smaller than the wavelength of the
pump wave. Nevertheless, in this layer, localized volume
plasma waves can be parametrically excited. We have
shown that this microprocess is coupled to the global sur-
face wave instability. The growth rate that we have
found is much larger than the well-known result for the
surface wave instability when the boundary is sharp. We
have only considered the special case of two-plasmon de-
cay in the cold-plasma approximation when the plasmons
are localized. Evidently, it would be very interesting to
take thermal effects into account to introduce space
dispersion of the plasmons and the possibility of ion-
sound propagation. In the future we intend to investigate
the connection of other rnicroinstabilities in the transi-
tion layer (induced Brillouin scattering, induced Raman
scattering, decay into ion-sound and plasma waves,
aperiodical two-stream instability) with global surface
wave for both polarizations of the pump wave. We be-
lieve that the small threshold value for excitation of sur-
face waves that can be radiated due to scattering by a
rough boundary due to the new mechanism pointed out
here may provide the main explanation of several anorna-
lous optical phenomena such as enlarged Raman scatter-
ing connected with surface effects. However, for solid-
state plasmas our theory can only be considered as a
prerequisite to improved models including quantum
mechanical as well as thermal effects.
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