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Stimulated two-photon free-free transitions in a Coulomb potential: Formalism
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We present a calculation of the cross sections for two-photon free-free transitions of an electron
colliding with a Coulomb center of force. The calculation is based on second-order perturbation

theory, in the nonrelativistic dipole approximation. The matrix elements for absorption and emis-

sion were integrated analytically in momentum space, following a method developed earlier by one

of us. This makes use of the Schwinger integral representation for the Coulomb Green s function.
The result was expressed in terms of integrals over hypergeometric functions of the Gauss type.
Simple limiting forms of these complicated expressions were found in the first Born approximation,
and at low and high photon energies. The results derived agree with those obtained by direct calcu-
lations done for these limits. Finally, concluding remarks on the analytic part of our work are
made. The numerical computation of the two-photon free-free transition cross sections for absorp-
tion and emission in various geometries is planned to be presented at a later time.

I. INTRODUCTION

An electron colliding with an atom in a radiation field

can absorb or emit photons, thereby undergoing stimulat-
ed "free-free" transitions (FFT's). In weak fields, as those
of conventional optical sources or of astrophysical na-
ture, only one-photon FFT's have significant probability
of occurrence. In intense laser fields, on the other hand,
of the kind applied for the heating of plasmas, for exam-
ple, multiphoton transitions can also occur. We shall be
interested in the following in two-photon transitions at
moderately high intensities, such as can be covered by the
formulas of second-order perturbation theory. (For vari-
ous aspects of FFT's see the reviews of Refs. 1 —3.)

Stimulated FFT's are closely related to bremsstrahlung
processes, whereby an electron emits spontaneously one
or more photons in a collision, in the absence of any
preexisting radiation. In particular, directly related to
the two-photon FFT's is the two-photon bremsstrahlung,
an experimentally very elusive process which has attract-
ed interest lately.

The theoretical methods for calculating FFT cross sec-
tions can be grouped, broadly speaking, into perturbative
or nonperturbative with respect to the intensity of the ra-
diation.

Perturbation theory to lowest nonvanishing order yields
results valid at sufficiently small radiation intensities and
all frequencies to (except for the limit of vanishing co).
The vast majority of the FFT work done refers to one-
photon transitions, the only ones of practical interest in
the past. The archetypal result is due to Somrnerfeld,
who considered the case of a Coulomb center of force.
As the one-photon perturbation theory matrix element is
simple enough, one could later take into account the
complexities of the many-electron structure of the atom. '

It is only relatively recently that we have reported the
first perturbation theory FFT calculation for more than
one photon. It refers to two-photon transitions in a
Coulomb potential, and represents the analog of the Som-
merfeld one-photon result. We have computed the
differential cross section analytically as far as possible,
and then resorted to numerical evaluation. Only a special
scattering geometry was considered, namely the case
when the incident electron momentum is perpendicular
to the linearly polarized electric field. This calculation
was followed by one for two-photon bremsstrahlung in a
Coulomb potential (see also Ref. 7), in view of the exper-
imental interest.

More recently another perturbation theory calculation
for two-photon free-free absorption was performed by
Chang and Robinson, using a (short-range) model poten-
tial for the atomic field. Total absorption cross sections
were obtained for He, C, Ne, and Ar. This ends the list
of calculations for multiphoton FFT's in perturbation
theory. Their scarcity is rather remarkable in view of the
numerous efforts done in the related problem of multi-
photon ionization from atoms (e.g. , see Ref. 9), and may
be due to the lack of experimental incentive.

The low-frequency limit of the FFT matrix elements
has received considerable attention. ' The theoretical in-
terest of the problem stems from the realization by Low
that the one-photon transition amplitudes are closely re-
lated to those for radiationless elastic scattering. ' His
theorem is valid specifically for short-range potentials,
and takes a weaker form for a Coulomb or Coulomb-tail
potential. In practice this means that the computation of
the FFT cross sections at low frequencies (precisely the
case of interest for astrophysics) is reduced to the simpler
one for elastic scattering. The extension of the Low
theorem to two-photon bremsstrahlung in short-range
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potentials was obtained and studied by Rosenberg. "'
In Refs. 5 and 6 we found that for a Coulomb potential
his result again takes a weaker form.

At high laser intensities the formulas of lowest-order
perturbation theory become inappropriate because of the
growing importance of the higher-order corrections.
Nonperturbative theories have been developed to encom-
pass this difficulty. While, per definition, valid to all or-
ders in the intensity, they are restricted with respect to
other parameters (frequency, electron energy). The com-
plexities of the nonperturbative approach are such that
these theories have been developed mainly for one-
electron problems. Among them we quote the ones by
Bunkin and Fedorov for FFT's in the Born (high-electron
energy) approximation, "

by Kroll and Watson for the
low-frequency limit' (a case which cannot be covered by
lowest-order perturbation theory), and by Gavrila and
Kaminski for the high-frequency limit. ' All these
theories give expressions for the multiphoton FFT ampli-
tudes, which, to lowest order in the intensity, agree with
the corresponding formulas of perturbation theory when
taken in the appropriate limit.

Controlled experimental information on FFT's comes
only from beam experiments, which are very difficult to
do. These were all performed at the infrared frequency
of the CO2 laser (0.117 eV photon energy), on noble gas
atoms, and incident electron energy between 10 and 20
eV. The experiments at lower intensity (about 10 —10
W/cm ) were concerned only with one-photon transitions
(Andrick and collaborators, see Refs. 2 and 16, and refer-
ences therein). At higher intensities (about 10 W/cm ),
Weingartshofer and collaborators were the first to
demonstrate the existence of multiphoton FFT's. ' More
recently, Wallbank, Holmes, and Weingartshofer, ' in a
continuation of this work, have begun quantitative stud-
ies on the magnitude of the cross sections. Special con-
sideration was given to two-photon transitions. The
theoretical interpretation of their results is seriously lim-
ited, however, by the unknown structure of the laser
pulse. "

With the present paper we begin to give a complete ac-
count of our results on two-photon FFT's. Here we shall
describe the analytic formalism. Later we shall present
and discuss our numerical results for absorption and
emission in a variety of scattering geometries (not con-
sidered in Ref. 5). We hope that our work will represent
an incentive for more experiments on this process.

Section II of this paper contains the integration of the
perturbation theory two-photon matrix elements for the
Coulomb potential. We have adopted an integration
method developed in a different context by one of us
many years ago. The matrix element is finally ex-
pressed in terms of rotationally invariant amplitudes,
each of which contains integrals over Gauss hyper-
geometric functions 2F&. This is as far as the analytic cal-
culation can go. In Sec. III we discuss this result in cer-
tain limits for the parameters photon energy and electron
energies. In these limits it reduces to simple forms, easily
understood physically. It was thus possible to check that
the general result satisfies all limiting forms of the cross
sections which could be derived independently. Section

IV presents some concluding remarks to the analytic part
of our work. The Appendix contains the calculation of
an auxiliary integral.

II. MATRIX ELEMENTS

The differential cross section for the scattering of an
electron with the absorption (+) or emission ( —) of two
photons from or into the laser field can be written '

Similarly, for emission

f' '(B)= ~~ 2&up", l(e' P)G(Q )(e" P)Iud"'& .= 1

(2b}
We have denoted by p; and p& the momenta correspond-
ing to the initial and final states (energies E, and E&},by B
the scattering angle between them, and by u'"' and u'"

the associated continuum Coulomb wave functions with
outgoing or incoming spherical wave behavior, respec-
tively, normalized to unit asymptotic amplitude. P is the
electron momentum operator and G(Q) is the Coulomb
Green's operator for energy parameter Q. I is the time-
averaged intensity of the laser field, co is the photon ener-

gy, and e its polarization vector (complex for arbitary po-
larization, and such that e e*= 1).

The two values of Q appearing in Eqs. (2a) and (2b) are

A~ =E,+co+$e, (3)

where e & 0, infinitesimal, and energy conservation re-
quires

Eg=E, +2' . (4)

Further, we take E =p /2, (o.=i,f)
Our formulas are written in Z-scaled atomic units, i.e,

lengths are expressed in Z 'a.u. , momenta in Za.u. , en-

ergies in Z a.u. , and the time-averaged intensity I in
Z a.u. (the a.u. of intensity is taken to be 3.51X10'
W/cm ).

The two matrix elements Eqs. (2a) and (2b} are
represented diagrammatically in Figs. 1(a) and 1(b), re-
spectively, according to rules described in Ref. 23.

In the following f' —' will be integrated in momentum
space. From Eq. (2a), f '+ ' can be written as

(+)f'+'= Iu g e eall p(Q+),8~
(5)

where

11 &(Q)= f f u~ (p2)p»G(p2, p, ;Q}

Xp lczu p (pl )dpldp2 (6)

do~-' ~ if(+)(B)i2
dQ p,

where f' '(B) i—s the scattering matrix element. In the
case of absorption, second-order perturbation theory in
the dipole approximation yields '

f'+'(B)= Ice (u~" ~(e P)G(Q+)(e P)~u~"') . (2a)
1
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For the Fourier transform of the continuum wave func-
tion with asymptotic outgoing spherical waves we shall
use the integral representation

n

u'"'(q) =JV f E,. E)

(a)

(7)

where n =1/ip, and ri &0, infinitesimal. The contour of
integration in Eq. (7) is a loop encircling the points (=0
and 1 in the direct sense, but leaving out the pole of the
integrand. The principal value of the nth power
appearing in the integrand should be taken
( —

m & argg/( g
—1) & m ). The normalization constant JV

required by Eqs. (6) and (7) is

JV= 4p ( 2w )
~ I ( 5 + 1 }8&I n

I l2

The incoming spherical waves function can be obtained
from Eq. (7) by using u'"(q)=[u'"'(q)]'.

For the Coulomb Green's function in momentum space
we shall use the Schwinger integral representation

E.
,

/
/

/

/r

I
I

/
/t

I

E)

FIG. 1. Furry (bound-state interaction picture) diagrams
representing the matrix elements for (a) free-free absorption and
(b) emission af two photons (see Ref. 23). Double-line arrows
describe the electron propagating in the Coulomb field: the ini-

tial (final) ones correspond ta the incaming (outgoing) electron;
the internal ones represent the Green's function. The dashed
lines represent the photons and the their operators; when drawn
at an acute (obtuse) angle with the electron arraws, the photon
lines describe absorption (emission). The energies af the parti-
cles are indicated next to their lines (energy is conserved at ver-

tices). (a) corresponds to Eq. (2a), and (b) to Eq, (2b).

(0+) ~ d 1 —p 1

dp p [X (p, —pz) +(pi+X )(p2+X )(1—
p )/4p]

(9)

where

~=X ', X = —20, ReX) 0 (10}

and

X i exp(imr)
2 sine~

The contour of integration in Eq. (9) starts at p= 1 (where one should take p '=1), encircles the origin p=0 in the
direct sense, and returns to p=1.

From Eqs. (3) and (4) we have ReQ+ &0, so that, on account of Eq. (10),

~+=i(p +2') (12)

where the square root is taken to be positive By inserting Eqs. (7) and (9) into Eq. (6), and interchanging the order of
integrations we may write

lI li= 'JV;JVfF f dpi f—d(2 J dp
1

Elf

P

where

8 &fI3 8 d

dKfp lJf dpf dp

p2 J
p

(13)

dp)dp2

[(pi —&;)'+l,'][X'(pi p2)'+(p i +X')(pz+X')(I p')/4p]'[(p2 &f—)'+pf]— (14)

We have abbreviated
I

lier [Gavrila, Ref. 20, Eq. (30)]. We have shown then that

K; =P;pl~ Kf =Pfj2

P, =el iP, (1—gi), —Pf ='il iPf(1 g2} . —(15} d 1 —p 16m 1

dp p X I
(16)

The integral Eq. (14) was encountered and calculated ear- with
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I =[[(X+@;)+K;]—p[(X —p;) +K, ]]
X f [(X+pf ) +Kf]—p[(X —pf ) +Kf ])

+4pX [(K, —Kf ) +(p, —pf ) ] .

By taking into account Eq. (15) we find

P=s +

tidal

+ t2(2+ upi(2

where we have denoted

S —N

w = (p;+ iX)(pf +iX) p(—p; iX—)(pf iX—),
t, = —2p; w[(pf +iX) p(—pf iX—)],
t2 = —2pf w [(p, +iX) p(p—; iX—)],
u =4p, pf [[(p;+iX) p(p—;

—iX)]

X [(pf +iX) p(pf ——iX)]

+4pX sin (8/2)j .

(17)

(18)

(19)

ta v =p /p (0 =i,f), we can write Eq. (13) as

H~p —A 5~p+BVt~V;p+ CV;~VIp+DVy~Vip+EVf~VIp .

(23)

The amplitudes A, 8, etc, appearing here have the form

A =2 n N f p '+'I(0, 0)dp, (24a)

(24b)

(24c)

8 =2 in pXN f p
'+'

gf +rif I(10)dp,
1

Further, from Eqs. (16) and (17) we may write D = 2n p;p—fX N f p
'+ I(0,0)dp, (24d}

i) Kfp i} d 1 —p J
p; Biu; BKfp iuf deaf dp p

=a5 &+bK K p+cK Kfp+dKf. K p+eKf~Kfp

E=2'in'pfXN f p
'+'

g, +ri, I(0, 1)dp,
~}u dt2

(24e)

with

(20) with the abbreviation

N =JV;JVfF . (25)

C=

i 2 n pXI —
p; '(gi —1) '(gf(2+rif ),

—2 n. p, 'pf '(g, —1) '(g2 —1)

X[—I (1+p )

+21 '(4;0i+ri;}(kfk+nf)]

(21) 'n, +q, '
n~+q~

1

p2

(26}

Equations (24) are expressed in terms of the general in-
tegral

I(q, ,qf)= tt) f dg, dg

d=2pX I

e = i2 n pX—I pf '(g2 —1) '(g;g, +2);) .

These contain the abbreviations

g =2p [(p +ix) p(p —iX)], —

rt = —[(p +iX) —p (p iX) ] (a=i—,f) .
(22)

By introducing the unit vectors of the electron momen-

where q;, qI are non-negative integers and I is defined by
Eq. (18}. Equations (24) are written with the understand-
ing that after having performed the derivatives of
I (q, ,qf ) with respect to s, t, , t , 2tuhese quantities should
be replaced by their actual values, given in Eq. (19).

The integral I(q„q2) and its derivatives are calculated
in the Appendix, Eqs. (A6) —(A10). By inserting in these
the quantities given in Eq. (19), we may finally write the
amplitudes of Eqs. (24) in the form

n, +n —2
(1—pxo) '

zF, (1+n;, 1+nI, 2;z),
(1 —pxi) ' (1—px2)

(27a)

(1—px )' (1—pu )
=y2i (pf+g) f dpp'', 2F, (n, +3,nf+1;2;z)

(1—pxi) ' (1—px2) f

1

+2pf g (nf+ 1)x2 f dp p
0

n, +n —2
(1 —pxo) '

2F, (n;+3,nf+2;3;z)
(1—px, )

' (1—px, ) J
(27b)
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1c yc f dpp

n +n
(1—px()) '

+2 [f' 2FI(n;+2, nf+2;2;z)+ f" 2FI(n, +3,nf+3;3;z)
(1—px, )

' (1—px2) f

+f"' 2FI(n;+3, nf+2;2;z)+ f' 2FI(n, +2,nf+3;2;z)], (27c)

D=y. f,'dpp' '
n +n —2

(1—px())
'

2F, (n, +2,nf+2;3;z),
(1—px, )

' (1—px2) I
(27d)

(1—px()) ' i (1—
p u )

(p;+Q)' f dpp' '
+, +»FI(n, +l, nf+3;2;z)

(1—px, )
' (1 —px2) f

+2p;Q(1+n, )x, f dpp

11 +n —2
(1—px() } '

2F, (n, +2, nf+3;3;z)
(1 —px, )

' (1 —px2) f
(27e)

The coefficients appearing here are

y„= 2n;nf—p, pfQ h(3, 3, 1, 1),

yz = 2p, p—fnf(n, +1)(n;+2)Q h (3,5, 3, 1),
yc= —26QIp~pf(n, +1)(nf+ l)h (2, 2, 2, 2),

yD =+2 p, pfn, nf(n, +1)(nf + 1)Q h (4,4, 2, 2),

yz = 2p;pf—n, (nf+1)(nf+2)Q h (5, 3, 1,3)

(28a}

(28b)

(28c)

(28d)

(28e)

where h (q„q2, q3, q4) is the function depending on in-

tegers q„qz, q3, q4..
m /2p, m /2pf

h (q), q2, qs, q4) =i Ire 'e I (n, + 1)I (nf + 1)

&&(p;+Q) ' '(pf+Q) '

16pp;pf Q sin (8I2)
Z—

(p,
' —Q')(pf —Q')(1 —x I p )(1 —x2p )

(34)

In writing Eqs. (27) we have also taken into account the
relation, valid for Rek )0:

(35)

where g(p} is analytic in the vicinity of p=0. Note that
the amplitude E of Eq. (27e) can be obtained from 8, Eq.
(27b), by interchanging the subscripts i and f.

From Eqs. (5), (6), and (23) one may write the absorp-
tion matrix element as

f(+ ) — I —
2[ g (+)e2+g(+ )( )2

1

8~
"

x(Q —p;) ' '(Q —pf )

(29)

+(C(+)+D(+))(e v, )(e vf)
+E'+'(e vf) ] (36)

Equation (27c) also contains the coefficients

(1—
p u; )(1—

p uf)

(1—pxo)
f'=1+p +(n;+nf+2)

(n; +2)(nf +2)
2

(1—
p u; )(1—

p uf)
(1 —px() )

(1—u; )(1—uf )p

(1—px() )

(1—pu )(1—p )f III —
( +2)

(1—px() )(1—px, )

(1—pu, )(1—
p )f' = (nf+2)—

(1—pxo)(1 —px2 }

In Eqs. (27)—(30) we are using the abbreviations

XO=Q&llfy X] =Of /QI& X2 =Qt /Elf

=(p —Q)I(p +Q) (rt=t, f);
Q = iX, ImQ )0;

(30a)

(30b)

(30c)

(30d)

(31)

(32)

(33)

+(C'-'+D( —))(e* v, )(e* v )f
+E( —

)( e )2] (37)

where A' ', B' ', etc. , are the same amplitudes as in
Eqs. (27)—(34), but now taken for 0 of Eq. (3). Obvi-
ously, Ef and E, are connected differently in Eqs. (36)
and (37); see Eq. (4).

The coeffIcients Eqs. (28a) —(28e) contain complex
powers of the form

T.=[(Q+p. }I(Q—p. ] (~ =I,f} (38)

for which the principal value branch must be taken.
They have a di6'erent form for absorption and emission.
For absorption, p, & Q & pf, and for o =i one finds im-

mediately

where the amplitudes 3 '+', B'+, etc. , are to be calculat-
ed with 0+ of Eq. (3). By a similar calculation starting
from Eq. (2b), the emission matrix element becomes

f( )= la) [g' 'e" +g '(e*-v )
1

Sm
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T~+'=exp[n;in[(Q +p, )/(Q —p;)]) . (39a) III. ANALYTICAL LIMITS

However, for o =f an ambiguity appears in the choice of
the imaginary part (+im) of the complex logarithm in-

volved. The ambiguity should be eliminated by referring
to Eqs. (4), (10), and (33), to get

Tf =e exp [ nf ln[ (pf +Q) /(pf —Q) ] ] . (39b)

The case of emission, for which pf & Q &p;, can be han-
dled similarly. One finds

T,' '=e ' exp[n, ln[(p;+Q)/(p; —Q)]j,
Tf '=expjnfin[(Q+pf)/(Q —pf)]} .

(40a)

(40b)

At this point we would like to mention that Eqs. (36)
and (37) satisfy the time reversal condition

f" (p; pf, e}=f ' '( —pf ~ —p;;e' }, (41)

where we have indicated the initial and final momenta of
the transitions, and the polarization vectors. To check
Eq. (41) we first note that the transformation implied by
Eq. (41),

p; ~—pf, pf ~—
p, , e~e', (42)

changes the scalar products of Eq. (36) into those of Eq.
(37). However, this transformation relates the amplitude
A '+' to A ' ', 8'+' to E' ', E'+' to 8' ', and
C'+'+D'+ to C' '+O' '. To prove the invariance of
Eq. (41) we need show that the related amplitudes are ac-
tually equal. Now, the amplitudes A, . . . „Edepend on
the magnitudes of the momenta ~p; ~, ~pf ~

and their angle
9 [contained in z of Eq. (34)]. Therefore the transforma-
tion Eq. (42) affects on one hand the amplitudes by inter-
changing the subscripts i and f. In view of Eqs. (27)—(34)
it is easy to see that, at given ~, when performing this in-
terchange, A is invariant; 8 goes over into E, and vice
versa; C and D are invariant. Thus, at given ~,

A(f i)=A(i f), B(f,i)=E(i f),
C(f, i)=C(i,f) D(f, i)=D(i,f),

(43a)

3'+'(f i)=A' '(i f), B'+'(f, i)=E '(i,f),
(43b)

C~+'(f, i)=C' '(i,f), D '(f, i)=D~ '(i, f) .

This completes the proof of Eq. (41).
We have pushed the analytic calculation as far as pos-

sible. At this point a numerical computation of Eqs. (36)
and (37) had to be carried out. This will be described in a
forthcoming paper. In the following we shall discuss
some limiting cases of our analytical results.

On the other hand, the amplitude f '+' of Eq. (2a) is asso-
ciated to the value r+ =i (p, +2') ' of Eq. (12),
whereas f ' ' of Eq. (2b) is associated to the value

=i(p, —2') '~ . By performing the transformation
Eq. (42), r becomes i (pf —2' )

' and, since

pf =p; +4', is equal to ~+. We are, therefore, precisely
in the case of Eq. (43a), and we may write

The unwieldly form of our general result Eqs. (27)—(37)
does not allow direct insight into the physics of the pro-
cess. However, our formulas simplify substantially in the
limiting cases for the parameters cu, E,-,Ef we shall now
consider, and a number of salient features will become
apparent. The simpler formulas obtained can be com-
pared with the ones derived independently for these lim-
its, which allows a check of our general analytic results
Eqs. (27)—(37), and also of its numerical computation (to
be presented later). Finally, they will serve as a con-
venient reference for the discussion of the computed an-
gular distributions. Some of the limits apply to both ab-
sorption and emission, others to one of them only, as
specified.

A. High initial and final electron energies
(case of absorption and emission)

Be=2mp; /co b, , Ee=2npf/co b (44)

containing the momentum transfer 5=pi —p; (subscript
B stands for Born).

The amplitude C appears to be of zeroth order with
respect to n; and nf [see Eq. (28c)]. Since in ordinary
(non-Z-scaled) atomic units n, and nf are proportional to
Z, this would imply that C, and consequently the matrix
elements f ' ', would be nonv—anishing in the absence of
the potential (Z =0). That this cannot happen has been
checked by calculating C for ~n; ~

= ~nf ~
=0, and showing

that it actually vanishes. To first order one finds, sirnilar-

ly as for 8 and E,

C& = —4mp, pf /co 6 (45)

The matrix element for absorption Eq. (36) thus reduces
in first Born approximation to the simple form

1 (e.k)
4' (46)

The conditions E, &)1 and Ef )&1 (for emission the
latter has to be stated separately), or, equivalently,
n; ~

&& 1 and ~nf ~

&& 1, characterize the first Born approx-
imation, if second-order terms in n, and/or nf are ig-
nored. At the same time, in view of Eqs. (12) and (4), r
should be neglected with respect to 1 because for absorp-
tion r+ ~

& ~n;, and for emission ~r
~

& ~nf ~. On the oth-
er hand, no assumption on co will be made.

Inspection of the formulas for the amplitudes Eqs.
(27}—(34) shows that A and D are proportional to the
product n;nf, and thus do not contribute to the first Born
approximation. The amplitudes 8 and E are of first order
in n; or nf, and do contribute. This allows us to set n;
and nf equal to zero in the rest of their expressions. The
Gauss functions in the integrands then have integer pa-
rameters and reduce to simple rational functions of the
variable z [or p, see Eq. (34)]. The complex powers in
the integrands become integer powers. Thus Eqs. (27b)
and (27e} will contain integrals over rather complicated
rational functions of p. Their calculation is elementary,
albeit very arduous. The result is
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«s 1 Pf I ~(e h)~

an 16p ~8 g4
(47)

In contrast to the general cross section, Eqs. (1), (36), and
(37), which depends on the individual orientation of the

Note that for arbitrary elliptic polarization fs+' is com-
plex because of e. f~ ' can be obtained by replacing e by
e* in Eq. (46).

This simple result can also be obtained by a direct cal-
culation, in which not only the interaction of the electron
with the radiation field is treated as a perturbation, but
also its interaction with the Coulomb potential. One may
proceed in two equivalent ways. First, one may replace
the initial and final wave functions, as well as the Green's
function entering Eq. (2a) or (2b), by their Born expan-
sions through first order in the potential. A term in-
dependent of the potential emerges, but this is propor-
tional to a 5 function expressing momentum conserva-
tion. Since this cannot be satisfied concomitantly with
energy conservation (a free electron cannot absorb or
emit photons), the 5 function vanishes. The matrix ele-
ment will, therefore, contain the first and higher powers
of the potential in its expression, i.e., to lowest order will
be proportional to Z in ordinary atomic units. The result
obtained fully agrees with Eq. (46), ' ' which represents
a stringent test of our general formulas. Alternatively,
one may calculate the matrix elements by applying
directly the Feynman rules of perturbation theory, for the
interaction of free electrons with a radiation field and a
potential as represented diagrammatically in Fig. 2, to
obtain the same result.

The cross section corresponding to both absorption
and emission can be written as

vectors p, and pf with respect to e, Eq. (47) depends only
on the angle between the momentum transfer h and e.
The dependence of Eq. (47) on the direction of 5 is
smooth. Indeed, for linear polarization (e real), for exam-
ple, the quantity (e 6) /b, =(e 5), where 5 is the unit
vector of d, is bracketed between 0 (for 5 orthogonal to e)
and 1 (for 6 parallel to e). In particular, there is a smooth
variation, and the cross section stays finite, when v; ap-
proaches vf (forward scattering, b, ~ p,

—pf ~), or —vf
(backward scattering, b ~p;+pf), whatever the common
direction of v, , vf, and 5 may be, with the exception of
the case when all three end up being perpendicular to e.
Indeed, in the latter case the cross section may drop quite
rapidly for forward and backward scattering. Note that
the first Born cross section Eq. (47), breaks down as an
approximation when it vanishes because then second-
order Born corrections (as those contained in A) should
be taken into account and will yield a nonvanishing, al-
though small contribution to Eq. (1).

B. Low ratio of photon energy to electron energy
(case of absorption and emission)

We shall now assume that co/E, «1 (and therefore
also co/Ef «1), although co need not be small with
respect to 1. Since we are interested only in the leading
term of the matrix elements in this limit, whenever possi-
ble we shall work to lowest order in the ratio ro/E, . In
this case p; =—p —= Q, and n, =nf, t—heir common values will
be denoted by p and n, respectively. Also ~+-———n.
From Eqs. (31) and (34) we find xo =-—co /4p,
x;=—xf =- —1, and

-z 2 I9
z —=zop(1+p), zo = —4p "co sin—

2
(48)

E, El E,

for both absorption and emission.
With these simplifications at hand we can consider the

limiting form of the amplitudes A —E. The coefficients

y„yE, Eqs. (28—), and f' f', Eqs. (30) —present no
problems, but the integrals in Eqs. (27a) —(27e) require
special attention. They become of the type

n+aI p"+'(1+p) " zF, (n +r, n +s, t;z)dp,
0

(49)

E,

E, E.
,

E,

E)

where a, b, r, s, t are positive integers, except for a which
may be also zero (n should not be confused with an in-
teger). The variable z of Eq. (48) has a peculiar depen-
dence on p, 0, and co, which requires a separate con-
sideration of the forward (0=0) and nonforward (8%0)
scattering.

For nonforward scattering when co~0, we have
~zo~~~ and ~z~~~ for all p, except for p=O. Thus,
when p&0, one may use the asymptotic form of the
Gauss functions. If r (s this is

FIG. 2. Feynman diagrams for the first Born approximation
of the two-photon free-free absorption (see Ref. 23). Single-line
arrows represent the free electron propagation, dotted lines
represent the photons, and dashed lines ending in a star the
Coulomb potential. Other conventions as for Fig. 1. Similar di-

agrams can be drawn for two-photon emission.

F&(2n +r, n +s;t;z)
r(r)r(s —r)

( )
—n —r

~z - I (t —r n)I (n+s)—
and if r =s
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In the vicinity of the origin, p=O, more specifically on
the small interval p & ~zo

'
~

=0(to ), we have ~z~ & 1 and
one may use the series expansion of the Gauss functions
(at p=0 these reduce to 1). The other two factors in the
integrand of Eq. (49) then reduce to p"+'. When a )0
(which is the case for the amplitudes A, B,D, E), the con-
tribution of this interval to the integral is therefore of or-
der zo+' '. It turns out that in all cases this is ofhigher
order than that of the rest of the integration interval in

Eq. (49), and hence negligible. We are then left with in-

tegrals extended over the interval (~zo~ ', 1), containing
the asymptotic forms of the Gauss functions. By insert-
ing Eqs. (50) and (51) into Eq. (49} the complex power
p"(1+p) " is canceled, and integrals with simple ration-
al or logarithmic integrands emerge. To lowest order in

~zo
'

~, these can be extended over the whole interval (0,1).
We find (subscript SP stands for "soft photon")

—n —
1

1(1+n) . 28
SP sP 2 I ( 1 )

(52)

N N=0 ln — D =0 ln—SP E & SP E (53)

Thus A sp and Dsp are negligible with resPect to Bsp and

Esp to lowest order in to/E.
Some of the terms of C have to be treated differently,

because also the case a =0 may now occur in Eq. (49).
As r) 0, Eqs. (50) and (51}show that the integrand van-
ishes in the limit co~0, except in the vicinity of the ori-
gin (p ~zo~ }, where it is constant. On this interval, to
lowest order in ~zo~ ', one may neglect p with respect to
1, and the variable z then becomes z —=zap. By changing
also the integration variable from p to x =——zop, it can
be shown that the dominant behavior of the integral Eq.
(49) is given by

(
—zo) " ' f x "zF,(n+r, n+s;t; —x)dx

0

=( —zo) " '(r —2)!(s—2)!(t—1)!

I (n+1)
I (n +r)1 (n +s)I (t n —1)— (54}

where we have used a tabulated formula. Summing up
we get

CsP 2BsP (55)

with Bsp given by Eq. (52).
By inserting Eqs. (52), (53), and (55) into the matrix ele-

ment Eq. (36), we finally obtain to lowest order in co/E

f~sp'= l(e 6) f, (8),(+) (56)

where

2F, (n +r, n +r;t;z)
I (t)

( —z) " "ln( —z) .
I (n +r)I (t r—n—)

(51)

1 1(1+n) . z8
2p~ 1(l n—) 2

—1 —n

(57)

is the Coulomb elastic scattering amplitude (on the ener-

gy shell). To obtain f ' ' one needs only replace e by e*
in Eq. (56). The corresponding cross sections for nonfor
ward scattering are

do'( —'
SP

dQ
(58)

where (du, /d0) =
~f, ~

=46, is the Rutherford cross
section.

Characteristic of Eqs. (56) and (58) is their rapid in-
crease as co~0, which is related to the infrared diver-
gence of QED matrix elements involving soft photons.
For e 6,=0 both equations vanish. This simply means
that the co/F. corrections (powers and/or logarithms) to
Eqs. (56) and (58) are then taking over. A remarkable
feature of Eq. (58) is that it does not depend on the ener-

gy of the electron (recall that E, =Ef). —
It does not appear to be possible to extract a simple

formula for the amPlitude fsp in forward, or nearly for-
ward, scattering. For strictly forward scattering, 8=0,
the variable z of Eq. (34) vanishes and the Gauss func-
tions in Eqs. (27) and (49) reduce to 1. To lowest order,
the integral Eq. (49) no longer depends on co but the
coefficients do depend on it. The amplitudes B,C,D,E
thus obtained are of order co whereas A is of order
co . Thus the contributions B,C, D, E would appear to
be dominant, but it turns out that when added together in

fsp, their sum vanishes to order t0, which indicates
that fsp is in forward scattering of order t0 or less.
(We could not check its actual order of magnitude be-
cause the calculation becomes prohibitively difficult. )

For nearly forward scattering (8 «1), z and zo of Eq.
(48) are very sensitive to the ratio (8/to) . This can vary
from 0 (case of strictly forward scattering) to ~ (case of
nonforward scattering), when 8 is increased from zero
and to is small. It is conceivable that the variation of z
for nearly forward scattering may give rise to a rapid
change in the cross section.

Formulas similar to Eq. (56) have been derived for
one photon F-FT's (spontaneous and stimulated) where
they have been termed as the soft-photon (low-frequency)
approximation. The basic result there is the formula of
Low, connecting the first ttvo terms of the expansion of
the FFT matrix element in powers of co with the elastic
scattering amplitude (on the energy shell) and its deriva-
tive with respect to the energy. " The theorem refers
specifically to the case of a short-range potential. It has
been realized meanwhile that for a Coulomb potential the
connection holds only for the first term of the expansion
in co, and only for nonforward scattering.

Our Eq. (56) shows that we are dealing here with a sit-
uation similar to the one-photon case: to lowest order in
co/E the matrix element splits into a radiation-dependent
factor l(e 6) /Sco, times the elastic scattering ampli-
tude. Recall that this is valid only for 8%0. Thus Eq.
(56) represents the extension (as far as it goes) of the soft-
photon theorem to the two-photon FFT's in a Coulomb
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potential. This result agrees (apart for kinematical fac-
tors) with the dominant term of the general I/to expan-
sion derived by Rosenberg for the matrix element of
two-photon bremsstrahlung in a short-range potential
(which, however, holds also for 8=0); see Ref. 11, Eq.
(4.6).

C. High ratio of photon energy to initial electron energy
(case of absorption only)

This limit is characterized by co/E, )&1, which cannot
be considered for emission. Thus, from Eq. (4), we have

2
Pl Pl Pl CO

4 4~ E (59)

and hence p, should be neglected with respect to pf in
this limit, even though p; may be quite large itself. In the
beginning we shall make no separate assumption on co;
therefore n, , and the lowest order forms in co/E, of nf
and r: nf -= i /(4t—o)'i2, r= i l(2—co)'i, can be arbitrary.
The xo,x„x2 of Eq. (31) tend to x,x, 1/x, respectively,
where x is the constant x= —(1—2'i ) . Further, the
variable z of Eq. (34) tends to zero, irrespective of 8, so
that, to lowest order, the 2F& functions in the integrands
of Eq. (27) reduce to 1. The integrals then become of the
general form

p" '1—px 1 —
p x dp,

0
(60a)

where r, s, t are nonnegative integers. Note that the n;
dependence has dropped out of these integrals and that
Eq. (60a} does not depend on the scattering angle 8. The
integral Eq. (60a) can be expressed in terms of the
Appell hypergeometric function of two variables
F, (a;b„b2', c;x„x2). The result is

1

r —~
Fi(r r;s n, t +—n—;r +1 r;x, (1/x )) —. (60b)

By also taking into account the coeScients Eqs.
(28)—(30), it is simple to derive the expressions of the am-
plitudes A, . . . , E, but we shall not give them here.

Their form simplifies considerably if, in addition to the
condition (oi/E; ) &) 1, we assume the high frequency -con
dition co » 1. Then inf i, vari « 1 (but n; may still be arbi-
trary), and, by setting them equal to zero, the definite in-
tegral Eq. (60a) can immediately be performed. It turns
out that in this limit the amplitude E dominates, being of
order co, whereas the other amplitudes are of order
co

~i or higher. The absorption matrix element Eq. (36)
becomes then in the high-frequency limit (subscript HF
stands for "high frequency")

fH+„' =(I/4'")e 'I (1+n; )(e.vf ) (61a)

This is the result obtained from the formula of second-
order perturbation theory (with respect to the field inten-
sity I} Eq. (2), if also the preceding high-frequency condi-
tions are imposed. Alternatively, Eq. (61a) may be de-
rived from the high-frequency perturbation theory
developed by Gavrila and Kaminsky, ' which expresses
the exact two-photon FFT' matrix element f,'„+' as an ex-
pansion in 1/co, with coeScients which depend on the in-

tensity I. In order to compare this with Eq. (6la), we
need pick out the lowest order term in I/co of this expan-
sion, and then take its lowest-order approximation with
respect to I. This gives (in Z-scaled a.u.), when also p, is
assuined to be small with respect to pf [as was done for
Eq. (61a)],

f'„+„'=—(ir /2)ao(e pf ) V(pf )uP'(0), (61b)

where ao=I'i oi 2, V(p)= —(2ir2p2) ' is the Fourier
transform of the Coulomb potential (considered as the
limit of a screened potential}, and u'"'(0) is the value at

l

the origin of the coordinate space continuum wave func-
tion u'"'(r), entering Eqs. (2a) and (2b}. As u'"'(0)

n /2p, .=e 'I (1+n; }, Eqs. (61a} and (61b) are indeed identi-
cal, which is another check on the present calculation.

By calculating the cross section Eq. (1) with the help of
Eq. (61a) or (61b) we find

daHF(+)
(62)

I2
15/2

8Pico 1 —e

where we have used

n/2PI. (1+ )i2
2~l nl

(63)

D. High ratio of photon energy to final electron energy
(case of emission only)

For emission only we may consider the limit
co/Ef »1, with E; arbitrary. By adding also the high-
frequency condition co »1, this case can be related to Eq.
(61a) if use is made of the time reversal formula Eq. (41).
By applying the transformation Eq. (42) to Eq. (61a) we
find

fHF'=(I/4' )e I (1+nf )(e*.v,. ) (65)

A particular case of this limit is the one in which the
final electron is left at rest (Ef~0, E; —=2'). This new
limit cannot be performed directly on the matrix element
Eq. (65) because I (1+nf ) has an indefinitely oscillating
phase for infi~~. However, by taking into account
Eq. (63), it is apparent that the limit exists for the cross
section Eq. (1). We find, to lowest order in (1/nf ),

T

d~HF W I2
dQ 16 ~i7i' (66)

If E, also is assumed to be large (E; » 1, in, i
« 1), the

conditions under which Eq. (61a) was derived
[(to/E; ) »1, oi &)1]overlap with those for the Born ap-
proximation (E; )&1, Ef »1). One may inquire then if
Eqs. (61a) and (46) become identical. With in, i «1, Eq.
(61a) reduces to

fHF'= (I/4ar )(e v—f) (64)

When comparing Eq. (64) with Eq. (46) we should recall,
however, that, on the basis of Eq. (59), we have neglected

p; with respect to pf. If this is done in Eq. (46), it then
indeed reduces to Eq. (64},as it should.
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IV. CONCLUDING REMARKS

The analytic evaluation of the general second-order
perturbation theory matrix elements for two-photon
FFT's has yielded the exact, albeit intricate formulas Eq.
(36) and (37), the quantities involved being defined in Eqs.
(27) —(34). However, in the four limiting cases considered
in Sec. III, simple analytic expressions emerge.

Thus, in Sec. III A it was shown that, in first Born ap-
proximation (E;,Ef )&1), the cross sections reduce to
Eq. (47). In Sec. III B it was shown that, at sufficiently
low frequency [(to/E; ), (aI/Ef ) « I], they reduce to Eq.
(58). Although obtained under different conditions,
Eqs. (47) and (58) are quite similar in form. As the two
conditions may overlap [when E„Ef)) 1 and

(ta/E, ), (aI/Ef ) « 1], it is reassuring to see that then the
two formulas actually coincide. By simple inspection one
realizes that Eq. (47) can be formally applied to both
cases of Sec. IIIA and Sec. IIIB: in the first case it is
applicable for a11 0, whereas in the second only for 0%0.
The simple cross section Eq. (47) appears to play a rather
central role since we have been able to identify it as an
underlying structure of our numerical results, even in
cases when the aforementioned conditions are not we11

satisfied.
The other two limiting cases considered in Secs. III C

and III D refer to high photon energy compared with the
initial and final electron energy, for the cases of absorp-
tion and emission, respectively, and end up with Eqs. (61)
and (65). Since also the condition aI &) 1 was invoked in
their derivation, they are at present mainly of theoretical
interest. A numerical computation of the absorption and
emission differential cross sections, Eqs. (1) and (2), based
on our formulas of Sec. II, is now in progress.
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Here q, and qf are non-negative integers, and the integral
is to be calculated along the closed contours defined in
Sec. II. Principal branches of the complex powers enter-
ing Eq. (A1) have to be taken {i.e.,
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The integral over g2 can immediately be performed by

the residue theorem to give
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—1

t, +U
X I+(1 t2+s
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Since the integration contour in Eq. (A2) is a loop around
the points g, =0 and 1, it may be tightened such as to
encircle g, =0 infinitesimally. In the vicinity of this point
the integrand is bounded (for q, =0) or vanishes (for

q; & 0). Therefore the infinitesimal arc around g, =0 does
not give a contribution to the integral and we may write

APPENDIX:
CALCULATION OF INTEGRAL I (q, , qg )

We shall now calculate the integral of Eq. (26):
n, +q, ~ n&+q

b2
I(q;,qf)=f dg, f dg,
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Now the contour starts at (,=0, encircles g, = 1 in the
direct sense, and then returns to g, =0.

We may compare Eq. (A3) with the integral represen-
tation of the Appell hypergeometric function of two vari-
ables F, :

F1(a;b1,b2', C;x1,x2)
liT(C 0) r(c)

2 sin~(c —a) I (a)I (c —a)

X f ga --1(
1 g)c

—a —
1( 1

1

X
1

(s +t, g, +t~(, +U(,(, )
(Al)

X(1—x2() 'dg,

valid for Rea )0. Thus Eq. (A3) becomes

(A4)

n& +q& —1

sI (q, ,qf ) =4vr (n, + q, )(nf +qf )
t1 t1+u

+ 1
~1 n +q + 1 1 nf qf, 1 + nf +qf,'2; (A5)

This can be simplified by using one of the transformation formulas for F, (a;b, , b2, c;x, , x2), and noting that the
transformed F, (a', b', , b2, c';x', , x2) has in our ease b', =0, and consequently reduces to an ordinary Gauss function
2F, . We finally get the expression
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I(q;, qf )=G(q;, qf ) 2F, (n;+q;+ I,n&+qf+1, 2;z),

where

n, +q,. +nf +qf
G(q, , qf )= 4v—r (n; +q;)(nf+qf )

(s+t, )
' ' (s+t2)

t, t2 —su
Z =

(s+t, )(s+t2)

(A6)

(A7)

(A8)

In Eqs. (27)—(31) of Sec. II we also need the derivatives of I(q;,qf ) with respect to t„ t2, and u. By using the formula
for the derivative of a Gauss function, ' we find

n;+q;+1 t2 nf+qf+1
Bt,

= ', +'t, G(q qf), +t 2 2F, (n;+q, +2,n&+q&+2, 3;z)

—2F, (n;+q, +2,n&+q&+1, 2;z) (A9)

The expression for c}I/Bt2 can be obtained from Eq. (A9) by interchanging both t, and t2, and the subscripts i and f.
[Note that G (q, , q& ) remains invariant. ] Finally,

,'(n;—+—q;+1)(nf+qI+1)s(s+t,} '(s+t2} 'G(q;, q&} 2F, (n;+q;+2, nf+q&+2, 3;z) . (A10)
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29See M. Gavrila, Ref. 2, Sec. 3.1, Eq. (3.12) and the subsequent

dlscusslon.
See M. Gavrila, Ref. 2, Eqs. (3.33) and (3.45).

3~In usual (non-Z-scaled) atomic units, fe+ of Eq. (46) is indeed

proportional to Z.
Equation (46) also agrees with the low-intensity limit of the
first Born approximation result for the two-photon FFT ma-

trix element obtained (for arbitary intensities) by Bunkin and
Fedorov, Ref. 13; see also M. Gavrila, A. Maquet, and V.
Veniard, Ref. 5, Sec. 4.1, in particular Eq. (4.4).
This is precisely what happens for forward and backward
scattering, v, -=+vf, in the scattering geometry chosen in Ref.
5, where v, le. An illustrative case is that of Fig. 1(b) given
there which, although not truly within the validity of the
Born approximation (as the condition E; &&1 is not really
satisfied), indicates nevertheless this trend.

34See, A. Erdelyi et a!., Ref. 27, Sec. 2.10, Eqs. (7) and (8).
3~The amplitudes 8 and E should be equal because of the invari-

ance property Eq. (43a) and the fact that now p, -=pf.
3sSee I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,

Series and Products (Academic Press, 1965), Sec. 7.5, Eq.
(7.511). Note that in the case of the amplitude C we have
r, s, t ~2.

37For example, see J. M. Jauch and F. Rohrlich, The Theory of
Electrons and Photons (Springer, Berlin, 1976), Sec. 16.1.
The soft-photon limit of the Sommerfeld matrix element (Ref.
4) can be obtained directly from his formula [M. Gavrila, A.
Maquet, and V. Veniard (unpublished)]. L. Rosenberg, Phys.
Rev. A 26, 132 (1982), has developed an alternative, varia-
tional method for this purpose, leading to his Eqs. (3.28) and
(3.29). Both ways reveal the presence of inca terms, which
limit the validity of the Low fromula for the Coulomb case to
only its dominant term in 1/co.
See Erdelyi et al. , Ref. 27, Sec. 5.8.2, Eq. (5).

~Erdelyi et al. , Ref. 27, Sec. 5.11, Eq. (2).
4'Erdelyi et al. , Ref. 27, Sec. 2.8, Eq. (20).


