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State densities and ionization equilibrium of atoms in dense plasmas
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The semiclassical Bohr-Sommerfeld quantization condition is used to derive an approximate
analytical expression for the state density of the hydrogen atom in a dense plasma. An ion-sphere
model with an infinitely high potential wall is assumed. The expression leads to a universal curve
that spans all values of the electron density. The curve is continuous and smooth over the entire en-

ergy range, starting from the hydrogenic state density for low-lying bound states and approaching
the plane-wave state density in the high-energy limit of the continuum. The number of bound states
is approximately proportional to the inverse of the square root of the electron density. Integration
of the state density over the Boltzmann distribution of the electronic energy results in an ionization
equilibrium relation, leading to modified Saha s equation. The correction factor for this modified
equation is a function of both the electron temperature and the electron density, and is expressed as
a universal function of the ion coupling parameter.

I. INTRODUCTION

Recent experimental studies of dense plasmas have
stimulated theoretical investigations, where the aim is to
interpret the spectroscopic properties of atoms and ions
contained in such plasmas. These investigations include
calculations of energy levels and Stark broadening of
bound states, carried out according to various models. '
These models range from one-electron central-potential
treatments, with or without nonspherical perturbation by
other particles in the plasma, ' to many-particle treat-
ments in which electron-electron and electron-ion in-
teractions are explicitly taken into account. These de-
tailed calculations are, however, restricted to low-lying
bound states.

For high-lying bound states, there seem to have been
no such detailed calculations. Electrons in these states
are loosely bound, and their motion is strongly affected
by the presence of plasma electrons and ions. The states
having a large electron orbit may even disappear. Low-
energy continuum states are also expected to be affected
strongly. A consequence of these effects may be de-
scribed as the continuum lowering, which has been stud-
ied in detail theoretically, especially for a partially ion-
ized hydrogen plasma. In the conventional theory of
plasma spectroscopy, the low-lying bound states are often
assumed to be those of an isolated atom, the continuum
states are assumed to be the free-electron states, and the
ionization limit is lowered because of the changes in the
average potential. This approximation is useful for some
purposes, but may be too crude for other purposes. This
is mainly because the assumption of the free states is in-
valid even for an atom in a low-density plasma; this as-
sumption is equivalent to neglecting the electron-ion in-
teractions, which would be substantial.

Salient features of the emission spectra from plasmas in
the recombining phase or in ionization balance are the
series lines (due to bound-bound transitions) converging
to the series limit and the recombination continuum (due
to "free"-bound transitions). For a low-density plasma,
Stark-broadened lines near the series limit merge with
their neighbors, resulting in a continuumlike spectrum.
This "quasicontinuum" connects smoothly to the recom-
bination continuum. This continuation, especially the
smooth change of the intensities, cannot be expressed by
the above "continuum-lowering" approximation. In fact,
we are unaware of any satisfactory explanation of these
features in the literature.

For high-density plasmas, the situation is even more
complicated. Weisheit and Shore' propose a "tran-
sparency window" in the higher members of Lyman
series of the neutral hydrogen, and an observation of the
transparency window is reported on mercury. " Hohne
and Zimmermann' claim that the "window" is a numeri-
cal artifact of the calculations of Ref. 10. However,
another, recent paper reports an observation of a similar
phenomenon. " Thus the question of whether the tran-
sparency window exists or not is still unsettled.

These facts suggest that our present understanding of
the high-lying bound states and the low-energy continu-
um states of atoms immersed in a plasma is still at a
primitive stage. A reasonable model is needed that is

capable of interpreting the features as described above.
This model should be based on the fact that, for an isolat-
ed atom, various properties of high-lying bound states
continue smoothly to those of the continuum states
across the ionization limit. Naturally, this model and as-
sociated calculations should be consistent over the whole
range of energies of atomic states, i.e., from the low-lying
bound states to the high-energy continuum states.
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FIG. 1. Reduced density lXl
' 'G(a)

[=(r, /a )' og(E/R)] of electronic states as a function of X
[ =(F /R )( r, /ao ) ]; see Sec. III. There are both bound and con-
tinuum states in a region —2 X —1, and the density of con-
tinuum states is separately shown in this region. Also shown
are the reduced density of the bound states of the hydrogen
atom and that of the free states described by plane waves.

Saha's equation, which describes the ionization equilib-
rium relation for atoms and ions in plasmas, is also based
on the conventional approximation in which high-lying
bound states of an isolated atom are cut off and the free-
electron model is used for the continuum states. A quan-
tity important in discussing Saha's equation is the density
of states. In the following we consider the density of
states of hydrogen in a plasma consisting of neutral hy-
drogen atoms, protons, and electrons.

We start our discussion with an isolated atom. An
electron in a bound state (with an energy E & 0) is bound
by the Coulomb interaction with a proton. The density
of states per unit energy interval is that of the hydrogen
atom:

g„(E/R)=lE/Rl '/' (E&0),
where R (=13.6 eV) is the Rydberg unit. For the free
electrons (E )0), the state density is expressed as

gF(E/R) =(E/R)' /(2m n, ao ) (E )0),
where ao is the Bohr radius, and n, the number density of
free electrons.

As shown in Fig. 1, the state density g H
(E/R ) diverges

as E approaches zero from negative values, whereas
gF(E/R ) tends to zero as E approaches zero from posi-
tive values. This unphysical discontinuity is due to the
inconsistency in the treatments in the positive- and
negative-energy regions. In an actual plasma, especially
when its particle density is high, the conventional Saha s
equation is well known to be invalid; a more elaborate
treatment of the state density on both sides of the ioniza-
tion limit is necessary.

Thermodynamic equilibrium relations, such as Saha's
equation, are also important in relating, on the basis of
the principle of detailed balance, the rate coefficients for a

II. MODEL POTENTIAL AND THE BOHR-
SOMMERFELD QUANTIZATION CONDITION

We introduce a sphere centered on a proton and with a
radius r; = (4mn, /3 )

' . We refer to this sphere as an
ion sphere. It has a volume 1/n„which is the average
volume occupied by an unbound electron (and by a pro-
ton). The boundary condition on the surface of the ion
sphere is often chosen such that no force would act on an
electron placed there. In the present paper, however, we
adopt a different boundary condition.

We assume that the density of electronic levels in the
hydrogen plasma is approximated by the state density of
the hydrogen atom confined in an ion sphere, namely, the
density of levels held by the electron-proton interaction
potential e /r surrounded —by an infinitely high poten-
tial wall at r =r;. Here, e is the charge of an electron.
This model is probably too crude for calculations of par-
ticular energy levels. The interest here, however, is not in
the shift from a pure hydrogenic level or Stark broaden-
ing but in the overall distribution of the level density.
The present model should be useful for this purpose. It
should be noted that, if the potential inside the infinite
wall is zero, the correct free-electron state density per
electron, given by Eq. (2), is reproduced, whatever the po-
sition of the wall may be. Thus we expect that putting an
infinite wall in our model at r = r, has a weak effect on the
density of high-energy continuum states, for which the
interaction potential is weak relative to the kinetic energy
of the electron. For this reason we will find that the state
density in this model approaches gF(E/R) at high E.
The low-lying states that are confined within the ion
sphere by the Coulomb potential are unaffected by the
wall.

We apply the Bohr-Sommerfeld quantization condi-
tion':

fp„dr = h (n —l —
—,
'

) (3)

for the state with a principal quantum number n and an

pair of atomic processes that are inverse to each other,
e.g. , ionization by electron impact and three-body recom-
bination. These rate coefficients are essential for the un-
derstanding of the properties of a plasma that deviates
from thermodynamic equilibrium. In this respect, we
need a reasonable model for the state density that re-
places Eqs. (1) and (2). The states of such inequilibrium
plasmas may be expressed in terms of a particular popu-
lation distribution over the state densities over the whole
energy range. If the plasma is in thermal equilibrium,
this distribution is the Boltzmann distribution at a cer-
tain temperature.

As a step toward understanding these properties of
plasmas, we present a simple model for the density of
states of hydrogen plasmas. We will find that the resul-
tant state density is continuous across the ionization lim-
it, is consistent over the entire energy spectrum, ap-
proaches gF(E/R) at high E, and coincides with
gH(E/R) for low-lying bound states. The ionization
equilibrium of dense plasmas is also discussed with use of
this state density.
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azimuthal quantum number I, where h is the Planck con-
stant and p, the radial component of the momentum of
the electron. The integral is to be taken over the whole

period of the classical motion of the electron, and it is
equivalent to twice the integral from the inner turning
point r & to the outer turning point r & . Equation (3) is

known to reproduce exactly both the density gH(E/R) of
the quantum states of the hydrogen atom and the density
gF(E/R ) of the plane-wave states in a vanishing potential
within a finite sphere.

The density dn /dE of states with a given l may be cal-
culated by differentiating Eq. (3) and by noting that
BE/Bp„ is the radial velocity v„, or p„/m„where m, is

the electron mass. It follows that

=2(m, /h ) J p„'dr, (4)

with

III. DENSITY OF STATES

p, = [2m, (E —V, )]'~~,

where Vt is the effective potential for the partial wave l,
i.e., the sum of the Coulomb and centrifugal potentials.
Because each (n, l) level is 2(2l+1)-fold degenerate (in-

cluding the spin doublet), the density of states of the hy-
drogen confined in the ion sphere is the sum of
2(2t+1)dn/dE over all possible values of I including
zero. This sum is known to be accurately reproduced by
the integral over I+—,

' from zero to its maximum value,

using a semiclassical approximation.

with

=(r, /ao)' ~X~ G(a), (8a)

For X~ —1, X has a lower value than the potential
everywhere in the ion sphere, if k )X +2, and eigenstates
exist only for 0 A, X+2. In this case, the outer turn-
ing point is always at the potential wall. If there were no
potential wall, the electron in any of these eigenstates
would be able to escape into other ion spheres. In this
respect, there is no physical distinction between states
with a positive energy and those with a negative energy,
if X~ —1. Thus all eigenstates in this energy region
should be regarded as belonging to the continuum. This
may be regarded as continuum lowering due to the ex-
istence of the potential wall that simulates the interac-
tions with charged particles outside the ion sphere.

For —2 X —1, the outer turning point is at the po-
tential wall if 0» X»X+2, and the states having an an-
gular momentum in this range should be regarded as be-
longing to the continuum. In other words, the magnitude
of the continuum lowering in our model is 2EO.

It should be noted that, in the same energy region
—2» X» —1, there are also bound states, each of which
has an angular momentum satisfying X+2&A, (~X~
The outer turning point for such a state is inside the ion
sphere, and, consequently, the state is identical with a hy-
drogenic bound state. When A, & X~ ', X is lower than
the potential minimum and no eigenstates exist.

The density g (E/R) of states in our model, explained
in Sec. II, is analytically calculated (see Appendix) to be

g (E/R ) =g„(E/R )G(a )

In the following derivation we use

Eo=e /(2r, )=R/(r, /ao)

+=X(X+2j,
where

(8b)

as the unit of energy, and r, as the unit of length. We
define dimensionless quantities:

G(a) =rr '[ —', a' —v'a(a+ I )

+ ln( v a+ v'a+ 1)] for 0 (X, (9a)

X=E/Eo =(E/R)(r, /ao),

p=r/r, =(r/ao)/(r, /ao),

(6b)

(6c)

G(a)=~ '[ —
=', (

—a)' ' —&—a(a+1)

+sin 'v' —a] for —1 X &0, (9b)

and

A, =(1+,')'/(r, /a, ) .

The effective potential is

(6d) t}1

G„„,(a) =m '[ ——'-, (
—a) ~ + v —a(a+1)

G (a) =G„,,„,(a)+ G„„d(a) for —2 (X( —1, (9c)

and

Vi /Eo = —2/p+ A, /p (p & 1 )

V/E, =~ (p&1) .

(7a)

(7b)

and

—sin '& —a acr]—
Gb„d(a) =a+ 1,

(9d)

(9e)

It has a single minimum —1/A, at p =k and no max-
imum; the turning points p and p depend on both E
and k.

It immediately follows from Eq. (7) that, for X ( —2,
eigenstates exist only for 0 & k & ~X~ ', for which

p & & p & ( 1. These eigenstates are identical with the
bound states of the free hydrogen atom, because the elec-
tron is not affected by the potential wall lying beyond the
range of its classical motion. Consequently, the state
density for X & —2 coincides with g H (E /R ).

and

O(a) =1 for X ( —2 .

The leading term in the asymptotic form

(9f)

~X~
' 'G(a) = X' '[1+—,'X '+O(X ')]

3~
(10)

for large X that follows from Eq. (9a) is consistent with
Eq. (2) for the free states. This is to be expected since the
Coulomb potential has a weaker effect for a larger kinetic
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tion over the continuum gives the number density n, of
the hydrogen ions. The integral or, more accurately, the
sum over the bound-state spectrum gives the number
density no of the neutral hydrogen atoms. For the hydro-
gen plasma, the charge-neutrality condition requires that
n; =n, .

The simplest approximation would be to use the free-
electron model, described by Eq. (2), for the continuum
spectrum and the hydrogenic model, described by Eq. (1),
for the bound-state spectrum. Then it follows that
no=2Nso(T), where Ns is the normalization constant
for the Boltzmann distribution, and where 2o(T) is the
partition function, i.e.,

n, =n,

=Nz g —exp
conti R

E E

1/2

J [IX~ '"G(a)]

no/(n, n„, )=eA'o(T), (19)

X exp( —I X/2)dX,

which is the integral of the Boltzmann distribution only
over the continuum, may change drastically from the
free-electron case. The correction factor 8, defined by

R/s
o ( T) =g s'exp

S 8

k& is the Boltzrnann constant. It also follows that

n, =n,

E E E
s gF R

exp d

(14) is the ratio of (n, n, ) for Saha's equation to that in our
model renormalized by N~. Therefore its inverse may be
calculated from

n, ne-'=N, '

2A

=3&7r(I /2)' f ™
[~X~

' 'G(a)]e 'dX .

Ns
3

4~a on,

' 1/2

X exp
0 377

I X
2

=2NsA /n, , (15)

where A is the thermal de Broglie wavelength of free elec-
trons:

A = h /+2~m, ks T (16)

The quantity I in Eq. (15) is the so-called ion-coupling
parameter, which is the ratio of the representative
Coulomb energy e /r, ( =2EO ) to the kinetic energy kii T.
Saha's equation,

no/(n, n, )=A o(T, ), (17)

follows from Eq. (15).'

The partition function (14) becomes infinite if the sum-
mation is taken over all the bound hydrogenic levels. In
view of the continuum lowering, however, the summation
should be terminated somewhere. At low temperatures,
the partition function hardly depends on the cutoff prin-
cipal quantum number, unless it is unreasonably large;
only the ground state (s =1) contributes significantly to
o(T) at low temperatures. At higher temperatures and
for more accurate treatments of higher energy levels,
various methods have been proposed to modify the parti-
tion function. '

According to the arguments in Sec. III, the continuum
part of the spectrum in our model is given by Eqs. (9a),
(9b), and (9d), and the bound-spectrum part is given by
Eqs. (9e) and (9f). Because all the bound states are hydro-
genic states, and because the contribution to o ( T) from
high-lying states is negligible at low temperatures, the
neutral density no is nearly the same (at low T) as in
Saha's equation to within the normalization constant N~
for the Boltzmann distribution. However, the ion density
n, ,

(20)

The correction factor depends on both n, and T, but is a
function only of I .

The low- and the high-I behavior of Eq. (20) may be
easily studied. First, for small values of I, Eq. (20) has a
dominant contribution from the integral over large values
of X. Therefore the expansion (10) may be substituted
into Eq. (20). This leads to a correction factor:

e =1 —-,-'r+ 0( r-'") (21)

for small I . Retention of only the leading term in Eq.
(10), which is equivalent to the assumption of the free-
electron model, reproduces Saha's equation 8= 1 as it
should. Second, for large I, the cont ribution from
X= —2 is dominant. Therefore the expansion (1 lb) may
be used in Eq. (20), and the variable of integration may be
changed from X to X+2. This factors out an exponen-
tially growing factor, and 8 contains an exponentially de-
creasing factor as

2e=—
3

' 1/2r 1+ r ' /0(r ') . (22)
i/7r

Figure 4 shows the correction factor as a function of I
and corroborates the low- and high-1 forms (21) and (22).
Figure 5 compares, for various temperatures, the correc-
tion factor as a function of n„with that obtained by a
quantum-statistical method given in Ref. 1.

A simple phenomenological way of correcting Saba's
equation for the effect of continuum lowering by AE is to
replace the ionization potential R /s in Eq. (14) by
R /s —hE. This introduces an extra factor,
exp( —AE/k&T), into Eq. (14), as long as the contribu-
tion to u( T) from high-lying bound states is negligible. If
the free-electron state density (2) is shifted to lower ener-
gies by b,E, the integral of Eq. (15) is unchanged. There-
fore the correction factor e is exp( —b,E/kii T). Since
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b,E =2Eo (or AX=2) in the present model, this phenom-
enological correction factor equals exp( —I ) and corre-
sponds to a shifted reduced density (2/3n)&X+2 for
free electrons. Figure 4 shows that this simple approxi-
mation largely accounts for the ionization equilibrium in
our model. This is consistent with the observation made
in Sec. III that the shifted free-electron state density
roughly approximates the state density predicted by the
model.

It should be noted that, at high temperatures, not only
the continuum contribution is corrected by e, but the
partition function may also be modified.

In the model of this paper, the potential field that an
electron feels takes a value —2Ep at the boundary of an
ion sphere, beyond which the potential field of another
ion sphere is lower than —2Ep. This is the physical
reason for the continuum lowering by 2Ep explained in
Sec. III. (Bound states exist even above —2Ep depending
on the angular momentum, because of the centrifugal
barrier. ) In other words, the continuum lowering in our
model is a result of the lowering of the potential field be-
cause of the interaction of an electron with the charged
particles other than that proton with which the electron
interacts dominantly. The ion-sphere model is often used
in the literature with a boundary condition dV/dr =0 on
the surface of the sphere. In this case, the magnitude of
the continuum lowering is Ep.

Inglis and Teller (IT) applied the first-order perturba-
tion theory to the Stark shift of the hydrogenic levels due
to the field of charged particles in the hydrogen plasma.
%'hen the maximum displacement of a level n is larger
than half the level spacing, the lines with adjacent n

merge into one another, and a quasicontinuum of lines is
observed. Assuming that this is the origin of the continu-
um lowering, they calculated the n value of the highest
bound states to be

n' = (1.8 X 10 ' cm In )'
e (23)

This is to be compared with n, of Eq. (12b) in our model;
note that the point of deviation from the hydrogenic state
density gives the continuum lowering in our model. The
ratio r, =n, /n', is 1.6 for n, =10' cm ', 1.4 for
n, = 10' cm, 1.2 for n, = 10 ' cm, and 1.0 for
n, =10 cm . The corresponding ratio of the magni-
tudes of continuum lowering is r, . In the ion-sphere
model with a boundary condition dV/dr =0 on the sur-
face, the value of n, is &2 times Eq. (12b).

The ion-sphere model is often considered to be a
reasonable approximation for strong-coupling plasmas
for which the ion-coupling parameter I" is larger than
one. However, the ionization equilibrium derived from
the present model appears, in fact, to be reliable, even for
weak-coupling plasmas, as is evident from Eq. (21) and
Figs. 4 and 5. This result stems from the correct high-
energy behauior (10) of the density of states, which is a
consequence of the fact about the density of states in the
ion-sphere model explained in the second paragraph in
Sec. II.

The notion of the density of states applies only to the
continuum or quasicontinuum of states by definition.
Therefore, naturally, the model of this paper is inaccurate
for bound-state spectra with a small number of bound
states and, hence, for bound-state spectra for very high
electron densities n„e.g. , close to 10 cm

One of the more accurate methods of computing the
ground and low-lying excited states of atoms in plasmas
with high n,„ is used in Ref. 4. It reports calculations of
low-lying energy levels of systems consisting of many
atoms in various crystal-cell-like fixed configurations.
The tightly bound ground state is found to form a quasi-
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molecular orbital in high-density plasmas. By contrast,
the present paper deals with the density of states over a
wide range of energy spectra, including high-lying bound
levels and continua, to which no reliable consistent com-
putational methods appear to have been applied in the
literature. Our interest is in the global structure of the
density of states, rather than a detailed knowledge of a
small number of particular states. For this reason we
have paid little attention to the ground and a few excited
states, except in the study of the number Xb„d of bound
states, in which Xb„d has been discussed up to high n, for
clarifying the general behavior as a function of n,

In conclusion we note that the simple model presented
in this paper results in reasonably accurate density of
states and ionization equilibrium. Because of its simplici-
ty and the scaling relations, the model should be useful in
many practical applications. In the discussion on the
modification of Saha's equation, only the correction e for
the modification of the continuum spectrum has been
considered. If the (low-lying) bound levels are shifted to
a great extent, or if the plasma temperature T is very
high, the partition function cr( T) also needs to be
modified accordingly.

I(A, ,X)=f p(Xp'+2p —
A, )

' 'dp
P.

(A3)

according to Eqs. (4), (5), and (7) in the text. The smaller
turning point is

p, =X-'[()+XX)'"—1] (A4)

for XWO, and the limiting value A, /2 is to be used for
X=0. The greater turning point is

and

p& =1 for X +0, (A5a)

p& =min[1, (
—X) '[( I+XA. )' +1]] for X &0 .

(Asb)

( I+Xi, )'

X+ 1+[X(X+2—X)]'
for X &0,

(A6a)

The use of standard integral formulas leads to the fol-
lowing equations:

1(X,X)=X '(X+2 —X)'"+X-'"
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7T ~ —]

2

X+1
(1+X'.)'i

I (X,X)= —,(1+A, )(2 —
A. )' for X =0,

I(A.,X)=X '(X+2 —
A. )' + ~X~

(A6b)

APPENDIX

Equations (8) and (9) in the text will be derived here.
As explained in Sec. II, the density g (E/R) of states in
our approximation is

g(E/R)= f 2(2t+1)R d(l+ —,'), (A 1)

g (E/R) =
5/2

TI

ao
—f 1(X,X)dz,1

(A2)

in terms of the reduced quantities defined in Sec. III,
where

where the range of the integration over l + —,
' is from zero

to the maximum physically allowed value. Equation (Al)
may be rewritten as

for X &0 and p& =1, (A6c)

I(A, ,X)=vr~X~ ' for X&0 and p, &1 . (A6d)

The integral I (A„X) takes different forms depending on
whether X is positive or negative. Also, the upper limit
A. ,„of the integration over k and the turning point p&
dift'er depending on the value of X. Therefore the whole
region of X is divided into four: (a) X & —2, (b)
—2 X & —1, (c) —1 X&0, and (d) 0 X. A, ,„and p&
in each region are discussed in Sec. III: 0& I, & X~ and

p& &1 in region (a), 0&A, X+2 and p& =1 for the con-
tinuum in region (b), X+2 & A, & ~X~

' and p& & 1 for the
bound states in region (b), and 0 A. &X+2 and p& =1 in

regions (c) and (d). The integration of I(X,X) over A, in
each region of X is straightforward by use of standard in-
tegral formulas, and Eqs. (8) and (9) may be derived easi-
ly.
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