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A nonlinear Schrodinger equation that governs the nonlinear interaction of a quasistatic plasma

slow response with ion acoustic waves for a two-ion collisional plasma is derived. The effects of col-

lisions and concentration and mass of impurity ions on the instability of obliquely modulated ion

acoustic waves are discussed. The following results are found: {i) In the case of a single-ion col-

lisional plasma, for small values of k, the value of 8 above which the wave is unstable increases in

comparison to the collisionless case; (ii) the presence of heavy ion impurities has no effect on the

stable region in k-0 plane either for collisionless or collisional plasmas; {iii) the presence of light ion

impurities changes the modulationally unstable domain drastically. The variation of this effect with

the concentration and mass of impurities and collisions for the collisional plasma is discussed in de-

tail.

I. INTRODUCTION

Modulational instability of ion acoustic waves in a
dispersive and weakly nonlinear plasma has been studied
by several authors theoretically' as well as experimen-
tally. ' Considering the harmonic-generated non-
linearities, the above-noted authors' derived a non-
linear Schrodinger equation for different types of plas-
mas, i.e., single-ion plasma, two-ion plasma, two-
electron-temperature plasma, etc. The derived nonlinear
Schrodinger equation governs the dynamics of nonlinear
ion acoustic wave packets for different types of plasmas
for parallel and oblique modulation.

The nonlinear slow quasistatic plasma response to ion
acoustic waves leading to modulation of ion acoustic
waves has been studied by several authors. " ' In a re-
cent paper' we have extended this study to the case of
oblique modulation. In all these studies of modulational
instability, the plasma has been assumed to be collision-
less. However, in all realistic situations, plasmas have
some collisional dissipation, which is generally small. In
one of our recent papers' we investigated the effect of
collisions on the modulational instability caused by
harmonic-generated nonlinearities.

In the present paper we investigate the effects of col-
lisions and concentration and mass of impurity ions on
the instability of obliquely modulated ion acoustic waves
due to nonlinear interaction with slow quasistatic plasma
response. We investigate three cases: (i) the single-ion
collisional plasma, (ii) the two-ion collisionless plasma,
and (iii) the two-ion collisional plasma.

Collisions affect the modulation in two ways: they give
rise to (i) a slow damping of the carrier wave and (ii) a
modification of the equation governing the modulational
instability of the wave. %'c usc a coordinate transforma-
tion that separates these two effects. The second effect is
then investigated in detail.

The presence of impurities changes the coefficient of

the nonlinear term in the nonlinear Schrodinger equation.
It is found that in the presence of light ion impurities, the
sign of the coefficient of nonlinear term (i.e., g) depends
on the concentration (a) of impurities. Hence the unsta-
ble domain strongly depends on the impurity concentra-
tion. In the presence of heavy ion impurities, the sign of
Q does not depend on a. Hence the stable and unstable
domains are independent of the impurity concentration a
for this case.

Our analysis is very general in the sense that the earlier
studies by Shukla, " and Mishra, Chhabra, and Sharma'
are obtained as a special case of present analysis.

Basic equations are given in Sec. II. In Sec. III, we
derive the nonlinear Schrodinger equation. Section IV
contains some discussion and Sec. V contains con-
clusions.

II. BASIC EQUATIONS

We consider an obliquely modulated ion-acoustic wave
traveling in the (x-y) plane in a warm two-ion plasma,
(i.e., main plasma ions and impurity ions) and a hot iso-
thermal electron, collisional plasma. We assume that the
modulated amplitude of the ion acoustic wave varies in

the x direction. The nonlinear interaction of 6nite-
amplitude ion acoustic waves with the background col-
llsioIlal plasma is govcl ncd by thc following sct of Ilor-
malized equations:

Bni ) +V'. {n,lV, l) =0,

av„ 1 1 TI 1
i] i] p p T il it+(V .V)V = ——VP —— Vn —o V

Bntp
+V (n, ,V,~)=0,
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BV,2 1

P P T
+(V V)V = — VP —+ Vn —crV

VP= Vn, ,
1

n

V cti=n, —(1 —a)n„a—n, 2,

(4)

(5)

(6)

In deriving Eq. (11), ions are assumed to be much colder
than electrons, i.e., T, /T, « l. Also, we used the
quasineutral and quasistatic behaviors of plasma towards
slow response, i.e.,

[( 1 —a )n, '& +an, '2 ]=n,' and V,
' =V,' =0 .

In the absence of nonlinear interaction, the lineariza-
tion of (11) yields the following dispersion relation:

where V=( V,„,V;,0), V=(BIBx,BIBy,0), a=n;2'In'
@=M, /Mz, and P=(1—a+iLta).

In the above equations, n, , V„and n, 2, V, 2 are the den-
sity and fluid velocity of the two-ion species, n, is the
electron density, iI) is the electrostatic potential, o is the
ion-electron collision frequency, p is the mass ratio of the
main ions to the impurity ions, and o. is the fractional
concentration of impurity ions. As a simplification, we
have taken the same collision frequency for both the ions.
In Eq. (5), we have neglected the electron inertia. The
quantities V, (ti, t, (x,y), o, and (n, „n,2, n, ) are normal-
ized with respect to the ion acoustic wave speed in the
mixture C, =(T,p/M, )', thermal potential (T, /e), in-

verse of the ion plasma frequency co; ', Debye length XD,
co;, and the unperturbed plasma density no, respectively.

III. DERIVATION OF THE NONLINEAR
SCHRODINGER EQUATION

We are interested in investigating the slow quasistatic
plasma response to the ion acoustic waves. Therefore, we
write the field quantities in normalized form as follows:

n =1+n-+n',
V =V'+V'i '

yh+pl (9)

n "=(1+n ')y" (10)

Now we combine Eqs. (1) and (2), and (3) and (4). Then
introducing Eqs. (6)—(9), we obtain the following non-
linear equation for the ion acoustic waves in the presence
of the plasma slow response:

a2 a2 a2 a2 a21—
ax' ay' at' ax' ay'

a ' a' a

Qy
~ ()t

where n '"«1. The superscripts h and I represent the
corresponding quantities associated with the ion wave
(high frequency) and with the quasistatic plasma slow
motion (low frequency), respectively.

Using Eqs. (7)—(9) in Eq. (5), the electron density per-
turbation associated with the ion acoustic waves in the
presence of the plasma slow motion is given by

k
co(co+io ) =

1+k
(12)

Bk,
k cosO

cost9,
(1+k2)2 Bk

(13)

which is the component of the group velocity (Bco„/Bk)
along the direction of modulation. Here 6 is the angle
between the wave vector of the ion acoustic wave and the
x axis, the direction in which the modulation of the wave
amplitude propagates and ~„ is the real part of co, which,
according to the dispersion relation (12) is given by

2
1/2

4
k

(1+k )

Now we calculate the electron density perturbation n,'

associated with the quasistatic plasma slow motion. Tak-
ing the x component of the momentum balance equations
for ions and electrons,

1 Bp 1 T& 1 B i 1 —cr V;)PBx PT, n, , Bx

(15)

Bv„, Bv, ,„Bv„„
2 g 2p

PBx PT, n„Bx
Bp 1 Bn

Bx n, Bx

(16)

(17)

Using Eqs. (7)—(9) in Eqs. (15)—(17) and averaging over
the ion acoustic wave periods we get

—,
' exp( cr t ) (

~
(
—
V,",„) I ) = ——

BBx

where k =k +k, with k, and k being the x and y
components of the wave vector k of the ion acoustic
wave. The modulation group velocity (i.e., the velocity
with which the modulation propagates) of the wave is
given by

Bt' P Bx' By'
+ cr —n,'i'" =0 .

a
Bt

—,'exp( crt) ( ~( V,"~„)
I ) =——

Ox

(19)
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apl
Bx Bx

B2 B2

By Bt

B B

Bx
where we have assumed that the phase velocity of the
modulation is much smaller than the electron and ion
thermal velocities. In the above equations angular brack-
ets denote averaging over the ion acoustic wave period
and ~( V;,„) ~

denotes the amplitude of ( V,",„) . The
coefficient exp( crt—) represents the damping due to the
presence of collisions. The left-hand side of Eqs. (18) and
{19}represent the ion ponderomotive force. Equations
(18) and (19) can be written as

B'+o. 1—
Bx

h

ay
2 ar

+ +O.—
at P Bx By Bt

1+k2
X

4(1+@)
cos Oexp( cr t )

—
~

({}"
~

P"=0 . (28)

—exp( —o r ) & I( V„„) I ) =-p a „, a' T an, ',

4 ax "" ax T, ax ' (21)

exp( o t ) —
& ~( V;"2„) ) = — — . (22)

4p Bx ' " Bx T, Bx

Now multiplying Eq. (21) by (1—a) and Eq. (22) by a,
and then adding, we get

(1—~)p a
exp( cr t ) & ~ (

—V;"&„)
~ )

2P"=e' P"(g, r)exp( icot+i—k„x+ik y )+c.c. , (29)

where e indicates the magnitude of small but finite ampli-
tude (t", g and r are defined such that'

We assume that the nonlinear interaction of the quasi-
static plasma slow response with the ion acoustic waves
gives rise to an envelope of wave whose amplitude varies
on time and space scales much more slowly than those of
the ion acoustic oscillations. Accordingly, we let

+ exp( crt )
—

& ~( V~2„)~~ }=—
4@ Bx ' " Bx T, Bx

(23)
and

g=e' (x —V t)exp (30a)

where we have used [(1+a)n, +an 2]=n,' Usin. g Eq.
(20) in Eq. (23), we get

(1 —a)P B
exp( o t) &

—
~( V;"&„)2~ }

r=et exp( at) . — (30b)

Substituting Eqs. (29) and (30) in Eq. (28) and using Eqs.
(12) and (13), we get, to O(e ), the following nonlinear
Schrodinger equation:

+ exp( crt) & ~( V,
—"„)'~) =—.~p a

4p, Bx ' ' Bx

T,. Bn,'

Te Bx

l +ayh 1 2k cos9
2 „(1+k ) „(1+k )

or

(1—a)P B
exp( crt) & ~(V—;",„) ~)

an,'+ exp( Ot) & ~(V;"„—) ~)= — 1+
4p Bx T, Bx or

k'cos'g

2'„(1+k ) B(

Q)„k+ " 1+,+8(1+y ) 4''„co'„p

and

h 1 1
tlx

p { + ~

)
x'8

Vh P 1

p (co+icr )

(25)

(24)

Now from the x component of the ion momentum equa-
tions, i.e., Eqs. (15) and (16), we get

i ~ +P ~ +g ~y" ~'y"=0,'
a~ ag'

(31)

where P and Q are the dispersive and nonlinear terms, re-
spectively. The dispersion term 2P is the component of
the modulation group velocity dispersion (Bco„/Bk ) along
the direction of modulation, i.e.,

BV 1 BV 1 Bc@„
P =— cosO=—

2 Bk 2 Bk 2

Using Eqs. (25) and (26) in Eq. (24), we get

~P ~
cos Hexp( crt), —1+k

4(1+@)
(27)

where y = T; /T, is the ratio of the ion to electron tem-
peratures. Substituting Eq. (27} in Eq. (11) we get

or

P= 1

2m„I,'1+k )'-

= —cos 0 +sin 0—
Bk

cos g k cos g

co„{1+k } 2''„( 1+k )
{32)
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o B. Two-ion collisionless plasma

This case is obtained by taking 0.=0. In this case we
have two subcases: (I) heavy-ion impurity and (2) light-
ion impurity.

0,2 0 lj 0.6 0.8
0

1.5

1. Heavy-ion-impurity case

Although the coefficient of the nonlinear term (Q) is a
function of p and a (i.e., impurities), for the heavy-ion-
impurity case (p ( I) its sign always remains positive
throughout the whole region. Therefore, in this case also
the stable and unstable regions are decided by P & 0 and
P & 0, respectively. Whereas the dispersive coe%cient P
does not depend on p and a, therefore the unstable
domain is not affected by the presence of impurities (i.e.,
p, and a). Figure 2 shows the stable and unstable regions
for this case. Hence, in the case of heavy-ion impurities
(say, helium or argon in a hydrogen plasma), the stable
and unstable regions remain the same as in the case of
single-ion collisionless plasma, which is qualitatively in
agreement with the results obtained by Chhabra and
Sharma in which they have considered harmonic-
generated nonlinearities.

FIG. 3. Plot of P =0 and Q =0 in the k-9 plane for two-ion
collisionless plasma having light impurities for a=0.01 at
different values of p. The curve A refers to P=0 (for all values
of p), whereas B and C refer to Q =0 for @=4 and 40, respec-
tively.

2. Light-ion-impurity case

In this case (p) I), the sign of Q changes as k passes
through k„where k, is the critical value of k and is given

0.2 0.4 0.6 oe 10 12

1

I

i0
1.5

I l I I l l 1 I 1 I 1 i0
0.16 0. 2 0 24 0.28 0.30 0.04 0.08 0.12

FIG. 4. Plot of P =0 and Q =0 in the k-0 plane for two-ion
collisionless plasma having light impurities for p=4 at different
values of 0.. The curve A refers to P=O (for all values of n),
whereas B and C refer to Q =0 for a=0.01 and 0.1, respective-
ly.

FIG. 5. Plot of P=0 in the k-0 plane for two-ion collisional
plasma for heavy-impurity cases (p ( 1) at different values of 0..
The curves 3 and B refer to P=0 for cr =0.01 and 0.1, respec-
tively. The dashed curves Dl and D, refer to co, =O (for
o =0.01 and 0.1), below which the wave does not exist. Q is al-

ways positive.
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by Q=O or k, =[a()tt —1)]' . Below k„Q is negative
and above k„Q is positive. In this case the entire k-8
plane gets divided by the curves P =0 and Q =0 into four
regions; in two of them the wave will be stable (PQ (0)
and in the remaining two the wave will be unstable
(PQ )0), as shown in Figs. 3 and 4. The stable and un-
stable regions below k, get interchanged in comparison
to the heavy-ion-impurity case, while above k„ the stable
and unstable regions remain the same as in the heavy-
ion-impurity case.

C)
Cl

C. Two-ion collisional plasma

Equation (33) shows that Q is a function of cr, p, , and
u; but for the heavy-impurity case (p(1), it remains al-
ways positive. Therefore, in this case also the stable and
unstable regions are decided by P & 0 and P & 0, respec-
tively. Equation (32) shows that P is a function of cr,
while it does not depend on p and a. Therefore, in the
case of heavy-ion-impurity collisional plasma, there is no
effect of impurities on the unstable region. The effect of
collisions for the heavy-impurity case is shown in Fig. 5,
which is similar to the case of single-ion collisional plas-
ma.
For light-ion-impurity collisional plasma, the sign of Q
also changes as k passes through k, =[a(p —1)]' . In
this case the entire k-L9 plane gets divided into five re-
gions, in two of them the wave will be stable (PQ (0),
while in another two regions the wave will be unstable

0. 2 0.4 0.6 0.8 1.0 1,2
0

1.5

FIG. 7. Plot of P =0 and Q =0 in the k-8 plane for two-ion
collisional plasma having light impurity for 0.=0.1, p =4, and
at different values of a. The curve A refers to P=O (for all
values of a), whereas 8 and C refer to Q=0 for a=0.01 and
0.1, respectively. The dashed curve D refers to ~„=0, below
which the wave does not exist.
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Ch

0.04 0.08 0.12 0.16 0.2 0.24
0

028 03 0.2 OI 0.6 0.8 1.0 1.2
0

1.5

FIG. 6. Plot of P =0 and Q =0 in the k-0 plane for two-ion
collisional plasma having light impurities for p=4, a=0.01,
and at different values of o. The curves A and 8 refer to P =0
for a =0.01 and 0.1, respectively, whereas C refers to Q =0 (for
all values of o). The dashed curves D, and D, refer to co, =0
(for o =0.01 and 0.1), below which the wave does not exist.

FIG. 8. Plot of P=0 and Q =0 in the k-0 plane for two-ion

collisional plasma having light impurity for o =0.1, a=0.01,
and at different values of p. The curve A refers to P =0 (for all

values of p, ), whereas 8 and C refer to Q =0 for @=4and 40, re-

spectively. The dashed curve D refers to ~„=0, below which

the wave does not exist.



2298 R. S. CHHABRA, M. K. MISHRA, AND S. R. SHARMA 42

(PQ )0), and in the remaining region ( k (k,„) the
wave would not exist. These cases are shown in Figs.
6—8. In the region below k„ the stable and unstable re-
gions are interchanged in comparison to the heavy-ion-
impurity collisional plasma case. On increasing the value
of p and/or a, the value of k, increases.

V. CONCLUSIONS

Our main conclusions are as follows: (i) Due to the
presence of collisions there exists a minimum value of k
for every o. below which the ion acoustic wave does not
exist. (ii) For a single-ion collisional plasma for a given
small value of k, k & k;„,the value of 0 above which the
wave is unstable increases in comparison to the collision-

less case. (iii) The presence of heavy-ion impurities has
no e8'ect on the unstable region in the k-0 plane either for
collisionless or for collisional plasma. (iv) The presence
of light-ion impurities changes the modulationally unsta-
ble region drastically. In this case, below the critical
value of k, i.e., k„ the stable and unstable regions get in-
terchanged in comparison to the heavy-impurity case.
While above k„ the stable and unstable regions remain
the same as in the heavy-impurity case.
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