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We examine the validity of the empirical "linear mixing rule" for the determination of the ther-
modynamic properties of screened binary ionic mixtures interacting with effective density- and

temperature-dependent screened Coulomb potentials. Comparison with hypernetted-chain calcula-
tions reveals generally good agreement and further verifies the reliability of the linear law, even

when the response of the finite-temperature electron gas is taken into account.

I. INTRODUCTION

For many years the study of binary ionic mixtures
(BIM) has been of interest because of their immediate ap-
plication to diverse astrophysical problems as well as to
inertial-confinement experiments in plasma physics.
Phase separation of elements in these strongly coupled
multi-ionic plasma can occur, in principle, in the interior
of low-mass stellar objects. Hydrogen-helium phase sepa-
ration, in particular, has been studied extensively' and is
believed to occur in the interior of the giant planets. Cal-
culations have also been performed for more asymmetric
mixtures (Z2/Z, =3—8) but, until recently, no attempt
has been made to look extensively at the possibility of
phase separation in highly asymmetric mixtures
(Zz/Z

&

~ 8 ). Such mixtures may be encountered in quite
different astrophysical objects. Brown dwarfs, for exam-
ple, are promising candidates for H-Fe phase separation,
and He-Fe phase separation can occur in the crust of
neutron stars. The possibility of Fe-C phase separation
as an energy source in cooling white dwarfs has also to
be explored. For these reasons the investigation of the
phase diagram of such plasmas is of primary interest and
indeed requires very accurate calculations of the equa-
tions of state of the corresponding ionic mixtures.

The HIM model is a straightforward generalization of
the well-known one-component plasma model (OCP), and
consists of a mixture of point ions of charges Z, and Zz
(and corresponding masses m, and m~ ) embedded in a
rigid, uniform, neutralizing background of electrons.
Hansen and collaborators' have shown that the contri-
bution of the ionic fluid to the thermodynamics of the
plasma at constant temperature T and charge density p'
can be expressed, to a high degree of accuracy, as a linear
interpolation between the thermodynamic functions of
the respective pure phases. The excess (nonideal) free en-

ergy of the mixture, as well as the other thermodynamic
quantities of the ionic fluid, can be expressed by the sim-
ple statement

F
=f (I",x, )

=x,f(l, ,x, =1)+(1—x, )f(I ~, x, =0),
where the different parameters will be defined in Sec. II.

Equation (1) is referred to as the "linear mixing rule"
(LMR) and its use simplifies appreciably the calculation
of the thermodynamics of the plasma, in particular the
determination of the phase diagram of the mixture. The
apparent validity of the linear rule has been demonstrated
recently to a very high level of accuracy for a fully ion-
ized carbon and oxygen fluid, and also for solid mixtures
near the phase transition. More recently, DeWitt et al.
have explored the accuracy of Eq. (1) for the BIM for ex-
tremely asymmetric mixtures (Z2/Z~ =16,24) by per-
forming hypernetted-chain (HNC) calculations. Again
they found the agreement to be good, in fact to about 1%
of the thermal energy. In all of these calculations the
electron neutralizing background is considered to be
completely rigid, i.e., characterized by a dielectric con-
stant equal to unity.

As the density decreases, however, the polarization of
the electron gas by the ionic charge distribution must
surely be taken into consideration. It can be approxi-
mately accounted for by introducing the dielectric func-
tion of the electrons. The result is a screened binary ionic
mixture (SBIM) in which the ions interact via effective
screened potentials. It is believed that the phase separa-
tion in the different ionic mixtures discussed above would
then arise in part from the electron screening of the ions,
a contribution that tends to destabilize the mixture. '

Given this, it is necessary to take into account the
response of the electron gas in the calculation of the ther-
modynamic properties of such ionic mixtures. In turn it
is of interest to examine the possible validity of the LMR
for such screened mixtures. In most situations of interest,
the electron gas is just partially degenerate, i.e., the de-
generacy parameter O=kT/kTF is quite far from zero, so
that we are also required to consider the temperature
dependence of the screened potentials. To data, the only
attempt that has been made to include the response of the
electron gas at finite temperature in the phase diagram of
a screened binary ionic mixture is the treatment by Iye-
tomi and Ichimaru. Their work, however, is very re-
stricted in scope and has been applied to solar conditions
only, where the ionic plasma is weakly coupled
(I--5X10 ').

The purpose of this paper is to examine (and in fact
verify) the validity of the LMR, (1) when the response of
the electron gas is taken into account in the effective ion-
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ic interaction, and (2) when finite-temperature effects are
included in the dielectric response of the electrons, i.e.,
when the ions interact with both temperature- and
density-dependent screened Coulomb potentials. We
consider three mixtures with different charge ratios, rang-
ing from a symmetric case (Zz/Z, —1) to a highly asym-
metric case (Z2/Z, ))1). For each mixture we span a
wide range of values for the coupling parameter I, and
the degeneracy parameter 8. This work is to be viewed as
the first step towards an extensive study of the phase dia-
grams of the ionic mixtures mentioned above.

the adiabatic approximation for the response of the elec-
tron gas; i.e., the static limit is assumed valid in the deter-
mination of the electronic dielectric function. The validi-
ty of the adiabatic approximation has been assessed re-
cently even in the domain of low electronic degeneracy
(8) 1), where the finite-temperature effects of the elec-
trons are expected to be important. With this assump-
tion we can integrate over the electronic coordinates, and
the Quid under consideration can then be viewed as a su-
perposition of a uniform electronic background and a
screened binary ionic Quid. The SBIM is then character-
ized by the following effective ionic Hamiltonian: '

II. THK MODKI. H=E,, +K, + V, , (3)

We consider a mixture of N, ions of charge Z& e and

N2 ions of charge Zze in a volume V. Here N, +N2 =N.
The number concentrations are x i =N, /N and
x 2

= 1 x
&

' the partial mean number densities are

p, =N, /V, pz=N2/V. The average charge density is

p'=pizi+p2zz=p(Z &, where (Z & is the mean charge
x, Z, +x2zz, and p=N/V=p, +p2 is the total ionic
number density. We define, respectively, the mean in-

terionic distance a and the mean interelectronic distance
a' by a =(3/4mp)' and a'=(3/4np')' =a/(Z &'~ .
The density parameter for the quantum electron gas is
given as usual by r, =a'/ao, where ao is the Bohr radius.
The electronic and ionic coupling parameters are also
defined, respectively, by

0.543r,I"=e /a'kT=r(Z&'"= ' r =r (Z'"&
g

& /

where

I =e /akT .

We restrict ourselves to densities sufficiently high (i.e.,
values of r, sufficiently small) that ion-electron coupling
remains weak compared to the kinetic contribution of the
electrons. Under these conditions (typically r, ~1), the
linear-response approximation can be used. We also use

I

with

1 + 4ne
k' (4)

In Eq. (3), E, is the energy of the rigid electron gas, i.e.,
the jellium model, E, represents the kinetic energy of the
ions, and V; the effective potential energy after the elec-
tron trace is taken. Here pk=Z&p]k+Z2, where the

p;& are the Fourier components of the ion number Quc-

tuations. The dielectric function e=e(k, T, V, w =0) is
the finite-temperature static Lindhard function, evaluated
in the random-phase approximation (RPA). It follows
that the Hamiltonian (3) is now both density and temper-
ature dependent. For the two lowest densities considered
in our calculations (r, =0.5 and 1), we include a local-
field correction (LFC) in the dielectric function in order
to take into account nonlinear correlation effects between
the electrons beyond the RPA. The LFC used is the one
derived by Utsumi and Ichimaru, "but is corrected in or-
der to include temperature dependence at long wave-
length. The excess internal energy U'" and pressure I""
of the temperature-dependent SBIM characterized by the
Hamiltonian following from (4) are calculated within the
framework of the hypernetted-chain equations and are
given by

U'"= &z &+p
r)/3 v

'

u'"= =— (Z & f dk v(k)[S, (k) —1]+— (Z & f dk v(k) —1 S,(k)
PU'" 1 P 1 /3 1

N 2 (2~)' 2 (2~)' e(k}

(5a)

+— (Z & f dk v(k)
2 (2~)' Bp e(k)

S,(k),
V

(5b)

pex } (~&3 (Sc)

and

pex 1p'"= =— (Z & fdkv(k}[S, (k) —1]+— (Z & f1kv(k) —1 S,(k)
p 6 (2ir)' 6 (2') e(k)

, (Z & fdkv(k) V
1 a
2 (2~) BV e{k) S,(k) .

p

(5d)
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Here U(k)=4~e /k', and S,(k)=p~' k/N(Z ). The
interaction energy is given by the first term on the right-
hand side of Eq. (5a), or alternatively by the first two
terms on the right-hand side of Eq. (5b). The interaction
energy and internal energy are different for a quantum in-
teracting system because of the excess kinetic term, i.e.,
because of the difference of kinetic energy between the in-
teracting system and the noninteracting (perfect gas) sys-
tem. This difference vanishes in the zero-temperature
limit (8=0) and in the purely classical limit (8 &) 1). For
the calculations of the excess free energy, we use the ex-
tended formula derived by Iyetomi and Ichimaru.

III. RESULTS AND DISCUSSION

In Tables I—III, we summarize the results for the ex-
cess thermodynamic quantities of three different mix-
tures, namely H-He (Zz/Z, =2), H-0 (Z2/Z, =8), and
H-Fe (Z2/Z, =24). We have assumed that Fe ions have
retained their most tightly bound 1s electrons. Our ap-
proach can be applied to cases where one (or both) ionic
species are only partially ionized, provided the remaining
ion core possesses a smaller radius than the distance of
closest approach. For each mixture we carry out HNC
calculations for different concentrations, but over a range
of the degeneracy parameter 0. The two limits corre-
sponding to the rigid electron gas, i.e., the BIM model,
and the zero-temperature screened binary mixture, ' are
recovered respectively, by setting r, ~0 and I9~0. We
establish the accuracy of our HNC calculations by mak-
ing comparison with the results of Monte Carlo (MC)
simulations" carried out, in both limits, for the H-He
mixture, again taken over an extended range of both cou-
pling parameter I (1~ I ~ 80) and density parameter r,
( .05~r, ~1.5). Our results always agree to within less
than 1% with the Monte Carlo results. There, is howev-
er, a noticeable (-20%) discrepancy in the comparison
with the MC results of Hubbard and DeWitt' in the lim-
it of small values of I (I (2). This discrepancy is attri-
buted to two factors, namely the declining accuracy of
the MC method at small I (when the Debye radius be-
comes larger than the unit-cell dimension, leading to a
distortion of the results by the periodic boundary condi-
tion), and to the approximate mean-square fit of the MC
results in this region. '

In each case we compare the HNC results with the
linear interpolation given by Eq. (1). The results of such
a comparison are summarized in Tables I—III for the
three different mixtures. The numbers in parenthesis in-
dicate the relative departure from the linear mixing rule,
defined as (f —(f ))/f, where f is the thermodynamic
function derived from the HNC calculations and (f ) is
given by Eq. (1).

The principal conclusion is that the absolute difference
between the thermodynamic functions as derived from
the HNC calculations and those given by the LMR is al-
ways small ( ~0.07). This difference, nevertheless, be-
comes a sizable fraction of the energy of the mixture, so
that its relative importance increases in the limit of small
I . It is also interesting to point out that this difference in
energy, which can eventually lead to phase separation in

the mixture, becomes positive in the regime of strong
coupling (I ))1). This point will be clarified below.
These results indicate strongly that the LMR is still ex-
tremely accurate for the SBIM model, i.e., for ionic mix-
tures interacting by means of screened Coulomb poten-
tials, even in the case of very asymmetric mixtures.

The physical explanation for this striking feature is the
following: It is very well known that for I ) 1, the dom-
inant term in the energy of a BIM is the common approx-
imation to the Madelung energy EM= —0.9I . This
term follows from the use of the ion sphere model'
E,s = —0.9I"(Z'~ ), a result which states that each ion
interacts only with the uniform background in its "ion-
sphere, " i.e., a sphere of radius a /a =(Z /(Z) )'
such that the background charge contained in it exactly
cancels the charge Z of the ion. This result also yields,
in fact, a lower bound to the energy for the BIM, and also
leads to an immediate understanding of the LMR (1).
Now from the definition of the screened binary ionic mix-
ture model, the ion-electron interaction is weak com-
pared to the kinetic contribution of the electrons, and can
therefore be treated essentially as a perturbation of the
bare ion-ion interaction. Therefore we can expect the
ion-sphere contribution to remain dominant in the SHIM
in the regime of strong coupling and can also expect, in
consequence, the LMR to be accurate in this regime.
This point has been verified by Hubbard and DeWitt for
the H-He mixture. '

Accordingly, any departure from the LMR must be at-
tributed to the thermal contribution. The thermal energy
is normally obtained by subtracting off the Madelung (ion
sphere) energy. When this is done the leading term in the
thermal energy, in the strong-coupling regime, behaves asI' ", where n is believed to be equal to 3 in Monte Carlo
calculations, ' and has been shown to be equal to 2 in the
HNC approximation. " When the response of the elec-
tron gas is taken into account, the thermal energy in-
cludes two further contributions, namely the ionic contri-
bution, which is positive ' for large values of I, (and
which yields a positive value for f —(f ) for large 1, as
mentioned above), and the thermal contribution arising
from the ion-electron interaction, whose sign is not deter-
mined and which also depends on the ionic concentra-
tion. The ionic contribution is the thermal energy arising
from lattice vibrations in a crystal, whereas the ion-
electron part can be seen as the equivalent of a
temperature-dependent band-structure energy. Any
departure from the LMR in the case of a SBIM must
then depend on a partial compensation between these two
contributions.

As the temperature or degeneracy parameter 0 in-
creases at constant density, the coupling parameter I,
decreases. In the region of weak coupling (1 (1), the
Madelung energy no longer dominates, and there is no
clear distinction between static and thermal energy. The
correlation energy of the fluid tends towards its Debye
Hiickel limit, which is proportional to —(I (Z ) )

This term is obviously nonlinear in concentration, and
then a departure from the LMR is both expected and
found in this region.

Two other features can be observed from our results.
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TABLE I. Excess internal energy u'", excess pressure p'", and excess Helmholtz free energy f'" per ion in units of kT for the H-He

mixture. For each concentration and value of 0, the first line is the HNC result, whereas the second line is the linear interpolation
given by Eq. (1). XH denotes the relative concentration of hydrogen. The number in parenthesis gives the relative difference between

these two values. (a) r, =0.2, (b) r, =0.5, (c) r, =1.

0.75

0.25

5

1

0.5
0.05

0.5

0.05

0.5

0.05

5

1

0.5
0.05

0.022
0.109
0.217
2.172

0.033

0.168

0.335

3.35

0.057

0.286

0.571

5.71

0.069
0.345
0.69
6.895

(a) r, =0.2
0.4797x10 '
0.429 x 10-'
0.1001
1.5123

0.8867 x 10-'
0.9025 x 10-' (1.8)
0.783 x10-'
0,7925X10 ' (1.2)
0, 1809
0.1826 (0.9)
2.5277
2.5300 (0. 1)

0.1737x 10- '

0.1748 X 10 ' (0.6)
0.1513
0.1519 (0.4)
0.3465
0,3477 (0.3)
4.5635
4.5653 (0)

0.2171 x 10- '

0.1883
0.4303
5.583

0.3273 x 10-'
0.3193x10 '

0.7898 x 10-'
1.288

0.6063 x 10-'
0.6180x 10-' (1.9)
0.5862x10 '

0.5950 x10-' (1.5)
0.144
0.1458 (1.2)
2.2184
2.2262 {0.3)

0.1191X 10
0.1199X10 '

', 0.7)
0.114
0.1146 (0.5)
0.2783
0.2795 (0,4)
4.0971
4.1026 (0. 1)

0.149x 10- '

0.1422
0.3464
5.0408

0.1577x10 '
0.1324x 10-'
0.295 x 10-'
0.4704

0.2919x 10-'
0.2972X10 ' (1.8)
0.2434 x 10-'
0.2469 x10-' (1.4)
0.540 x 10
0.5468 x10-' (1.2)
0.7859
0.7875 (0.2)

0.5726 x 10-'
0.5763 x10-' (0.6)
0.4734 x 10- '

0.4758x10-' (0.5)
0.1045
0.105 (0.5)
1.4205
1.4216 (0)

0.7158x 10-'
0.5903 x 10-'
0.1302
1.7387

0.75

0.5

0.25

10
5

1

0.1

10

0.1

10

10

0.1

0.027
0.054
0.2715
2.715

0.042

0.084

0.419

4.191

0.057

0.113

0.567

5.667

0.071

0.143

0.714

7.143

(b) r, =0.5

0.6814x 10
0.1851x10 '

0.1561
2.0621

0.1255 x 10-'
0.1275 X 10 ' (1.6)
0.3382 X 10
0.3427X10-' (1.3)
0.2769
0.2782 (0.5)
3.4458
3.4454 (0)

0.1847 x 10- '

0.187x10-' (1.2)
0.4953 x 10- '

0.5003 x10-' (1)
0.3989
0.4004 (0.4)
4.8291
4.8287 (0)

0.245 x 10-'
0.2464x10 ' (0.5)
0.6548x10 '

0.6579x10-' (0.5)
0.5216
0.5225 (0.2)
6.2123
6.2120 {0)

0.4616X 10
0.1275x10 '

0.1196
1.845

0.8532 X 10
0.8689 x 10-' (1.8)
0.2344 x 10-'
0.2382x10-' (1.6)
0.215
0.2169 (0.9)
3.156
3.1604 (0. 1)

0.1259x10- '

0.1276x10-' {1.4)
0.3448x10 '

0.3489x 10 ' (1.2)
0.3121
0.3141 (0.6)
4.4709
4.4758 (0. 1)

0.1673 X 10-'
0.1684X10-' (0.6)
0.457 x 10- '

0.4597X 10 ' (0.6)
0.4101
0.4114 {0.3)
5.788
5.7912 (0)

0.2254 x10-'
0.6068 x 10-'
0.4762 X 10
0.6024

0.4153 x 10-'
0.4223X10 ' (1.7)
0.111x 10
0.1125x10-' (1.3)
0.0849
0.0854 (0.6)
1.000
1,0023 (0.2)

0.6115x 10-'
0.6192x10 ' (1.2)
0.1627x10 '

0.1643x10 ' (1)
0.1226
0.1232 {0.5)
1.4005
1.4023 (0. 1)

0.8111x10 '
0.8161x 10-' (0.6)
0.2151x 10
0.2162x10 ' (0.5)
0.1606
0.161 (0.2)
1.8011
1.8022 (0)
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Table I. ( Continued ) ~

10
5

1

0.1

0.086
0.172
0.862
8.62

u

0.3058 X 10
0.8155 X 10
0.6447
7,5953

0.2091 x 10- '

0.5704 X 10
0.5087
7.1066

0.1013x 10-'
0.268 X 10
0.1988
2.2022

0.75

0.25

10
5

1

0.1

10

0.1

10

0.1

10
5

1

0.1

0.054
0.109
0.543
5.43

0,084

0.168

0.838

8.382

0.143

0.286

1.429

14.287

0, 172
0.345
1.724

17.24

(c) r, =1
0.1894x 10- '

0.5074x 10 '

0.4004
4.6656

0.3455 x 10- '

0.350x 10 ' (1.3)
0.9139x10- '

0.9218 X 10 ' (0.9)
0.6966
0.6972 (0)
7.7703
7.7642 (0)

0.6681 x 10- '

0.6712 x10-' (0.5)
0.1745
0.1751 (0.3)
1.2903
1.2907 (0)

13.9657
13.9614 (0)

0.8318X 10
0.2165
1.5875

17.06

0.1292x10 '

0.3536x 10-'
0.3169
4.3842

0.2374 x 10-'
0.2411x10-' (1.5)
0.6439 x 10-'
0.6519X 10 ' (1.2)
0.560
0.5623 (0.4)
7.4261
7.4236 (0)

0.4624 x 10
0.465X10 ' (0.6)
0.1243
0.1249 (0.4)
1.0515
1.05312 (0. 1)

13.5042
13.5025 (0)

0.577 x10- '

0.1547
1.2985

16.5419

0.6253 x 10-'
0.1657x 10-'
0.1202
1.3075

0.1141x 10
0.1156X10 ' (1.3)
0.2987 X 10
0.3014X 10 ' (0.9)
0.2095
0.2099 (0.2)
2.1384
2.1392 (0)

0.2208 x 10- '

0.2218 X 10 ' (0.4)
0.571 x 10- '

0.5729 x10-' (0.3)
0.3891
0.3894 (0. 1)
3.8015
3.8027 (0)

0.2749 x 10- '

0.7086 x 10-'
0.4791
4.6334

TABLE II. Same as Table I for the H-0 mixture. (a) r, =0.2, (b) r, =0.5.

uex

(a) r, =0.2

~ex

0.75

0.25

0.5

0.05

0.5

0.05

5

1

0.5
0.05

0.19

0.95

1.9

19.005

0.527

2.633

5.267

52.671

0.695
3.475
6.95

69.504

0.1059
0.1111 (5)
0.7733
0.788 (1.9)
1.6582
1.6763 (1)

18.0846
18.062 (0. 1)

0.3215
0.3237 (0.7)
2.272
2.2784 (0.3)
4.8209
4.8288 (0.2)

51.170
51.1613 (0)

0.430
3.0235
6.405

67 ~ 711

0.771 X 10
0.8173x 10 ' (6)
0.6302
0.6507 (3.2)
1.439
1.4709 (2.2)

17.3609
17.4165 (0.3)

0.2367
0.2386 (0.8)
1.8797
1.8883 {0.45)
4.2411
4.2548 (0.3I

49.648
49.6735 (0)

0.3171
2.5071
5.6467

65.802

0.3501 x 10- '

0.3673 x10-' (5)
0.2441
0.2496 (2.2)
0.5023
0.5106 (1.6)
5.3411
5.3528 {0.2)

0.1063
0.107 (0.7)
0.720
0.7223 (0.3)
1.4692
1.4728 (0.2)

15 ~ 1124
15.1176 (0)

0.1422
0.9587
1.9539

20.0
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Table II. (Continued).

u

(b) r, =0.5

0.75

0.5

0.25

10

0.1

10

0.1

10

0.1

10
5

1

0.1

0.238

0.475

2.376

23.756

0.448

0.896

4.48

44.798

0.658

1.317

6.584

65.839

0.869
1.738
8.688

86.8i8

0.1447
0.1509 (4.3)
0.3565
0.3664 {2.8)
2.4762
2.4818 (0.2)

26.3237
26.2417 (0.3)

0.2902
0.2951 (1.7)
0.7064
0.7143 {1.1)
4.8026
4.8076 {0.1)

50.488
50.4213 (0. 1)

0.4367
0.4392 (0.6)
1.058
1.0622 (0.4)
7.1305
7.1333 (0)

74.6369
74.6009 (0)

0.5834
1.4101
9.459

98.7805

0.1057
0.1116 (5)
0.269
0.2805 (4)
2.0676
2.096 (1.4)

25.6753
25.6549 (0)

0.2139
0.2185 (2.2)
0.5392
0.5483 (1.7)
4.0495
4.0724 (0.5)

49.4806
49.4648 (0)

0.3230
0.3255 (0.8)
0.8112
0.816 (0.6)
6.0366
6.0489 (0.2)

73.283
73.2748 (0)

0.4325
1.0838
8.0253

97.0487

0.4799 X 10
0.050 (4)
0.1173
0.1207 (2.8)
0.7593
0.7629 (0.5)
6.926
6.919 (0. 1)

0.9624 X 10- '

0.9788 X 10
0.2326
0.2353 (1.1)
1.4752
1.4783 (0.2)

13.2408
13.2356 (0)

0.1448
0.1457 (0.6)
0.3484
0.3499 (0.4)
2.1919
2.1936 (0)

19.5549
19.5522 (0)

0.1935
0.4645
2.9089

25.8688

The first is that the departure from the LMR is greater
for the asymmetric mixtures, as we would have expected,
because of the important difference in coupling between
the two components. The second is that the departure
from linearity seems to be more important when the ele-
ment with the smallest charge is dominant in the mixture.
This behavior has also been previously observed in the
BIM and can be explained within a purely geometrical
argument: When the concentration of ions Z, is much
larger than the concentration of ion Z2, with Z, «Z, ,
all the ion spheres of charge Z, , are packed in a volume
given approximately by V —%2r, Z2, where V is the total
volume, and the second term is the volume occupied by
the ion spheres of charge Z2. Thus, when N, )&%2, we
can expect important overlapping between the ion
spheres Z&, and hence to corresponding multipole effects,
which lead to a departure of LMR.

Finally, it is apparent that electronic screening leads to
a more unstable system than the corresponding ionic
mixture embedded in a rigid electron background. The
reason is this: In terms of density operators, the Hamil-
tonian of the system can be written as

0 =T +T&+ f dr f dru(r r')—
X[Z p "(r,r')+Z Zgp p(r, r')

+Zpppp(r, r') ], (6)

where

A'
a

p~"= g 5(r —r, ) +5(r' —r, )

are the two-particle density operators.
The term u(r) denotes the interaction potential, i.e.,

the bare Coulomb potential v(r) =e /r for the BIM, or
the screened Coulomb potential u (r) =(e /r)f (r) for the
SBIM [f(r) ( I]. Note in particular that the form of the
Hamiltonian does not change at the level of linear screen-
ing. There is only one additional length scale common to
al/ ions, namely the electronic screening length, whose
value depends on the electron density and temperature
only. Thus the mixing entropy should not be affected
when considering the differences between BIM or the
SBIM models. In the latter, however, the ionic contribu-
tion to the pressure ceases to be negligible in comparison
to the electronic contribution as r, and 0 take finite
values. The condition of equal pressures for the coexist-
ing phases leads then to different charge densities of these
phases and to a nonadditivity of volumes, and this in turn
leads to phase separation. We expect this effect to be par-
ticularly important for very asymmetric mixtures.
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TABLE III. Same as Table I for the H-Fe mixture. (a) r, =0.2, {b) r, =0.5.

0.75

0,25

0.5

0.5

5

1

0.5

5.503

3.258

16.292

32.583

4.337
21.686
43.372

(a} r, =0.2
0.917
0.934 (1.8)
5.9347
5.9588 (0.4)

12.4231
12.4388 (0. 1)

2.7864
2.7925 (0.2)

17.7817
17.7908 (0.05)
37 ~ 1102
37.1162 {0.02)

3.7218
23.7067
49.455

0.7419
0.7611 (2.5)
5.1191
5.1757 (1.1)

11.2445
11.3152 (0.6)

2.270
2.2769 (0.3)

15.4425
15.4631 (0. 1)
33.7616
33.7678 (0.02)

3.0348
20.6069
45.0238

0.3034
0.3091 (1.8)
1.8587
1.8689 (0.5)
3.6619
3.6754 (0.4)

0.9220
0.9241 (0.2)
5.5765
5.5803 (0.07)

10.9622
10.9598 (0.02)

1.2316
7.436

14.6131

0.75

0.5

0.25

10

10

10

10
5

1

1.376

2.7515

13.758

2 ~ 724

5.449

27.243

4.073

8.146

40.729

5.4215
10.843
54.215

(b) r, =0.5

1.2199
1.2389 (1.5)
2 ~ 8387
2.8617 (0.8)

19.4332
19.4054 (0. 1)

2.4575
2.471 (0.5)
5.6684
5,7049 (0.3)

38.6743
38.6547 (0)

3.6962
3.7031 (0.2)
8 ~ 5396
8.562 (0.3)

57.914
57.904 (0)

4.9352
11.3913
77, 1533

0.9855
1.0086 (2.3)
2.3138
2.352 (1.6}

16.3936
16.4421 (0.3}

1.9963
2.0126 (0.8)
4.6642
4.6913 (0.6)

32.7296
32.7646 (0. 1)

3.0083
3.0167 (0.3 }

7.0167
7.0306 (0.2)

49.0691
49.0871 (0)

4,0207
9,3699

65.4096

0.4045
0.4108 (1.5)
0.9335
0.9413 (0.8)
5 ~ 8526
5.8484 (0)

0.8149
0.8194 (0.5)
1.8710
1.8766 (0.3)

11.6521
11,6493 (0)

1.2257
1,228 (0.2)
2.809
2,8118 (0. 1)

17.4516
17.4501 (0)

1.6366
3.7471

23.2509

IV. CONCLUSION

We have examined the thermodynamic functions of
binary ionic mixtures whose ions interact by means of
density- and temperature-dependent screened potentials.
In this case the electron screening is not treated via per-
turbation theory, but is included directly in the interionic
potential. We considered three different mixtures, rang-
ing from symmetric mixtures ( Z2 /Z

&

—1 ) to very asym-
metric mixtures (Z, /Z, ))1), and have explored a large
domain of density and temperature for the electron gas.
We find that the so-called "linear mixing rule" remains
valid when the electron response is taken into account in
the interionic potential, at any density, even though the
departure from linearity can reach a few percent for the
asymmetric mixtures in the region of weak degeneracy

for the electron gas. We propose a physical explanation
for this behavior based on a simple additional length
scale. These results can be useful in calculating thermo-
dynamic properties and phase diagrams in stellar and gi-
ant planets interiors, neutron star crusts, and in deriving
approximations for the thermodynamic functions of
screened binary mixtures at finite temperature.

In our calculation, we assumed the degree of ionization
to be constant for a given mixture. This is true for a
given pressure and temperature. As the temperature
varies along a phase diagram, the degree of ionization,
and then the charge ratio, might change, but our ap-
proach will still be valid since it can be applied to partial-
ly ionized mixtures, as mentioned in Sec. III. The sensi-
tivity of the phase diagram to the temperature is a much
more complicated problem, one which will be examined
in detail in a subsequent work.
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