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Light scattering and nonlinear optical response near a critical point
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The connection between light scattering and nonlinear optical response is examined quantitative-

ly for Kerr media and is generalized to include isotropic materials with nonlocal interactions near a
critical point. A number of important quantities, including the nonlinear refractive index (n2) and
the four-wave-mixing coefficient, are shown to acquire increasing grating wave-vector (q) depen-
dence as the critical point is approached. This dependence is identical to the q dependence obtained
for light scattering in the Ornstein-Zernike theory. Illustrative calculations are presented for near-
critical xenon using the Redlich-Kwong equation of state and parameters obtained from indepen-
dent measurements. These results indicate n2 values of 10 "-10 ' m"/W and response times in

the 1 —10-@sec range. Calculations are presented for the phase-conjugate reflectivity in degenerate
four-wave mixing that include both nonsaturable background loss and light-scattering noise.
Reflectivities in excess of unity are predicted for 1.06-pm wavelength and cw pump intensities in the
10-kW/cm' range.

I. INTRODUCTION

For many classes of nonlinear optical materials the
strength of the nonlinearity is proportional to the light-
scattering efficiency of the medium. This connection has
been demonstrated for artificial Kerr suspensions' as
well as for more general Kerr media. ' For quantum
systems, it is exemplified by the well-known proportional-
ity between the gain coefficient and the differential
scattering cross section in the stimulated Raman effect.
Fluids near a critical point are known to be strong
scatterers of light (critical opalescence), so such systems
may be expected to be capable of high nonlinear activity
as well. For example, in closely related systems, large
nonlinearities have been measured in the isotropic phase
of liquid crystals near a second-order isotropic-nematic
phase transition that show the same temperature depen-
dence [increasing as ( T —T~ ) ', where T' is the transi-
tion temperature] as the increased light-scattering inten-

sity in this region. The following sections show that
overall values for the Kerr coefficient, response time, and
optical path length suggest that critical point fluids have
exceptionally high potential for nonlinear optical signal
processing applications. This is especially true for appli-
cations requiring low light absorption, strong nonlinear
response over a wide frequency range, and tunable non-
linear response with small changes in either temperature
or pressure of the medium. The present study was
motivated in large part by experiments that are currently
in progress to measure four-wave mixing and stimulated
Rayleigh scattering in simple fluids such as Xe, SF6, and
freon near their respective critical points.

The connection between ordinary light-scattering fluc-
tuations and the nonlinear optical response properties of
fluids is a fundamenta1 one that has been examined in re-
cent papers for systems outside of the critical region.
In addition to governing the nonlinear response, through
the fluctuation-dissipation theorem, light-scattering fluc-

tuations in the linear dielectric constant were also shown
to determine the fundamental noise properties of the
medium for nonlinear optical signal processing applica-
tions. The objective of the present paper is to general-
ize these results through their extension to the near criti-
cal region. Here nonlocal interactions will be seen to
have important consequences, both on the light scatter-
ing and on the nonlinear optical response.

For isotropic fluids, the change in dielectric constant
induced by an applied electromagnetic field E is usually
written as follows:

( 5e(q)~ ) =8trkTez/V, , (1.2)

where the angular brackets denote averaging over the
beam interaction volume V, . In deriving this result, the
fiuctuation component of e(r) was resolved into its
Fourier components with

5e(q) =(1/V, )I ' e5qe(r)d'r, (1.3)

where the region of integration is over the beam interac-
tion volume. The quantity on the left side of Eq. (1.3)
may be thought of as a fluctuation grating, which for a
particular wave vector q, namely that matching the wave
vector of the laser-induced grating, will scatter light in
the direction of the output field as noise. Note that the
left side of Eq. (1.2) gives the mean-square amplitude for
the change in dielectric constant due to thermal fluctua-

E(r ) eo+ E2E

where eo is the background contribution and e2 deter-
mines the size of the nonlinear response. Clearly Eq. (1.1)
app1ies only in the absence of long-range interactions,
since it implies that the dielectric constant is a local func-
tion of the applied field. Application of the fluctuation-
dissipation theorem to media for which the equilibrium
dielectric response satisfies Eq. (1.1) gives
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tions in the medium, while the right side gives the non-
linear optical response. Since e2 is a constant, both sides
of Eq. (1.2) are seen to be independent of q. This in-
dependence will be shown to break down when the range
of interactions in the medium approaches the wavelength
of light, resulting in a generalization of Eqs. (1.1) and
(1.2) required for applications to the critical region. In
the course of presenting these results, an independent
derivation of Eq. (1.2) (appropriately generalized) based
on thermodynamic fluctuation theory is obtained.

The symbols 5e(q) and b,e(q) will be used throughout
to designate the spontaneous fluctuation and field-

induced gratings, respectively, each of wave vector q.
According to the Onsager regression hypothesis of ir-
reversible thermodynamics, it is impossible to determine
a priori whether a given variation in the medium is the re-
sult of a spontaneous fluctuation, or due to the action of
an applied field. For example, the light-scattering cross
section will depend only on the amplitude and phase of
the grating, and not on the manner by which it was
formed. A typical scattering geometry is illustrated in

Fig. 1(a). Here K, and Kz are the wave vectors of the in-

cident and scattered waves, respectively, 8 is the scatter-
ing angle, and q is the wave vector of the grating. The
same grating may be formed by writing beams having
wave vectors —K& and —K2, as shown in Fig. 1(b). Su-

perimposition of Figs. 1(a) and 1(b) gives the standard
four-wave-mixing configuration for nonlinear optical

K)

phase conjugation shown in Fig. 1(c).
The connection between light scattering and nonlinear

optical response will be examined quantitatively and will
be generalized to the near-critical region in Secs. II and
III. There, the spontaneous fluctuations giving rise to
light scattering will be shown to become increasingly
wave-vector dependent as the critical point is ap-
proached. The simplest and most well-known model for
this q dependence is provided by the Ornstein-Zernike
(OZ) approximation ' summarized in Sec. II. Correc-
tions to the OZ approximation have been proposed, but
these will not be used here since the uncorrected model
has been found to be in good agreement with experiment
over the temperature range of present interest. Unfor-
tunately, the OZ model does not describe the driven
response of the medium to externally applied fields,
which is necessary for the description of laser-induced
gratings. Section III shows that the driven response is
also modified in the critical region. In particular, the
thermodynamic work required to produce a field-induced
grating is found to acquire increasingly pronounced an-
gular dissymmetry as the critical point is approached.
Furthermore, the form of this new angular dependence is
shown to correspond precisely to the q dependence ob-
tained for the light-scat tering fluctuations, so the
fluctuation-dissipation relation is preserved. The general-
ization of Eqs. (1.1) and (1.2) to the near-critical region is
also presented in this section, and the time response of
medium is obtained. Illustrative calculations are carried
out for xenon in Sec. IV using the Redlich-Kwong equa-
tion of state and parameters obtained from independent
measurements. Calculations are presented for the phase-
conjugate reflectivity in degenerate four-wave mixing (in-
cluding scattering loss) and for the noise and response
time characteristics of the medium. Section V concludes
with a summary and discussion of results.

(a) II. LIGHT SCATTERING IN THE
ORNSTEIN-ZERNIKE APPROXIMATION

-K)

It is convenient to first obtain the density fluctuations
in the medium (5p(r)). These can later be used to obtain
5e through the Clausius-Mossotti relation, or other simi-
lar approximation. Thus, the density-density correlation
function is defined:

G(r, r')=(5p(r), 5p(r')) . (2.1)

The scattered light intensity is proportional to the struc-
ture factor S(q) where

S(q)= V, (15p(q)l ) . (2.2)

(c)

FIG. 1. Beam interaction geometry for (a) scattering of in-

cident light of wave vector K& to give scattered light of wave
vector K2, (b) grating formation due to electrostriction in the
presence of writing beams with wave vectors —Kl and —K„
and (c) superimposition of (a) and (b) showing typical
configuration for optical phase conjugation via four-wave mix-

ing. The grating wave vector q is equal to K& —Kl. S(q)= V, f e'q G(R)d R, (2.3)

Here the factor V, is used in conjunction with our
volume-independent definition of the q transform given
by Eq. (1.3). The structure factor and the density-density
correlation function are related by Fourier transforma-
tion. For a uniform medium the dependence on r and r'
is a function only of the relative position vector
R =r —r'. Then the transform relation between Eqs.
(2.1) and (2.2) is given ass
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where, as in Eq. (1.3), the integration is over V, .
To evaluate S(q) using Eq. (2.3), standard practice is

to rewrite the density-density correlation function in the
form S(q)/S (q)=(p)kTPr[1+(q/qo) ] (2.11)

the OZ approximation is given by Eq. (2.11) (see the Ap-
pendix),

G(R)=(p) 1(R)+(p)6(R), (2.4) Substituting this result into Eq. (2.3) and carrying out the
inversion gives

with
G (R)~R o exp( —qoR )/R (2.12)

I (R)=g' '(R) —1,
where (p) is the average density and g' ' is the pair dis-
tribution function. The delta function term in Eq. (2.4)
gives the contribution from self-correlation. Remaining
correlations are included in I (R); for example, the prod-
uct (p) g' '(R) gives the density of particles at R given
that a different particle is at the origin.

For media without interactions (ideal gases, liquid sus-
pensions of noninteracting microparticles, etc.), the
correlation function I (R)=0 and

G (R)=(p)5(R), (2.6)

where a superscript 0 is used to indicate the absence of
interaction. Substitution into Eq. (2.3) gives

( l5p(q) l ) = ( (p ) kTP /v, )[1+(q /q ) ]
- ' (2. 13)

as a consequence of Eqs. (2.2), (2.7), and (2.11).
In this section, the q grating was assumed to be the re-

sult of a fluctuation described by Eq. (2.13), as will be the
case when no suitable applied fields are present. In Sec.
III, the q grating will be examined as the response to
writing beams such as those shown in Fig. 1(b). Since

as an asymptotic form for G(R) at large R, where Ro is
the Debye persistence length (see the Appendix). The
range of correlations is thus seen to be determined by
qo '=g, where g is the correlation length. In similar
fashion, Eq. (2.10) for the density fluctuations is replaced
by

(2.7)
q =2K sin(0/2), (2.14)

where (X) is the average number of particles present in
the beam interaction volume.

For simple fluids away from the critical point, interac-
tions may be present but the interaction length, i.e., the
range of G or I, is typically of order 10 A, which is small
compared with the wavelength of light. Under these con-
ditions, the phase factor in Eq. (2.3) is slowly varying
compared with G(R) and may be replaced by unity. In
this (small-lql ) limit, Eq. (2.3) becomes independent of q:

S(q)= V, fG(R)d'R . (2.8)

The isothermal compressibility Pr can also be expressed
in terms of the integral appearing in Eq. (2.8), 9

G RdR= p kT (2.9)

a result that, like Eq. (1.2), is an expression of the
fluctuation-dissipation theorem. Note that for Eq. (2.9)
to be meaningful, the volume of integration V, must in-
clude the full range of G (R) in order that the compressi-
bility be volume independent. Equations (2.2), (2.8), and
(2.9) result in the well-known expression (due to Einstein)
for the density fluctuations in a fluid:

(2.10)

The righthand side of this equation is explicitly indepen-
dent of wave vector as a consequence of the small-q limit
used to obtain Eq. (2.8).

Closer to the critical point of a fluid, the range of G be-
comes large and may approach or even exceed the wave-
length of light. Where this occurs, the small-q assump-
tion (q = lql ) is violated and Eqs. (2.8) and (2.10), which
are based on this assumption, need to be modified. A
suitable modification may be obtained using the
Ornstein-Zernike approach described more fully in Refs.
8 and 9. The final expression for the structure factor in

where E = lK, l

= lKzl, the square-bracketed expression
in Eqs. (2.11) and (2.13) results in a relative reduction in
density fluctuations for q) 0 that give rise to scattering in
all but the forward (8=0) direction. This reduction be-
comes important when the correlation length approaches
distances of order q

' [Eq. (2.13)]. Finally, we require
for later use the intensity of light scattered per unit solid
angle per unit volume per incident intensity Io. This is
given by the differential cross section, which is propor-
tional to the structure factor through

2

(8o, $)=(n/A). ,(sin P)S(q)/V, .
BE

Bp

Here k is the vacuum wavelength of the incident light, P
is the angle between the wave vector of the scattered
wave and the electric vector of the incident wave, and the
pair of angles (8,$) defines the direction of scattering. Il-
lustrative calculations of the stucture factor for near-
critical xenon are presented in Sec. IV.

III. NONLINEAR RESPONSE

Next, we examine the case that the q grating is field in-
duced. For this purpose, consider two degenerate plane-
wave writing beams of frequency co contributing to the
total electric field E:

E=e,E,cos( —K, .r —cot)+e2E2cos( K2.r et), — —

(3.1)

where e, E, and —K are the unit polarization vector,
amplitude, and wave vector for wave j. [Note that the
propagation wave vectors have been set equal to —K,
and —K2 to correspond to the writing beam
configuration shown in Fig. 1(b).] The equilibrium elec-
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trostrictive pressure equation is'

VP —
( 8ir) 'p VE

Bp
(3.2)

where the overbar indicates averaging over an optical
period. For the field specified by Eq. (3.1),

E =(E, +E, )/2+(e, e2)E, Eicos(q r), (3.3)

VP = grad(p —
qo V p),BP

Bp
(3.4)

must be used to obtain a valid equation in the density.
The analysis used to derive Eq. (3.4) is somewhat in-
volved and will not be repeated here since the details may
be found in Ref. 12. The second term in parentheses be-
comes important when the correlation length approaches
distances comparable to those over which the variation in
density occurs. Substitution for the first term in Eq. (3.2)
gives

with q= Kz —K, . Equation (3.2) can now be used to ob-
tain the medium response. However, in the presence of
long-range correlations the following replacement, intro-
duced by Fixman, "'

as follows. As the range of correlations approaches the
spatial period of a field-induced grating, it takes more
work to make the grating. This extra work is needed to
break correlations that would otherwise be present if the
medium were uniform. The same reasoning applies to
the reduction of spontaneous fiuctuations [Eq. (2.13)] as
well. A quantitative analysis of the free energy of grating
formation must include contributions from field-induced
polarization as well as the work required to create the
nonuniformity in the medium that comprises the grating
itself. The free energy of nonuniformity was obtained by
Debye' and by Fixman, ' who showed equivalence be-
tween the Debye and Ornstein-Zernike approaches, upon
observing that the correction for nonlocality in Eq. (3.4)
is equivalent to the addition of a squared gradient term to
the free-energy density to give'

F, =
—,'p (s +qo ~Vs~ ) .

BP
(3.9)

Bp

Here s = (p —(p ) ) /(p ) is the fractional change in densi-
ty and the term in s gives the free energy of inhomo-
geneity in the absence of long-range interactions. Substi-
tuting from Eq. (3.7) and averaging over volume gives

Vp qo V'p—=(8m) 'p PT VE',a

Bp
(3.5)

(F;)=-,'(p'P ) '[a'[1+(q/q )']

+a2[1+(2q/qo) ]+ (3.10)
where the relation

1 apP='
BP

(3.6)

p=(p)+a, cos(q r)+a2cos(2q r)+ (3.7)

and denote by a', the amplitude of the density grating of
order j in equilibrium with the applied field. (For degen-
erate writing beam frequencies, there are no out-of-phase
components to the medium response. ) Keeping only the
first-order grating term in the density and substituting
into Eq. (3.5) gives

has been used. We now seek to determine the eftect of
Eq. (3.5) (particularly with its interaction term of order
q 0 V p ) on the medium response.

Consider a general response to E of the form

for this contribution to the change in free-energy density.
As expected from the previous discussion, more work is
required in the Fixman model to create the shorter
spaced higher-order gratings. [Equation (3.10) is valid
only when the grating amplitudes are small, otherwise the
full nonlinear behavior contained in Eq. (3.5) needs to be
included. The validity of this assumption is confirmed
via numerical solution of Eq. (3.5) for near-critical xenon
in Sec. IV.] Note that for media without interactions,
Eq. (3.10) has a simple interpretation in that it gives the
work required to achieve configurational entropy reduc-
tion in conjunction with the formation of an ordered
grating.

The second contribution to the free-energy density
arises from the coupling of the applied field to the non-
linear polarization of the medium and is of the form'

atq =[1+(q/qo)'] '(8~) '(p)'PT (e, e, )E,E, ,
Bp

F, = —
—,'PNL E, (3.1 1)

(3.8)

where Eq. (3.3) has been used. Comparison of Eqs. (2.13)
and (3.8) shows that an important effect of the long-range
correlations near the critical point is to reduce the field-
induced grating response by precisely the same factor
that these correlations reduce the spontaneous fluctua-
tions of the same wave vector q. Thus, identical angular
dissymmetry is obtained for both the light-scattering fluc-
tuations and the first-order (but still nonlinear in field
strength on account of the product E,E2 ) response.

A. Free energy of grating formation

The underlying reason for the reduction in grating
response seen in Eq. (3.8) may be qualitatively explained

where PNL = ( b e/4rr)E is the nonlinear polarization.
With he=(Be/Bp)bp, Eq. (3.11) becomes

(F, ) = —(16m. )
' (e, .e2)E, E~a,

Bp
(3.12)

plus a constant contribution due to the rectification terms
in Eq. (3.3), which we may set equal to zero with a suit-
able choice of energy scale. [Consistency with Eq. (3.10)
then requires that (p) be defined as the average density
in the illuminated region, and not as the average over the
entire sample volume, which may differ due to electro-
striction. ]

Adding Eqs. (3.12) and (3.10) gives an expression for
the total free-energy density (F ) = ( F, ) + (F, ) as a
quadratic function of the grating coefficients [a, ,az, . . . ]
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in the form

&F) =Aa', —Ba, + (3.13)

2

e2(q) =(87r) '&p) /3T [I+(q/q o) ]
Bp

(3.17)

where the coefficients A and B are defined through Eqs.
(3.10) and (3.12), respectively, and the unwritten terms
refer to the contribution from higher-order gratings. The
minimum in this multidimensional free-energy surface
occurs at a, =a;, a2=0, etc. , where the equilibrium

grating amplitude a', q =B/2A is identical to the result
previously given by Eq. (3.8).

Fluctuations in the grating coefficients may be obtained
from the curvature of the free-energy surface near its
minimum value. From standard thermodynamic fluctua-
tion theory, the probability of a given set of coordinates
[a „a2, . . . ] occurring spontaneously is proportional to

exp( —%[a~, a2, . . . ] /kT),

where

%[a~,a2, . . . )
= V, &F)

is the reversible work required to create the configuration
under the application of constraints. Inspection of Eqs.
(3.10)—(3.13) shows that the fiuctuations in each coordi-
nate are independent and Gaussian in form with

& lpga& l ) =2(&p) kTPr/V, )[1+(q/qo) ] (3.14)

B. Dielectric response in the presence
of nonlocal interaction

A nonlocal generalization of Eq. (1.1) may be written
in terms of the convolution integral:

e(r)=Eo+ f e2(r —r')E (r')d'r', (3.15)

for an isotropic medium. Fourier transformation [cf., Eq.
(1.3)] gives

e(q)=eo5(q)+e2(q)E (q) .

Now since

e(q)= atq/2=@( —q)
B6'

Bp

and

(3.16}

E (q)=e, e,E,E, /2

from Eqs. (3.7} and (3.3), respectively, we obtain

This result is in agreement with Eq. (2.13) after including
a factor of —,

' for the average over V, of cos for the fluc-

tuations in density. Note that to this order of approxima-
tion the mean-square grating fluctuation amplitude, being
independent of the 8 term in Eq. (3.13), is independent of
the applied field. This will not be the case when the field
strength is sufficiently strong that saturation effects pre-
vail. However, for simple critical-point fluids, the satura-
tion field strengths are much higher than those likely to
be usefully achieved (Sec. IV). Fluctuations in a~ also fol-
low Eq. (3.14), except that q is replaced by j Xq in the
square-bracketed correction for long-ranged interaction.

for the nonlinear dielectric constant, and
'2

& l&e(q) I'& =
& l&p(q) I'&

Bp

=(&p) kTPr/V, )[1+(q/qo) ]
Bp

2

(3.18)

for the mean-square fluctuation amplitude using Eq.
(2.13). Comparison of Eqs. (3.17) and (3.18) provides the
independent derivation and generalization of Eq. (1.2)
that we have been seeking:

C. Time response

Comparison of critical-point fluids with other classes of
nonlinear materials for real-time signal processing appli-
cations requires an examination of their time response.
This may be defined as the characteristic time required
for relaxation of a grating once the writing beams used to
form that grating have either been switched off or
changed so that a new grating can be formed. Note that

(3.19)

Apart from its q dependence, this expression is identical
in form to our previous result and supports the validity of
the fluctuation-dissipation approach, previously used to
derive Eq. (1.2), even in the presence of nonlocal interac-
tions. Equation (3.19) will be used in Sec. IV to predict
the light-scattering noise inherent in a phase-conjugate
signal obtained by degenerate four-wave mixing.

It is useful to explore the generality of Eq. (3.19), since
here its derivation was obtained specifically using (1) the
OZ correction for light scattering, and (2) the Fixman
square-gradient modification to obtain the free-energy
component due to inhomogeneity in the medium
response. That Eq. (3.19) is more general may be seen as
follows: First, note that (1) and (2) are mutually con-
sistent; indeed they are equivalent, through thermo-
dynamic fluctuation theory. To see this, recall that Eq.
(3.10) (which results from the Fixman correction) pro-
vides the A coeScient appearing in Eq. (3.13). This
coefficient alone determines the curvature of the free-
energy surface, thereby fixing the mean-square amplitude
of the Gaussian fluctuations in the dielectric constant. If
these fluctuations are to satisfy the Ornstein-Zernike rela-
tion, then it is clear that the A coefficient, and hence the
Fixman correction itself, are uniquely determined.
Second, the A coefficient, and therefore any modification
of the light scattering, cancels in deriving Eq. (3.19).
Thus the generalization of this result, beyond any specific
form imposed on the scattering by the OZ correction, is
established. One may, for example, obtain the dielectric
fluctuations directly from low-intensity scattering experi-
ments and then use Eq. (3.19) to predict the nonlinear op-
tical response as well as the light-scattering noise charac-
teristics of the medium.
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I =(kT/8ngg )

X I 1+(qg) +[(q() —(qg) ']arctan(qg)], (3.20)

where g is the high-frequency part of the shear viscosity.
This expression has been successfully applied to the inter-
pretation of linewidth measurements for near-critical xe-
non in Ref. 15. In the hydrodynamic limit (qg ((1),Eq.
(3.20) reduces to the Landau-Placzek result
I =(kT/6n. gg)q . Since g has no critical anomaly, the
response time r = 1/I is seen to increase as g in the hy-
drodynarnic regime. In the limit very close to the critical
point (qg&)1), Eq. (3.20) approaches I =(kT/16')q
showing that the linewidth and response time become in-
dependent of reduced temperature. For the intermediate,
or Fixman-Botch regime (q(=1), it was first suggested
that the inclusion of the nonlocal pressure term results in
a correction to the hydrodynamic Ray1eigh linewidth of
the form

I =(kT/6rrqg)q [I+b(qg) ]
with b= l. Inspection of the mode-coupling result [Eq.
(3.20)] shows that this form is correct but that b =—', rath-
er than unity in this regime. '

the time required to form the grating is either the same as
the decay time, for weak fields, or shorter, for field
strengths in the driven regime. In either case, the rate
determining step is the time required for the grating to
decay, which is conveniently obtained from the frequency
dependence of the fiuctuation spectrum S(q, Q).

The fluctuations represented in

S(q)=(2~) 'f S(q, Q)dQ

include both the central Rayleigh (entropy fiuctuations at
constant pressure) and Brillouin (pressure fluctuations at
constant entropy) components of the spectrum. From14

Landau-Placzek theory, it is known that as T approaches
T, the Rayleigh component increases sharply and, in the
limit, equals the total intensity, while the integrated in-
tensity of the Brillouin doublet varies smoothly near the
critical point. ' Consequently, the sharp increase in non-
linear optical properties predicted for the critical region
results from the enhancement of the Rayleigh fluctua-
tions (i.e., enhancement of stimulated Rayleigh scatter-
ing) and is not due to enhancement of stimulated Bril-
louin scattering (SBS). This last result suggests that the
medium response time may be obtained directly from
measurements of the Rayleigh linewidth in the critical re-
gion.

The Rayleigh linewidth has been measured for a num-
ber of fluids near the critical point and has been shown to
follow the well-known Kawasaki mode-coupling form

include for the first time both scattering loss and noise.
Where specific parameters are required to illustrate the
size of the efFects described, those corresponding to xenon
are used. Nevertheless, other isotropic fluids will be ex-
pected to show similar behavior when results are ex-
pressed in a suitable scaling form.

P =[RT/( V —P)] aT —' /[V( V+P)], (4. 1)

with parameters a=6.22014 and /3=30. 7459X10 in
mks units. These parameters were determined to give a
critical point at T, =289.73 K and density p, =8453.9
mol/m in agreement with experiment. ' Figure 2 shows
the isothermal compressibility (m /J) obtained from Eqs.
(3.6) and (4. 1) for T —T, =1.0, 0.25, and 0.10 K as a
function of density in the critical region. At a constant
density, equal to p„ the best-fit expression

f3r=1.7604X10 T„' (4.2)

where T„=(T—T, )/T, is the reduced temperature, pro-
vides an excellent representation of the isothermal
compressibility calculated over the temperature range of
interest from the equation of state. [Equation (4.2) yields
an incorrect value for the critical exponent, as may be ex-
pected from a modified van der Waals equation of state.
Instead of —1, the measured value for the compressibility
exponent has been reported as —1.241, ' but this
dN'erence is not expected to have a significant bearing on
the present results, or on their implications for nonlinear
optics applications. ] The quantity qo is obtained from
the correlation length using (=AT, , with
(0=2.0X10 ' m from Ref. 16. The Clausius-Mossotti
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A. Parameters for xenon

Calculations of the nonlinear optical response were
carried out for xenon as a model critical-point Quid using
the Redlich-Kwong equation of state:

IV. ILLUSTRATIVE CALCULATIONS
WITH APPLICATIONS TO

DEGENERATE FOUR-WAVE MIXING
0
7000

l

7500
I
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I

8500 9000

The foregoing theory is used in this section to predict
the light-scattering, nonlinear optical response, and noise
properties of a representative critical-point medium.
General solutions are given for four-wave mixing, which

DENSITY (moI/m )

FIG. 2. Isothermal compressibility of xenon calculated using
the Redlich-Kwong equation of state for T —T, =1.0 K (lower
curve), 0.25 K (middle curve), and 0.1 K (upper curve).
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constant Be/Bp appearing in Eq. (3.5) was obtained using
the relation

BE =(e—1)(@+2)/3p,
Bp

with p =p, and eo = 1.295 from the measured refractive
index, ' to give Be/Bp =3.833 X 10

00
o

O

0 —1

3
0
M
(h

2 O
Cb0

B. Light scattering and nonlinear response

Ko(q) =e2(q)QEO /2eo (4.3)

where we have assumed equal amplitudes Eo for the
counterpropagating pump beams (the pump intensities
were set at 10 kW/cm in the present calculation of I~0)

and e~ is given by Eq. (3.17). From Eq. (4.3), it follows
that, near the critical temperature, ~o is also dependent
on q. The structure factor ratio is given by Eq. (2.11).
Figure 3 shows the relative reduction in both the struc-
ture factor and four-wave-mixing coefficient for 0=180'
(relative to the 8=0' case) by about 35%%uo at T —T, =0.1

K (T„=3.45X10 ) for X=5145 A. The former implies
an equivalent reduction in back-scattered light intensity
[see Eq. (2. 15)] predicted by the OZ theory. In addition,
the figure shows approximately 1000-fold increase in
structure factor overall, relative to S, due to the proxim-
ity of the critical point. This increase is ultimately re-
sponsible for the enhanced nonlinear optical properties
predicted for critical-point fluids, as well as for the in-
creased light scattering observed in the critical region.

0 10
0
k

Ot p
CA0

CO

N

O
Cb

2

log1P (Tr)

FIG. 3. Four-wave-mixing coefficient (m ' ), structure fac-
tor, and scattering attenuation coefficient for xenon. Curves for
Ko and S are, top to bottom, for 0=0', 45, 90, and 180 . Curves
for o-o are from Eq. (4.4} for isotropic scattering (dashed), and
Eq. (4.5), which includes the Ornstein-Zernike correction
(solid). Results were obtained for k= 5145 A.

The fundamental connection between the light scatter-
ing and nonlinearity, seen here to be preserved for sys-
tems with long-ranged interactions, is illustrated for xe-
non at two different wavelengths in Figs. 3 and 4. In par-
ticular, this connection enables both the four-wave-
mixing coefficient (left-hand scale) and the structure fac-
tor (right-hand scale) to be represented by the same fami-
ly of curves corresponding top to bottom (in the cluster
of four curves) to angles 9=0', 45, 90', and 180' in Eq.
(2.14). Here the four-wave-mixing coefficient is

I

—4
I

—3

log1p (Tr)

FIG. 4. Same as for Fig. 3 but for X=1.06 pm.

The upper pair of curves in Fig. 3 (lower pair in Fig. 4)
compares the calculated scattering attenuation
coefficient, as a function of T„with and without the q
dependence described by the OZ theory included. The
dashed line gives the usual light-scattering attenuation
coefficient o o for isotropic scattering:

2

BpOO=8n PT p kT (3A, e ) (4.4)

This expression neglects the angular dissymmetry of
scattering described in Sec. II and is expected, therefore,
to be valid only sufficiently far from the critical point. To
include the OZ corrections, O.

o was obtained by numeri-
cal integration of the differential scattering cross section
given by Eq. (2.15):

oo= f f 0(0,&)singdHdg (4.5)

over all scattering angles 0 ~ 0 ~ 2m, 0 ~ P ~ m. The angu-
lar dependence of the integrand follows from Eqs. (2.11),
(2. 14), and (2.15). Integration was performed using a
Monte Carlo technique consisting of random sampling
and averaging over a sufficient number of scattering an-
gles that, for specific T„and wavelength, convergence
was obtained. The results of these calculations are shown
by the appropriately labeled solid curves in Figs. 3 and 4.
Near the critical point the suppression of light-scattering
fluctuations is seen to result in a reduction in the scatter-
ing attenuation coefficient relative to the predicted isotro-
pic scattering result [Eq. (4.4)]. Also confirmed is that
Eqs. (4.4) and (4.5) yield equivalent results at tempera-
tures outside the critical region.

In the derivation of Eqs. (3.10) and (3.14), the medium
was assumed to be far from saturation so that the grating
amplitudes were small. To confirm this assumption, Eq.
(3.5) was solved numerically by self-consistent iteration
until convergence was obtained. Each iteration step used
a Runge-Kutta integration with PT computed as a func-
tion of density, at fixed temperature, directly from the
equation of state. Once the converged solution was ob-
tained (after only a few iterations), it was Fourier decom-
posed into its various grating orders for examination.
Typically, for example with xenon at T —T, =0.1 K and
writing beam intensities of 10 kW/cm, the numerical
solution gives for (p) =p, =8453.9, a P =2.8X 10,and
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TABLE I. Grating response time and nonlinear refractive index for xenon. Response times are

equal to the reciprocal of the measured Rayleigh linewidth from Ref. 15. See text for calculation of n, .

Log)0 ( T„)
—5.0
—4.5
—4.0
—3.5
—3.0
—2.5
—2.0

v (@sec)

14.4
14.2
12.8
8.55
4.20
1.81
0.77

X=5145 A
n2 (10 " m /W)

5.75
7.27
7.73
5.48
2.45
0.86
0.28

~ (psec)

125.0
116.0
82.0
41.5
18.2
7.72
3.26

X=1.06 pm
n, (10 '5 m2/W)

22.9
24.3
17.3
7.73
2.71
0.88
0.28

a~z=1.5X10 for use in Eq. (3.7). The density varia-
tion in the first-order grating is thus seen to be less than
one part in 3 X 10, clearly showing that the medium is
far from saturation and that the grating amplitudes are
small. As further confirmation that the perturbative ap-
proach to Eq. (3.5) is valid, we note that the value of a', q

obtained analytically from Eqs. (3.8) and (4.2) coincides
with the above numerical value.

Response times for xenon were obtained from a fit of
the measured Rayleigh linewidth data to the mode-
coupling form [Eq. (3.20)] reported in Ref. 15. The re-
sults are listed here for the two wavelengths A, =5145 A
and A. =1.06 pm as functions of reduced temperature in
Table I. For each wavelength, the grating q value was
calculated from Eq. (2.14) setting 8 equal to 180'. The
linewidth dependencies on q and T„, discussed in connec-
tion with Eq. (3.20), are reflected in the tabulated time
response. Corresponding values of the nonlinear index

n2(q)= e( )q/2n 0

are also tabulated with e2(q) obtained from Eq. (3.17).
Here the dominant e8'ect of long-range correlations is
that n2 does not diverge with the isothermal compressi-
bility, but instead appears to be bounded as the critical
temperature is approached. The dependence of n2 on q
(seen here as a dependence on wavelength) is also seen to
be reduced with increasing distance from the critical
point.

While long-range correlations in the medium are seen
here to lower nz, they are also seen to result in an in-
crease in the scattering length in a manner that is favor-
able to achieving a long beam interaction length for non-
linear wave mixing. In addition, a favorable leveling off
of the medium response time is found as the critical point
is approached.

light-scattering noise. (Our previous treatment of light-
scattering noise in four-wave mixing, presented in Ref. 4,
was limited to noncritical media and neglected the effects
due to nonsaturable background loss. ) As in Ref. 18,
both the probe and conjugate waves are considered to be
weak to the extent that stimulated scattering contribu-
tions to phase conjugation may be neglected. The wave
equation for the nonlinear medium, with the noise fluctua-
tions 5E included, is

V' E(r, t)= (tu lc )(—eo+e2E +6 )eE(r, t), (4.6)

where E(r, t) is the total field. Note that any q depen-
dence suppressed in this section for notational simplicity
is to be understood. For degenerate four-wave mixing,

E(r, t) = ,'(e E~e'O'+—e,E,e

+e,Eoe' '+e2Eoe ' '+c.c)e

(4.7)

Ec,

where we assume equal pump amplitudes E& =E2=EO
and Ez (E, ) is the slowly varying envelope of the probe
(conjugate) wave. Here we have departed from the nota-
tion of Fig. 1 in that +K are the wave vectors of the
counterpropagating pump beams, and Q (

—Q) is the
wave vector of the probe (conjugate) wave. Substitution
of Eq. (4.7) into Eq. (4.6) gives, for the collinear field

geometry of Fig. 5,"'

Eq E2

C. Four-wave mixing with nonsaturable
background loss and light-scattering noise

The present treatment follows closely that of Pepper
and Yariv for phase conjugation in Kerr-like media hav-
ing nonsaturable background loss, ' but also includes

Ep

FIG. 5. Four-wave-mixing geometry. The symbols ~ and
~

indicate vertical and horizontal beam polarization, respectively.
Writing beams are E~ and E2 with 0=180'. Note that the beam
polarizations were chosen so that only a single grating is
formed.
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dE, —ivoexp( —aoL /2)(E*/2+E, )
dz

+(ao/2)E, i—X(z}, (4.8a)

y (z) = —[2y/(31~, +2iao)]exp(2il~lz)

X exp[ —ao(z L—/2) ]

+ [1'/(3a. ,
—2iao) ]exp(2i~, z) . (4.14)

dE* = —i~oexp( —aoL /2)(E'+ E, /2)
dz

—(ao/2)E* iX—(L —z) . (4.8b)

X (z) = QE&(z)5ff/2ffo =QEoexp( —aoz /2)5ff/2eo

Here L is the beam interaction length, eo is the attenua-
tion coefficient for nonsaturable background loss, and the
slowly varying envelope and phase approximation has
been used. Note that for the beam polarizations shown in
Fig. 5, only a single (180) grating is formed. This ac-
counts for the additional factor of —,

' preceding E* and E,
in Eqs. (4.8a) and (4.8b). The noise operator X is defined
as4

The coeflicients c| and cz are obtained from Eqs. (4.12a)
and (4.13) using the boundary conditions specified above.
[The solution for 3 (z) is of the same form except that ao
is replaced with —ao in Eqs. (4.13) and (4.14).] Upon
converting back to original notation, the solutions are

E, (0)=B (0)exp( —aoL/2)

and

E'(L) = 3 (L)exp( 2ilr—,L —o.oL/2),

respectively, for the phase-conjugate and transmitted
probe fields.

Figures 6—8 show the predicted phase-conjugate
reflectivity for xenon, defined by the intensity ratio

=y exp( —aoz/2), (4.9)
R = [E,(0)E,'(0)]/[E'(0)E (0)], (4.15)

and

~, = (ao/2)exp( —aoL /2)

K = [K2 (~ /2)2]1/2

(4.10)

(4.11)

Following Ref. 18, we next introduce the variables

3 (z)=E*(z)exp(2i~,z+aoz/2)

and

B (z) =E,(z)exp[2i~, z —ao(z —L)/2] .

Equations (4.8) may then be written in the form

dB = —
iw~ A exp[ —ao(z L /2)]—

where the last equality defines the complex z-independent
noise variable y.

To obtain the solution to Eqs. (4.8) and (4.9), it is con-
venient to introduce a few variable transformations.
First, let

as computed from Eqs. (4.13) and (4.14) in the absence of
noise (y=0). Since the only significant loss mechanism
for xenon is light scattering itself, the attenuation
coefficient ao was set equal to o.

o in the calculations, with
the latter determined from Eq. (4.5). Figures 6 and 7
differ only in wavelength and were derived assuming cw
pump intensities of 10 kW/cm . The most significant
difference lies in the size of the maximum reAectivities

0

obtained. For X=5145 A, the maximum reAectivity is
about one percent at this pump intensity while for
X=1.06 pm reAectivities in excess of unity are obtained.
This sensitivity to wavelength is also manifested in the
relative positioning of the curves for Ko and cro in Figs. 4
and 5. At X=1.06 pm, ~o exceeds oo to the extent that,
even with losses included, ~,ff [Eq. (4.11)] takes on real
values. This last condition, not satisfied at A, =5145 A, is
necessary for R to exceed unity. Indeed, if the pump
power is increased only slightly above 10 kW/cm at the

—iy exp(2i~, z)exp[ —ao(z L /2)], (4.1—2a)

dA = —i~,B exp[ao(z L/2)]—
—iy exp(2ia&z)exp[ao(z L /2)] . —(4.12b)

We now require the solution to Eqs. (4. 12) and (4.9) sub-

ject to the usual boundary conditions (cf., Fig. 5):
E, (L)=B(L)=0 and 3 (0)=E*(0). This is readily ob-
tained for constant y and, in particular, for y=0 gives
the standard result for four-wave mixing in a lossy medi-
um in the absence of noise. ' For nonzero y, we obtain

B (z) =c,exp( —aoz/2)sin(~, ffz)

K
O
t
0)0

—1.0 —0.5

+czexp( —
aoz /2)cos(v, ffz)+y~(z), (4.13) logq0 [L (m)j

where y (z) is a particular solution of the second-order
differential obtained by eliminating A (z) from Eqs.
(4.12):

FIG. 6. Phase-conjugate reflectivity vs beam interaction
length at A. =5145 A. Reduced temperatures are as follows:
curve 1, T„=10 -; curve 2, T„=10 ', curve 3, T„=10
curve 4, T„=10 . Pump intensities equal 10 kW/cm .
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0.0—
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y undergoes Gaussian fluctuations in time with

& ly(q) I'& =(g'&.'/4eo) & lfie(q) I'&

=(Q Fo/4eo)8vrkTe2(q)/V, (4. 16)

K
O —1.0—
Ul0

—1.5—

—2.0—

I

—1.5 —0.5
Io910 [L (m)j

I

0.5

FIG. 7. Phase-conjugate reAectivity vs beam interaction
length at X=1.06 pm. Reduced temperatures are as follows:
curve 1, T„=10; curve 2, T, = 10 ', curve 3, T„=10
curve 4, T„=10 . Pump intensities equal 10 kW/cm .

3

K

1

0

lo91P [L (m)]

I

0.5

FIG. 8. Phase-conjugate reAectivity vs beam interaction
length for A, =1.06 pm at T„=10 '. Pump intensities equal 20
kW/cm2.

longer wavelength, oscillation is observed. Oscillation is
seen in Fig. 8, which was derived for A, =1.06 pm,
T„=10 and a cw pump intensity equal to 20 kW/cm .
Other consequences of the foregoing theory are also ap-
parent in these figures. For example, in Fig. 6, the curves
labeled 1 and 2, for T„=10 and 10, respectively,
have nearly identical shape due to scaling. Referring to
Fig. 3, this scaling behavior is seen to occur over the re-
duced temperature range for which the curves corre-
sponding to o.

o and Kp are linear and parallel. The same
behavior occurs at A, =1.06 pm, as may be seen through a
comparison of Figs. 4 and 7. Finally, the breakdown of
scaling seen close to the critical temperature occurs as
the correlation length approaches the natural length scale
set by the grating spacing. This breakdown is yet another
manifestation of the effect of long-range interactions in-

cluded in the present calculations.
The final calculations presented in this section include

the effect of noise. As noted previously, the full solution
provided by Eqs. (4.13) and (4.14) for nonzero y assumes
that the phase and amplitude of this complex variable are
fixed. However, from Eqs. (4.9) and (3.19) it is seen that

and random phase. To make further progress, we ob-
serve that the fiuctuations in y vary on the time scale (r)
of the medium response, which is slow compared to the
transit time of light through the medium. Accordingly,
only the instantaneous value of y is required to obtain a
solution valid over a time interval that is short compared
to the response time of the medium. This adiabatic ap-
proximation provides an especially convenient stochastic
approach to calculating the effects of noise. Specifically,
this approach consists of obtaining the solution to Eqs.
(4.13) and (4.14) separately for each fixed-y member of a
statistical ensemble. The ensemble itself is defined to
consist of the collection of solutions obtained for a
representatively large number of values of y. The present
set of y values, used in the calculations described below,
was generated through computer sampling to have
Gaussian statistics characterized by Eq. (4.16) [with ez
from Eq. (3.17)], and to satisfy the condition of random
phase.

Results of stochastic noise simulation for the conjugate
field are shown in Fig. 9. Without loss of generality, the
incident probe field is taken to be real and is represented
by the single point appearing on the real axis in Figs.
9(a)—9(d). A representative set of 101 values of y was
generated in the manner described above, and the corre-
sponding number of solutions to Eqs. (4.13) and (4.14) for
the conjugate field obtained. [Note that the coefficients

c, and cz appearing in Eq. (4.13) must be recalculated for
each solution. ] The result is a cluster of points shown in
the figure (one point for each solution) whose spread con-
veys both the amplitude and phase noise inherent in the
conjugate wave. Each cluster is centered on the hy-
pothetical noise-free (or zero-temperature) solution calcu-
lated for y =0. The latter lies on the imaginary axis due
to a phase shift of m/2 incurred in forming the conjugate
wave. In addition to a dependence on the frequency of
light and temperature, the noise power present in the
conjugate wave was shown in Ref. 4 to depend only on
the product iroL and on the total power in the entering
probe beam. This same behavior is seen in Figs. 9 for the
noise fluctuations in the field itself. Here each figure was
obtained under conditions of the same temperature
(T„=10 ) and wavelength (A, =1.06 pm) with L= 1 m

and pump intensity of 10 kW/cm . (These conditions lie
near the maximum of curve 3 in Fig. 7 and near the
threshold temperature for observable q dependence in

Fig. 4.) Thus, the values of GAOL and R are constant in

Figs. 9{a)—9{d). Figures 9{a) and 9{b) were obtained for a
total probe power of 1 W, but represent different probe
intensities since the beam cross sectional areas differ by a
factor of 1000 in the two figures. At 1-W probe power,
the noise fluctuations are seen to be just barely resolvable
on the scale of the figure. Figures 9(c) and 9(d) were each
obtained for a total probe power of 1 m%' and again
represent different probe intensities. Here the noise fluc-
tuations are much more pronounced and clearly show
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FIG. 9. Fluctuations in the real and imaginary components of the conjugate field due to light-scattering noise. Pump intensities

equal 10 kW/cm, X=1.06 pm, T„=10 ",and L= 1 m. Results are for (a) probe power =1 W, probe beam area =0.001 cm; (b)

probe power =1W, probe beam area =1 cm'; (c) probe power =0.001 W, probe beam area =0.001 crn; (d) probe power =0.001 W,

probe beam area = 1 cm'. Field strengths are in mks units.

that the relative range of scatter depends on the total
power of the probe beam but not otherwise on its cross
section area and intensity.

V. SUMMARY AND DISCUSSION

The fundamental connection between light scattering
and nonlinear optical response has been developed for
isotropic Kerr media and extended to include long-range
correlations characteristic of Auids near a critical point.
This extension has culminated in a fluctuation-dissipation
relation [Eq. (3.19)] that provides a quantitative means
for calculating nonlinear optical response directly from
the known light-scattering properties of the medium. In
addition, by incorporating light-scattering fluctuations
directly into the equations governing beam propagation,
the amplitude and phase noise characteristics of the
medium were obtained.

In the preceding sections, the Ornstein-Zernike model
for light-scattering fluctuations near a critical point was
used in conjunction with the Auctuation-dissipation rela-
tion to derive the nonlinear optical response. Key
findings are as follows: (1) The Kerr coefficient (ez or n2 )

acquires a wave-vector dependence that becomes more
pronounced as the critical point is approached. More-
over, the form of this dependence is identical to that im-

plied by the angular dissymmetry of light-scattering fluc-
tuations in the Ornstein-Zernike model. (2) The size of
the Kerr coefficient no longer diverges with the iso-
thermal compressibility, but instead levels off„and in

some cases is reduced (see Table I), as temperatures very

close to the critical temperature are approached. (3)
Identical wave vector and reduced temperature depen-
dences for the Kerr coefficient and the structure factor
are found. Similar properties [(1)—(3)] iminediately follow
for derived quantities such as the four-wave-mixing
coefficient, shown here as a function of the reduced tern-

perature in Figs. 3 and 4.
Preliminary experimental indications that simple

critical-point Auids have exceptionally high potential for
nonlinear optical signal processing applications are sup-

ported by the results of the present study. For example,

n2 values of 10 ' —10 ' m /W and response times in the

1—10-@sec range are predicted here for xenon at the criti-
cal density and temperatures near T, . Even when losses

due to light scattering are properly taken into account,
phase-conjugate reAectivity in excess of unity is predicted
for 1.06-pm wavelength radiation and cw pump intensity
in the 10-kW/cm range. In addition, while our results
show that light-scattering noise is significant at low signal

powers, they also demonstrate that critical-point Auids

are inherently no more noisy than other Kerr media
when compared at the same temperature, optical frequen-

cy, and comparable values of i~oL.

Calculated values for the nonlinear index and response
time for near-critical xenon, from Table I, are shown in

Fig. 10 along with reported values for these quantities ob-
tained for a selection of other Kerr and artificial Kerr
media (see the caption). Entries 1, 2, 5, and 6 represent
media with anisotropic molecules or particles capable of
rotating into alignment with the applied field. The
response times for these materials should be relatively in-

sensitive to wavelength and grating spacing. Indeed,
these entires are seen to span a wide range of wavelengths
from the millimeter to the submicron (visible) regime.
Entry 3 (present work) and entry 4, on the other hand,
represent isotropic media whose response requires trans-

port of molecules, density fluctuations, or particles over
distances comparable to the grating spacing. For these
cases the response times will depend on the grating spac-

ing, as determined from the wavelength and angle of the
writing beams. Both these entries are for X=5145 A, but
for different grating spacings. Accordingly, the response
time for entry 4 (which is proportional to q ) was de-
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C(q)= fC(R)exp(iq. R)d R

to have the property that

C(q) = I (q)/[1+ (p }I(q)],
where

I (q) = f I (R)exp(iq. R)d R

(A1)

is the Fourier transform of I (R) defined in Eq. (2.5).
Substitution of Eq. (2.4) into Eq. (2.3) gives

S(q) = (p) V,. [(p) I (q)+ 1]

10 12 10 8 10 4

RESPONSE TIME (sec)

100

FIG. 10. Comparison with other Kerr media. Symbols
represent (1) typical molecular Kerr liquids, e.g. , CS2, nitroben-
zene; (2) isotropic phase liquid crystal near T*, from Ref. 6; (3)
xenon near T„present work; (4) aqueous polystyrene sphere
suspension, from Ref. 1; (5) graphite rod suspension, based on
millimeter wavelength birefringence measurements from Ref.
19; (6) nematic phase liquid crystal, from Ref. 20.

(A2)

where to obtain the last equality, (Al) has been used.
Now as T approaches infinity, S(q) approaches S (q) of
Eq. (2.7), and C(q) approaches zero. At critical point,
S(q) approaches infinity implying through (A2) that
C(q) approaches 1/p. This behavior suggests that C(R)
remains short ranged even near the critical point and,
therefore, provides support for the next step in the OZ
approach; namely, the assumption that integrals of the
form

creased from its reported value in order to make the
present comparison valid for the shorter (180' angle be-
tween writing beams) grating spacing. [A line of unit
slope is included in the figure for comparison to show
that the nonlinear index varies roughly inversely with the
response time for the cases shown. More detailed exam-
ination of this dependence (which must be regarded as
somewhat fortuitous for entries 3 and 4) is beyond the
scope of the present study. ] The comparison shows clear-
ly that the predicted nonlinear optical properties of xe-
non are consistent with the measured properties reported
for other types of nonresonant Kerr media. Specifically,
the properties of critical-point fiuids (entries 2 and 3) ap-
pear to lie intermediate between those of media that un-

dergo fast molecular scale and slow large scale realign-
ment in response to the electromagnetic field. For those
applications requiring response times in the 1—100 psec
range, it is seen that critical-point fluids may have the
largest Kerr-type nonlinear response.
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RCR R,

C(q) = Co —C2q

where

CO=4m. JR C(R)d R

and

Cz=(2m. /3) fR C(r)d'R .

(A3}

Terms involving higher powers of q are neglected. Now
from Eqs. (2.7), (A2), and (A3),

S (q)/S(q)=1 —(p}Co+(p)C2q:—Ro(qo+q ), (A4)

where

where R = ~R~ also remain finite. Expanding

exp(iq R)=1+iq R (q R—)

in the transform integral definition for C(q), results in
the following Taylor series about q =0:
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APPENDIX

Derivation of Eq. (2.11}using the OZ approach may be
summarized as follows. First, the direct correlation func-
tion C(R) is introduced through its Fourier transform

and

S(q)/S (q) = (p) kTPr[1+(q/qo)~] (A5)

qo=(1 —(p)CO)/Ro .

From Eqs. (2.7)—(2.9) and (A4), we obtain

R oqo = ((p }kTPr )

Substitution of this last result into (A4) gives Eq. (2.11):



42 LIGHT SCATTERING AND NONLINEAR OPTICAL RESPONSE. . . 2247

'P. W. Smith, P. J. Maloney, and A. Ashkin, Opt. Lett. 8, 347
(1982).

2R. McGraw and D. Rogovin, SPIE 739, 100 (1987).
R. McGraw and D. Rogovin, in Aduances in Laser Science—

III, Proceedings of the Third International Conference,
Atlantic City, New Jersey, 1987, AIP Conf. Proc. No. 172,
edited by Andrew C, Tam, James L. Gole, and William C.
Stwalley (AIP, New York, 1988), p. 253.

4R. McGraw, D. Rogovin, and A. Gavrielides, Appl. Phys.
Lett. 54, 199 (1989).

-R. Hellwarth, Phys. Rev. 130, 1850 (1963).
G. K. L. Wong and Y. R. Shen, Phys. Rev. A 10, 1277 (1974).

7V. Wang, G. Bennett, P. Roullard, R. Hassler, and P. Stanley
(unpublished).

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley,
New York, 1976), Chap. 10.

9H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford, New York, 1971),Chap. 7.

'oL. D. Landau and E. M. Lifshitz, Electrodynamics of Continu
ous Media (Pergamon, New York, 1960).

"R.D. Mountain, Rev. Mod. Phys. 38, 205 (1966).
M. Fixman, J. Chem. Phys. 33, 1357 (1960).
P. Debye, J. Chem. Phys. 31, 680 (1959).

' H. Z. Cumrnins and H. L. Swinney, J. Chem. Phys. 45, 4438
(1966).

' D. L. Henry, H. L. Swinney, and H. Z. Cummins, Phys. Rev.
Lett. 25, 1170 (1970).

' M. R. Moldover, Phys. Rev. A 31, 1022 (1985).
' R. Hocken and M. R. Moldover, Phys. Rev. Lett. 37, 29

(1976).
' D. M. Pepper and A. Yariv, in Optical Phase Conjugation,

edited by R. A. Fisher (Academic, New York, 1983), Chap. 2.
' B. Bobbs, R. Shih, H. R. Fetterman, and W. W. Ho, Appl.

Phys. Lett. 52, 4 (1988).
S. D. Durbin, S. M. Arakelian, and Y. R. Shen, Phys. Rev.
Lett. 47, 1411 (1981).


