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This paper addresses two central issues in our understanding of self-trapping, or localization, of
a light particle (e.g., electron, positron, or positronium atom) in a lluid. The first concerns the re-

lationship between the mean-field calculations of localized states carried out from the mid-1950s
until the present, and the direct calculation of light-particle (LP) properties from the adiabatic
model. The second concerns the universality of the ring polymer representation of the LP, which

has proved to be extremely useful for computing the properties of localized electrons. We first

demonstrate that the mean-field theories of localization, which are derived from density function-

als, can be obtained from the adiabatic model by employing a Gutzwiller type of approximation.
We then study the application of the adiabatic model, via the polymer representation, to the an-

nihilation of positrons and positronium atoms in a fluid. Expressions for the decay rate and its

variance are derived in terms of the two- and three-point distribution functions for the polymer

sites and positions of the atomic nuclei. The momentum distribution of the localized LP is shown

to be proportional to the Fourier transform of the distribution function for the displacement be-

tween the ends of a broken polymer.

I. INTRODUCTION

A self-trapping system consists of a light particle (elec-
tron, positron, or positronium) and a dense fluid. If the
mean de Broglie wavelength of the light particle (LP) is
much greater than the mean spacing between fluid parti-
cles (FP's), the LP can simultaneously interact with many
FP's. Therefore, in certain regions of temperature (T)
and density (p) of the fluid, the LP can produce a region
of altered fluid density in which it is localized. This phe-
nomena is most significant near the liquid-vapor critical
point where the isothermal compressibility of the gas is

large. '

Experimental manifestations of self-trapping come in

two broad categories. The range of electron mobility
measured in fluids is extreme. In a given fluid, the mobil-

ity depends sensitively on the mean density and pressure.
Small values of the tnobility are attributed to the presence
of trapped states. Density and temperature dependence
are also observed in various characteristics of the annihi-
lation of positrons in fluids. Most notable is the pick-ofl'

decay rate of orthopositronium, Xpo, in which a positron
bound in orthopositronium annihilates with an electron
associated with an atom or molecule of the host fluid. '

Nonlinearity in plots of Ape vs p on isotherms is usually
attributed to self-trapping (see Fig. 1). Related behavior
is observed for the annihilation rate of positrons, but on a
much shorter time scale.

In contrast with orthopositronium (o-Ps), paraposi-
tronium (p-Ps) has a short natural lifetime (1.23X10
sec for p-Ps vs 1.47X10 sec for o-Ps) and avoids the
pick-off decay mode: The positron simply annihilates with
its electron partner via a two-photon process. The
momentum distribution of the positronium center of mass
immediately before the annihilation can be experimentally
accessed by measuring the angular distribution of the de-
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FIG. 1. Decay rate (k„ps)of orthopositronium vs density (D)
in ethane at 306.4 K. The figure illustrates linear dependence at
low density followed by a soft transition to a plateau in a broad
region surrounding the critical point (from Ref. 19).

cay products. A signature of trapping is a mean positroni-
um kinetic energy which exceeds —', kT.

Although the o-Ps decay rate and the p-Ps momentum
distribution provide information about the LP environ-
ment, they are not equivalent. It will be shown below that
the decay rate provides a measure of the local distortion of
the fluid produced by the LP while, conversely, the
momentum distribution provides a measure of the distor-
tion of the LP due to the "pressure" exerted by the fluid
molecules.

In order to simplify the role played by the atomic elec-
trons, in theoretical studies of trapping it is popular to
adopt a mesoscopic formulation which employs two
effective potentials, one for the interaction between the
FP's, u, and the other between the LP's and the FP's, v.
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The Hamiltonian of this system is given by

H =p /2m +g v (x —R; ) + —,
' g u (R; —

R~ ) +g P; /2M,
.I J.i'

(1)
where the first term is the kinetic energy of the LP; the
second, V(x,R), is the total LP-FP interaction energy;
and the third, U(R), and fourth are the total FP internal
potential energy and kinetic energy, respectively. Because
M»m, the LP has to be treated quantum mechanically
while FP's are usually treated classically. In this work we
shall adopt this view. Therefore the last term in (1) is

decoupled and can be dropped for most studies of self-
trapping.

This model has been studied since about 1950 by many
investigators. Most of them employed some version of
macroscopic mean-field theory in which the free energy of
the system is considered as a function (or functional) of
an average LP wave function y(x) and the average local
fluid density p(x). By nullifying the functional derivative
with respect to variations in y(x) and p(x), one obtains a
nonlinear Schrodinger equation [Eq. (10) in this paper]
for the optimal y(x). ' Alternatively, one can use a trial
wave function to minimize the free energy. 6 These models
exhibit many of the qualitative features one expects of lo-
calized states. However, they all have a common weak
point. In certain regions of T and p, localized LP states
exist, but in regions with high T or low p, or both, no lo-
calized state can be found. Consequently, all physical
quantities predicted by these models have a discontinuity.
This feature does not agree with experiments, which indi-
cate that the system properties change smoothly.

In an effort to solve this problem, Siili, Tuomisaari, and
Niemenen and Fan and Miller extended different ver-
sions of the mean-field models to include the effect of ad-
ditional LP states by taking into account the contribution
of local fluctuations. Siili et al. argue that the LP experi-
ences various density profiles with probabilities deter-
mined by the corresponding Gibbs factors. By choosing a
specific function family for the density profiles and
evaluating the response of the LP wave function they cal-
culated the positronium decay rate on some isotherms.
Their results do not show the discontinuity and fit the ex-
perimental data fairly well in limited (T,p) regions. Fan
and Miller employed the same idea in the opposite direc-
tion by choosing a particular family of LP wave functions
and computing the FP density response. They obtained
results similar to those in Ref. 7, but with a quantitative
improvement.

In all of these works, various further approxima-
tions —more or less reasonable —have to be used. A com-
mon artifact is that they have to artificially break the
translational invariance of the system. All of the wave
functions and densities previously considered have spheri-
cal symmetry, but the center can be anywhere. After as-
signing the center to an arbitrary fixed point, the contribu-
tion of the self-trapped state(s) to the entropy is re-
duced. ' This problem becomes very serious when the
system favors an extended LP state more than an indivi-
dual localized state. The problem of determining the rela-
tive degeneracy of trapped and extended states has not

been resolved for the density-functional models. A possi-
ble solution is to employ a microscopic description which
maintains the translational invariance of the real system.

A good candidate is provided by the path-integral ap-
proach proposed by Feynman, " which can be used to es-
tablish an isomorphism between the partition function of
the hybrid system and a purely classical model of a ring
polymer. Here, following Feynman's approach for a
single-particle Hamiltonian, the trace of the LP part of
the density operator is modeled by the imaginary-time
path integral. There is one important difference: In
Feynman's treatment, the external potential experienced
by the particle is fixed and independent of the time. Here,
the potential experienced by the LP depends on the posi-
tions of the FP's, which are treated classically. Averages
over the LP states are constructed by taking the usual
quantum trace in which the FP coordinates are axed, and
then weighting each FP configuration with the Gibbs fac-
tor of classical statistical mechanics. This hybrid con-
struction is frequently referred to as the adiabatic model.
Variations of the ring-polymer isomorphisin (RPI) have
been used to investigate quantum corrections in fluids
since the mid-1960s. ' An "industry" for computing the
properties of solvated electrons in different systems has
developed around this isomorphism during the last de-
cade "

Important questions concern the relationship between
the mean-field approximations and the adiabatic model.
In particular, it would be useful to know to what extent
they are equivalent, or if one follows from the other by a
systematic sequence of approximations. In this paper we

establish the relationships among all of these models. We
then show that the difficulty which occurs in the mean-
field theories due to the lack of translational invariance
can be naturally removed. We exploit the polymer iso-
morphism to provide explicit formal expressions for the
experimentally observed decay rate and its variance.
Last, we derive an expression for the momentum distribu-
tion of the localized LP. We demonstrate that it is pro-
portional to the Fourier transform of the distribution in

displacement between the ends of a broken polymer.

II. RELATIONSHIP AMONG MODELS

We start by considering the expectation value of an
operator 0 in the adiabatic model. The operator may de-
pend on both the LP and FP coordinates, but not the FP
momenta. The trace refers to both the quantum part and
the classical part, which consists of the integral
fdR~ dR& =—fdR weighted by exp( —pU). We sim-

ply assume that the expectation does not depend on their
order. The result reads

(0) (I/Z)„dRQ(a ~
0

~
a)exp[ —PU(R) —PE (R)],

(2)

where
~
a)=

~
a(R)) is the eigenstate of H'=p /2m

+ V(x, R), E.(R) is the corresponding eigenvalue, and
the partition function Z is obtained from the numerator
by letting 0 =1.
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Now let us look at a different expectation value,

&0&' = (I/Z') „D,8(&y! y&
—1)

dR&y~ Oexp[ —PH'(x, R)]
~ y&

xexp[ —PU(R)] .

In Eq. (3), JD~ is defined by'

„D= Q—dC,dC, —= dC,
a

where C, are the coefficients of a complete set and Z' is
the appropriate partition function. The 8 function ensures
that only normalized states contribute to the sum. Ap-
parently, (2) and (3) are two different quantities because,
in (3), the sum is performed over the complete Hilbert
space. Under the assumption that the order of fD~ and

fdR can be interchanged, we can prove their equivalence.
Suppose we choose the eigenstates of H'(R) as the com-
plete set and perform fD~ first. Then, the R-dependent
average is proportional to

fO„D,&(&y I y&
—1)&y ( Oexp[ —PH'(x, R)] ) y&

= dCb g ) C. ~' —1

a
g O„C,*C, exp[ —PE. (R)], (S)

,a', a"

where 0„=&a'
~
0

~
a&. It is easy to see that the terms with a~a' in the double summation vanish because the C depen-

dence is even in the rest of the integrand. Therefore (5) becomes

dCb Q I C. I

—1' QO„IC. I exp[ —PE, (R)] =QO„exp[—PE.(R)] dCS X, I C. I

—I
I C. I

a a a i

From (6) one can see that the order between 0 and
exp[ —PH(R)] is irrelevant to the result. The quantity
inside the curly brackets is an a- and R-independent con-
stant. This constant is well defined in a finite-dimensional
space. If a total of u quantum states were included in the
sum, the constant would take on the value z"/u!. Conse-
quently, in Hilbert space (U ~) it vanishes. However,
the same factor also appears in Z', the denominator of
(3), which is obtained from the numerator by replacing
O„with unity. Thus, for any finite basis set, the
equivalence of (2) and (3) is established. Here we neglect
mathematical rigor and assume that this factor cancels
out in Hilbert space. In general, the transformation be-
tween two arbitrary complete sets will also produce a con-
stant functional Jacobian determinant. This factor is
also canceled in the denominator. Thus we arrive at the
same expression as (2).

Miller proposed another model similar to (4). ' In his
model each system is represented by an element of the
tensor product of the phase space (for the FP's) and Hil-
bert space (for the LP) in which each element carries the
statistical weight exp[ —P&y~H(R)

~
y&]. The partition

function then takes the form

Z =„D,b(& y i y&
—1)exp( —

P& y i P '/2m
i y&)

dRexp[ —P(&y~ V~ y&+U)] '. (7)

The quantity in the curly brackets is equivalent to the
configurational partition function of N classical particles
under an "external potential, "

V,(x) =&yr
~
v(x —x')

~ y& = dx'v(x —x')
~
y(x') ~' (8)

where, in the second step, x' is an operator. We can for-
mally carry out the integral fdR in (7) and obtain

Z=„Dyb(&yi y&
—1)

xexp[ —P(&y~ p /2m
~ y&+F[y])],

where F is the configurational free energy of W classical
particles experiencing the external potential and is, in gen-

I

eral, a functional of y. By minimizing &y~ p /2m
~
y&+F

with respect to variations in y, Miller naturally obtained
the nonlinear Schrodinger equation for the optimal state
without resorting to a local-density approximation for
g. ]5,5

—(h, '/2m)ay(x)+ ip(x) ) dx'U(x —x')p(y(x') )

In Eq. (10), p p(y) is the conditionally averaged local
FP density and is, in general, also a functional of y. Thus,
the usual density-functional descriptions of trapping are
the mean-field solutions for y and p obtained from
Miller's path integral. Alternative versions of the mean-
field theory employed by different investigators arise from
the degree of approximation used in the representation of
F, ' which is used to close (10) by providing a second
relation between y and p(y). To recognize the relation
between the adiabatic model, as represented in (3), and
Miller's model, (7), we introduce the following approxi-
mation:

&yi H"
i il & =&pi 0 i y&",

&y I
OH"

I y& -&q I 0 I y&&y I H I y&",

for n=0, 1, . . . .

This is just the Gutzwiller approximation' in the repre-
sentation of Ogawa, Kanda, and Matsubara. ' By ex-
panding exp[ —PH(R)] in (3) in a Taylor series and us-
ing (11),we can arrive at (7). Thus, we are forced to con-
clude that density-functional formulations can be extract-
ed from the adiabatic model only following serious ap-
proximation.

III. AN APPROACH WITH TRANSLATIONAL
IN VARIANCE

The path-integral representation formulated in (7) nat-
urally leads to a free-energy functional for describing the
localized LP. To date, all computations based on this
functional have encountered serious difficulties due to lack



LOCALIZATION IN FLUIDS: A COMPARISON OF. . . 2231

of translational invariance. In order to carry out compu-
tations with the functional, it was necessary to break the
invariance by asserting a fixed center for the LP. The re-
sults obtained from mean-field theory always imply that in

certain regions of (T,p) in a disordered fluid, LP states of
infinite extent are more probable than trapped states. In
the two approaches which went beyond mean-field
theory, " and included a fluctuating wave function or den-

sity field, the extended state was always dominant at all

(T,p) above T„.All of these difficulties are artificial and
can be avoided by employing the adiabatic formulation
directly.

Earlier we described how the annihilation rate of posi-
trons and orthopositronium, and the momentum distribu-
tion of parapositronium, are the best experimental signa-
tures of trapping. Here we use the adiabatic model to
construct practical expressions for these quantities which
do not suffer from this "extended state dominance. " We
show that this defect can be naturally removed if we start
with (2) or, equivalently, (3). We first define the decay
rate operator,

) =„dxix) dx'f(x —x')p(x')&xi, (i 2)

where f(x —x') is the electron distribution around the
atomic nucleus located at x', which we assume to be rigid,
and

p(x') =g B(x' —R, )

X(y, R) = dx„dx'i y(x) i'f(x —x') p(x') . (i4)

The meaning of both (12) and (14) is intuitive. For com-
putational reasons, all mean-field calculations have to as-
sume that the electronic charge distribution is a 8 func-
tion. The ensemble average of X is obtained by replacing
0 with (12) in (2) and then choosing

I
x) as the complete

set for all configurations [Rj:

k = (N/Z) dx„dRf(x —R) )&x
I exp[ —PH'(x, R)] I

x)

x exp[ —PU(R)] . (i 5)

The isomorphism between the adiabatic model and a
classical system consisting of a ring polymer with p sites in

equilibrium with the fluid is constructed by following
Feynman's imaginary-time path-integral representation
for the electron briefly sketched below. ' In his classic
text on statistical mechanics, " Feynman first notes that

is the microscopic fluid, or nuclear, density operator. [Al-
ternatively, X may be expressed in the simpler, but less
suggestive, form g, f(x —R, ).] An overall numerical
factor has been dropped in (12) which is proportional to
the effective number of atomic or molecular electrons that
are available for annihilation. By taking the average of X

in an LP state I y), we find the familiar expression for the
decay rate, '

(x I exp[ —PH'(x, R)]
I
x) = g „dxt g (x, I exp[ —(P/p)H'(x, R)] I x, +)),

2 I p ] g p

where xp+] =x] =x. He then uses perturbation theory to derive

&x, I exp[ —(P/p )H'(x, R) ] I x, + ) ) = exp [ —Pe(x, ,x, + ), R)],
e=(2mp/P'h')

I x, + i
—x, I'+(1/2p) [V(x) R)+ V(xj+i, R)1,

when p »1. By letting p 00 the approximation becomes rigorous and Feynman obtains the imaginary-time path in-

tegral
r pg

(x I exp[ —PH'(x, R)]x)= D,«i„dtexp[ —[(m/2)r(t) + V(r, R)]j,
where r(0) =r(Ph) =x. Thus (x I exp[ —PH'(x, R)] I x) can be thought of as the classical configurational partition func-
tion of a large ring polymer consisting of a linear harmonic chain of nearest-neighbor interacting sites, each of which ex-
periences the external potential (1/p)V(x, R). The interaction potential acting between sites is simply (ph /2m)
x

I x, + (
—x, I

. The configurational partition function in the polymer representation takes the form

Z =„dRexp[—PU(R)] + „dx~exp[ —(2mp/Ph ) I x~+) —x, I +(P/p) V(x, R)j .
[M j(p

Because all of the labeled sites of the ring polymer are equivalent, we may express the mean annihilation rate as

x —Rj = 1 p x~ —Rj

= (1/p)„dx„dRf(x —R)nt~ j~(x —R) =p„drf(r)gt r(r),
where, in (21),

n,'P(x —R) = g g b(x —x.)b(R —R, )) pp~i(,', ~(x —R)=
] ~a~p ] ~ j~%

(20)

(21)

(22)

is the two-point LP-FP distribution function and p~] is the mean site density of the polymer. ' ' Finally, by expressing
the radial distribution in terms of the pair-correlation function, ger(r) =1+ht ~(r), we arrive at

) =p drf(r)[1+It p(r)t]. (23)
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This simple looking result supports our expectation that, in the absence of correlations, the mean decay rate is simply

proportional to the average fluid density. All of the di%culties in predicting k arise in the computation of the pair-
correlation function between polymer sites and the elements of the fluid.

An important related quantity is the variance of the annihilation rate, (()(,—(A, &) ). If each positron, or positronium

atom, experiences nearly the same environment, then the variance of A. is small and its probability density function
(PDF) is tightly distributed about the mean. Consequently, it will be possible to construct an excellent fit of the orthopo-
sitronium annihilation rate data (in the 10-100 nsec range) to a single-exponential decay. In contrast, a fluctuating envi-

ronment will have important consequences for the experimental measurements. There are two extreme possibilities to
consider: either the environment of a given LP may fluctuate strongly in time, or one may find that different metastable
environments are accessible. In either case, the variance is a good indicator of the expected variation in the LP environ-

ment. In principle, it may be determined by careful experiments. We derive an expression for its computation here
within the context of the RPI.

We need only consider ()(. ) since (2) was obtained earlier. By following the discussion of (21)-(23), and separating
terms depending explicitly on the position of one fluid molecule from those depending on a pair, we can express (2 ) in

terms of the appropriate two- and three-point distribution functions of the RPI:

(k ) g f(x —Rj) (I/p) ~dx dRf(x —R) nL~F (x —R)
, 1&j&IV al aJ

+(I/p) dx dR dR'f(x —R)f(x R')nL—FF(x —R, x —R'), (24)

where nLF (r) is defined above and

«rrr(r r')- g g 8(r —(x, —R, ))8(r' —(x. —Rr))) prp grr(r=)grr(r')((+hrrr(r r )) '(25)
1 ~a~p 1 ~j,k ~N

is the three-point distribution function for a polymer site and a pair of fluid molecules. In (25) the prime on the sum-

mation indicates that terms with j k are omitted, and the definition of hLFF(r, r') ensures that it vanishes when either r
or r' is significantly greater than the two-point (LF) correlation length. This finally yields

fO fO fO

((X —(k))') p dr f(r)'gLF(r)+p' dr dr'f(r)f(r')gLF(r)gLF(r')hLF'F(r, r')

for the variance in the decay rate.
The probability distribution for the momentum of the LP is the expectation of 8(p —p):

p(p) -&8(p —p)) =(I/22r) dke '" i'(e'" f'),

fO p fQ

(e' ) (exp(k AV]) (1/Z)„dRe ~ „dx„dx'(x~e"'"
~

x')(x'~ e &
~
x) .

We recall that the operator exp(iy p) induces the translation yh so that

(x le" "'I x') -b(x —x'+kh),
and

(2z) dke '" ~8[x —x'+khan =(x
~ 8(p —p) ~

x') =(22rh) exp(ip r/6),
where, of course, r x —x'. This yields

fO

P(p) (1/Z) dRe ~ dx dx'(2xA ) exp(ip r/h )(x' .
~
e ~

~
x)

(26)

(27)

(2g)

(29)

dx dx'(2xh) exp(ip r/h)(1/Z). „dRe ~ (x'~ e ~
~
x)

dx dx'(2xh ) 'exp(ip. r/h )(pd (x,x') )

=O„dr(2nh) exp(ip r/6)(pd(r)),

where 0 is the system volume, which proves that the
momentum distribution is simply the Fourier transform of
the thermal-averaged LP density matrix, (pd(x, x')).
The development of a path-integral representation for
(pd (x,x')) is analogous to that for (pq(x, x)) in (16)-(19),
the sole, and important, difference being that in (30) the
end points of the polymer, or the smooth path in the limit

(30)

I

p ~, are separated by r, so that the polymer is no
longer ring shaped, but rather open ended.

IV. DISCUSSION AND CONCLUSIONS

This paper addresses two central issues in our under-
standing of self-trapping, or localization, of light particles
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in fluids. The first concerns the relationship between the
mean-field theories of localized states investigated from
the mid-1950s until the present, and the adiabatic model,
which is facilitated by the introduction of the polymer iso-
morphism. The second concerns the calculation of experi-
mentally accessible LP properties such as the annihilation
rate of positronium or orthopositronium, its variance, and
the momentum distribution.

Mean-field theory predicts the existence of two types of
LP states, trapped (localized) and extended (propaga-
ting). Extended states always exist in the fluid, whereas
localized states coexist with trapped states only for
specific regions of density and temperature. For a given
density and temperature of the fluid, the dominant type is
determined in principle by estimating the free energy of
each state, which fixes their relative stability. In practice,
this has not been possible because these are macroscopic
calculations and there is no clearcut method for comput-
ing the microscopic degeneracy associated with each type.
It was pointed out in the Introduction that mean-field
theory predicts discontinuities in the LP properties. These
arise where the localized solutions appear or disappear.

Measurements of the properties of thermalized posi-
tronium atoms (para and ortho) indicate that discontinui-
ties do not occur. They are an artifact of the mean-field
approximation, and are not predicted by the more
rigorous adiabatic approximation. ' Here we have
demonstrated that a particular Gibbsian measure intro-
duced by one of us is a subset of the adiabatic model and
can be obtained from it by a Gutzwiller type of approxi-
mation similar to that employed in the Hubbard model.
Miller has shown elsewhere that mean-field theory gen-
erates the optimal states for this measure. ' This estab-
lishes the connection between the models, and clearly
demonstrates that the older mean-field theory can be de-
rived from the adiabatic model by a sequence of approxi-
mations.

The second issue we have addressed is the ability of the
ring-polymer isomorphism to represent important proper-
ties of the localized LP. For scalar functions of the LP
position which only depend on the position of a few fluid

atoms, e.g. , the decay rate operator and its variance, the

model is successful. It demonstrates that the average de-
cay rate depends directly on the degree to which each po-
lymer site alters the fluid density in its neighborhood.
However, if one requires more information, such as the
decay rate or momentum probability distributions, the
model has to be altered. In particular, the momentum dis-
tribution is the Fourier transform of the distribution func-
tion governing the displacement between the ends of a
broken polymer. In deriving these results we learn that
mean decay rates and momentum distributions provide
complimentary information concerning the nature of the
localized state: The former provides information concern-
ing the alteration of the fluid density in the region of the
LP, and the latter tells us the extent that the LP-FP in-
teraction reduces the spatial extent of the LP density ma-
trix.

The expressions derived here for the average decay rate,
its variance, and the momentum distribution of the LP are
all amenable to computation using the Monte Carlo
methods of Berne and co-workers and others. ' We are
also confident that the decay rate and momentum distri-
bution can be computed for real gases by extending the
analytical RISM (reference interaction site model) pola-
ron procedure developed by Chandler, Singh, and
Richardson for hard spheres to include a more realistic
FP-FP interaction, such as a Leonard-Jones potential. '

It will be interesting to see how well these computations
agree with experimental measurements of positron and
orthopositronium decay rates which have been carried out
for a number of gases. '
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