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Dielectric method for determining the rotational viscosity in thick samples
of ferroelectric chiral smectic-C' liquid crystals
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An alternative method, based on dielectric measurements on thick samples, for determining the
Goldstone-mode rotational viscosity and the twist elastic constant of ferroelectric, chiral smectic-
C* liquid crystals is presented. By the use of this method the temperature dependence of these
quantities for p-decyloxibenzilidine-p -amino-1-methylpropyl-cinamate (DOBA-1-MPC) and p-n-

decyloxybenzylidine-p-amino-2-methyl-butyl-cinamate (DOBAM BC) has been determined. An

Arrhenius-type behavior of the Goldstone-mode rotational viscosity was obtained with activation
energies p =0.33 eV for DOBA-1-MPC and p =0.51 eV for DOBAMBC.

I. INTRODUCTION

Ferroelectric, chiral smectic-C* (Sm-C*) liquid crys-
tals' have attracted considerable attention during the
past decade and much effort has been devoted to investi-
gating these systems from a fundamental as well as from
an applied point of view. In contrast to what is the case
in thick cells, where the ferroelectric liquid crystals form
a helicoidal structure, in thin cells they order homogene-
ously with possible bistability of two optically different
states and with a fast, electric-field-induced transition be-
tween these two states. The idea that this switching
could be used to develop fast electro-optic devices is one
reason that the interest in the subject of ferroelectric
liquid crystals has increased considerably during the last
few years. One important physical parameter that
strongly influences the switching time between the two
homogeneously ordered states is the so-called
Goldstone-mode rotational viscosity. In this paper we
will discuss the concept of rotational viscosities of the
Sm-C* phase and introduce a new method of measuring
the Goldstone-mode rotational viscosity based on dielec-
tric measurements.

Generally, for the Sm-C* phase, we have to introduce
two rotational viscosities which we denote y~ and yz.
The first one, y6, is related to rotations along the smectic
cone (the Goldstone mode), while Ys is related to rota-
tions in which the tilt of the molecules is changed (the
soft mode). The rotational viscosity yz is the one of the
two viscosities which controls the switching time in an
electro-optic device. This viscosity is usually determined
using thin samples by optical switching-time measure-
ments ' or by the polarization reversal current tech-
nique. But the question remains whether the viscosity

determined on thin, homogeneously ordered samples cor-
responds to the bulk viscosity of the system or if it is
influenced by boundary effects. In the smectic-A (Sm-A )

phase only soft-mode deformations are present and con-
sequently we only expect one rotational viscosity y& „ in

this case. As rotations of the direct or along the smectic
cone and rotations for which the tilt changes its magni-
tude are degenerate at T„we expect that the three
viscosities y6, yz, and y& ~ are degenerate at T, .

In the absence of electric fields, in the Sm-C* phase the
molecules are tilted from the normal to the smectic layers
and the direction of the tilt precesses as one goes from
one smectic layer to another (z axis) forming a helicoidal
structure. The in-plane spontaneous polarization is local-
ly perpendicular to the tilt, thus also forming a helix.
The macroscopic polarization of the system therefore
equals zero. When an electric field F. is applied in a
direction perpendicular (we chose this direction to be
along the y axis) to the helical axis, it deforms the helix in
two ways, changing the magnitude as well as the direc-
tion of the tilt. The dielectric response of the Sm-C'
phase therefore consists of two contributions. ' First,
there is the soft-mode part, which has a large characteris-
tic frequency and which corresponds to changes of the
magnitude of the tilt. This part is small and is apprecia-
ble only close to the transition temperature T, between
the Sm-C* and Sm-2 phases. Secondly, there is the
Goldstone-mode part, which has a low characteristic fre-
quency and which corresponds to changes in the tilt
direction. This response is much larger than the soft-
mode response, except very close to T, in the Sm-C*
phase. By measuring the frequency dependence of the
complex dielectric susceptibility, these two contributions
can be separated ' from each other.

42 2204 1990 The American Physical Society



DIELECTRIC METHOD FOR DETERMINING THE ROTATIONAL. . . 2205

ag d ag
ax dz ax' (2)

In Eq. (2) a prime denotes the derivative with respect to
the z coordinate. Further on, the rotational torque I "is
related to the generalized flux X by a generalized viscosi-
ty coefficient y as

r"= —qx, (3)

where a dot denotes the derivative with respect to time.
Depending on how g and X are chosen, we will arrive at a
dynamic equation with the structure of Eq. (1) but with
different definitions of the rotational viscosity y~ and of
the elastic constant K, .

To demonstrate how Eq. (1) is derived, we proceed as
follows: As the generalized coordinate X we chose the
physical displacement P sinO of the molecules under a ro-
tation P,

X =Psin8 . (4)

For g, which here shall denote the sum of the elastic and
electric free-energy density of the system, we chose the
simplest form appropriate for the analysis of the present
problem, ' '

In this paper we will demonstrate how the rotational
viscosity yz can be determined from measurements on
bulk samples (i.e., samples which are thick enough to de-
velop an unperturbed helicoidal structure) of the complex
dielectric constant of the system, together with the mea-
surements of the spontaneous polarization P and of the
tilt O. If the pitch of the system is also measured, we will
show that we can also determine the twist elastic con-
stant E3 from the measurements. Further on, we will

also discuss how the rotational viscosity yz „ofthe Sm-
A phase can be determined from measurements of the
complex dielectric constnat together with the measure-
ments of the electroclinic' ' response of the system.

II. THE BALANCE OF TORQUE EQUATION:
DEFINITION OF THE GOLDSTONE-MODE

ROTATIONAL VISCOSITY

In the literature the electro-optical switching of the
Sm-C* phase is most often studied ' ' by the use of an
equation which has the structure

—yG(sin 8)P+K3(sin 8)$" PE sing—=a, (1)

where P is the phase of the order parameter and deter-
mines the tilt direction, while P denotes the time deriva-
tive and P" the second derivative with respect to the z
coordinate. This is a balance of torque equation which
simply expresses that at each moment the elastic, rota-
tional, and electric torques acting on the molecules bal-
ance each other. In order to demonstrate in which way
the final appearance of this balance of torque equation
depends on how we are modeling the system, we will for-
mulate our approach in terms of generalized forces and
fluxes. In the case which we are studying we have a sys-
tem with one degree of freedom (we assume the tilt of the
molecules to be fixed) which we describe by a generalized
coordinate X(z). The elastic torque I " is then a general-
ized force which is related to the elastic free-energy den-
sity g (X,X') as

2

g(P, b')= —,'K3 — sin 8 P—E cosP .dg A

dz K3
(5)

PE=K,sin8$" —, sing,
sinO

(6)

I""=—
yGP sin8 . (7)

The equation governing the rotation of the director under
the influence of the electric field and of the twist elasticity
is now given by the balance of torque equation
I "+I '+ I "=0, which after some rearrangement will
give Eq. (1). We thus see that the detailed form of Eq. (1)
depends on three things: (a) The choice of P sin8 as the
generalized coordinate, (b) the assumption that the tilt
angle 8 is not infiuenced by the field, and (c) the choice of
the specific form (5) of the free-energy density of the sys-
tem. Other forms of the free-energy density would, of
course, give other dynamic equations. However, as long
as the free-energy density depends only on cosP (the
electric-field dependent part in the case when only the
ferroelectric coupling to the field is considered) and qua-
dratically on the space derivative P' (the usual form of an
elastic energy), the structure of Eq. (1) would be un-
changed. By choosing more complicated (and more real-
istic) models for the free-energy density and also taking
changes of the magnitude of the tilt into account, we
would only introduce a renormalized elastic constant K3
and a renormalized Lifschitz coefficient A into the model.
The explicit form of K, depends on the theoretical model
which is used in describing the system. For the classical
Landau model' ' the renormalized elastic constant is
given by

K3 =K3 —cp (g)

Here c is the high-frequency value of the dielectric sus-
ceptibility and p represents the flexoelectric coupling be-
tween tilt and polarization. Within this model E3 is tem-
perature independent. For the generalized Landau model
one obtains'

2

(9)
1 —cOB +3qcP

where 0 and g are material parameters of the higher-
order coupling terms which are introduced' in this mod-
el. This form of K3 contains a temperature dependence
which, depending on the magnitude of the ingoing pa-
rarneters, might or might not be negligible. We have in-
testigated the temperature dependence of K3 according
to Eq. (9) and found realistic values of the material pa-
rameters which give a rather weak temperature depen-
dence of K3 over most of the Sm-C* phase with a rather
pronounced drop occurring in the region a few degrees
below T, .

Here E is a time-dependent electric field applied at an an-
gle P to the polarization vector, while A is the coefficient
of the Lifschitz term which exists because of the chiral
symmetry of the molecules. From Eqs. (2)—(5) we now
get the elastic {I"'), electric (I'), and rotational (I ")

torques as

pe]+ pc l ag d ag
sin8 BP dz BP'
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Equation (1) is often found written in a slightly
different form' ' '

—y'Giti+K; P" P—E sing=0 .

This equation is obtained if we do not define the rotation-
al and elastic torques with respect to the true physical
displacement /sin(9 but instead with respect to the angle

and if we include the sin 0 dependence into the
definition of the twist elastic constant K3. Thus, if Eq.
(10) is used to analyze an electro-optical switching experi-
ment in order to obtain the Goldstone-mode rotational
viscosity or the twist elastic constant, we see by compar-
ing Eqs. (1) and (10) that the quantities determined are
what can be called an effective rotational viscosity yG
and an effective twist elastic constant K3 defined as

The dielectric susceptibility is defined as

y= lim((P )/E) .
E- 0

Assuming that g can be written as

g= Sob, EG/(1+j cur),

P2
E,QAE, G-

2K, q 0-

K,q

(17)

where AEG is the dielectric strength of the Goldstone-
mode part of the dielectric constant and r= 1/2~fG is

the corresponding relaxation time, we thus get the final
result (Eo being the permittivity of free space)

yG =yGsin20,

K 3 K3sin 0 ~ (12)

G
277$ G

From these two equations' ' we get the Goldstone-mode
rotational viscosity as

We will not, however, promote this definition of effective
material parameters because it is yG and K3 which are
related to the true physical torque which acts upon the
molecules. Thus, when we are studying the temperature
dependence of the effective material parameters, we must
be aware of the fact that with this definition we have im-
posed an extra temperature dependence through the fac-
tor sin 0.

III. THEORY

A. The Goldstone-mode rotational viscosity
of the smectic-C phase

We shall now calculate the Goldstone-mode part of the
dielectric susceptibility with Eq. (1) as a basis. We as-
sume that the electric field has a time dependence
E =Eoe ' where, as we are only interested in the linear
response of the system, we consider Eo to be a small
quantity. Now expanding i))(z) to first order,
P(z) =qz+5P, q =A/K3 =2m. /p being the wave vector of
the unperturbed pitch and 5it being of the same order as
Eo. By making the ansatz

5$=5$0sin( qz )e'"'

1 P
XG

4aEO g QEGfG- (19)

Thus we can evaluate the Goldstone-mode rotational
viscosity of the Sm-C' phase from the measured values of
the polarization, tilt, dielectric strength of the Goldstone
mode, and its corresponding relaxation frequency. If the
pitch of the system is measured as well, we see from Eq.
(17) that the elastic constant K, can also be evaluated
from the experiment. We would also like to stress that
Eqs. (17)—(19) are generally valid as long as the P fluctua-
tions represent an eigenmode of the dielectric susceptibil-
ity. Thus these equations are also applicable in the vicini-
ty of T„where tilt Auctuations also give an appreciable
contribution to the dielectric susceptibility of the system.

B. Estimation of nonlinear effects
in the dielectric response close to T,

Dielectric measurements assume that the testing field

Eo is so small that the induced change of the phase angle

P allows the linearization of Eq. (1) from which Eq. (14) is
derived. The amplitude of 5P can be expressed from Eq.
(14) and (17) for co =0 as

and by linearizing Eq. (1), we arrive at an equation deter-
mining 5/0:

PEQ
~5$ (co=0)~—:Ab

K 03q

EoaE.GEo

P
(20)

jcoy ~ ( sin'8) 5$O+ K, ( sin 0 )q '5PO+ PEO =0 .

Assuming sin0- 0, this equation implies

EQP 1

K,q 0 1+gcoyG/K3q
(14)

The induced polarization per unit volume of the sample is
easily calculated as

(P ) =P(cos(qz+5P) ) = —,'P5$oe~-
Substituting Eq. (14) into Eq. (15) now gives

As both Pand 0 go to zero at T, and do so in such a way
that the ratio P/0 is finite, ' we see that close to T„b,&f&o

will be very large as long as a finite testing field Eo is used
in the experiment. Thus we must be aware of the fact
that the linearization of Eq. (1) is not valid in a tempera-
ture interval just below T, that the relation (17) in this re-
gion will suffer from a considerable error. In order to es-
timate an upper limit of b,Po beyond which nonlinear
effects start to inAuence the response, we write down the
expression ' ' of the critical field E„for which the helix
of the system will be completely unwound,

(Py )
EQP J CUE

2K3q'0' 1+q~yG ZK3q
(16)

~2 K30'q2

16 P
(21)
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From Eqs. (20) and (21) we derive

~-' Eo Eo
~06o=

16 E, E,.
(22)

From Eqs. (24) and (26) we obtain

coAE~cC=
k

(27)

C. The soft mode rotational viscosity of the smectic- A phase

In this section we will show how the soft-mode rota-
tional viscosity ys ~ of the Sm-A phase can be deter-
mined from dielectric measurements if we also perform a
study of the electroclinic effect' ' of the system. The
expressions of the soft-mode dielectric strength Ac. ~ and
the relaxation frequency f„ofthe Sm- A phase have been
derived previously in the literature: ' ''

[a(T —T, )+(K, —Ep. )q0], (23)

From Eq. (22) we can get a quantitative measure of how
large h$o is allowed to be if we want to remain in the re-
gime of linear response. If the ratio Eo/E, is too large, it
is obvious that we are close to unwinding the helix com-
pletely and the response of the system is no longer linear.
By solving Eq. (1) exactly in the stationary case, Urbane
et al. , have shown that if Eo/E, , 0.5, the response of
the system is to a good degree of accuracy still in the
linear regime. Thus we see from Eq. (22) that if b, p0 is
less than approximately 0.3 rad =20', we can rely on the
data we obtain in a dielectric measurement. In this way
we can always check whether we are in the linear regime
or not when performing a dielectric experiment by the
use of Eq. (20).

Introducing Fq. (27) into Eq. (25), we thus get

Epic g

Vs, A (28)

From Eq. (28) we see that we can evaluate the rotational
viscosity ys ~ by measuring the complex dielectric con-
stant of the Sm-3 phase and the electroclinic coefficient.
Such an evaluation has recently been presented by Gouda
et a

IV. EXPERIMENTAL RESULTS

The dielectric method for determining the rotational
viscosity has been applied to two ferroelectric liquid crys-
tals DOBA-1-MPC (p-decyloxibenzilidene-p'-
amino-1-methylpropyl-cinamate) and DOBAMBC (p-n-
decyloxybenzylidene-p-amino-2-methyl-butyl-cinamate).
The temperature dependence of the spontaneous polar-
ization, the tilt, the pitch, and the frequency dependence
of the complex dielectric constant was obtained using a
50-pm- thick sample in the case of DOBA-1-MPC and a
20pm-thick sample in the case of DOBAMBC. The am-
plitude of the voltage applied over the cells in the dielec-
tric measurements was in both cases 1.4 V.

The tilt angle was determined by the conventional
crossed polarizer method at a constant field, while the

c. C-

a(T —T, )+(K,—Ep . )q()
(24)

280— —18

2C2
'Vs, ~

=
2' Epf g AE g

(25)

In these equations 0. is the usual coefficient contained in
the temperature-dependent term of the Landau expansion
of the free-energy density, while p and C are the
coefFicients of the flexoelectric and piezoelectric bilinear
coupling, respectively. The constant c represents the
dielectric constant of the system in the high-frequency
limit (the polarization-mode" dielectric strength), while

q0 is the wave vector of the pitch at T, . From Eqs. (23)
and (24) we can derive the following expression:
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We thus see that we cannot determine ys ~ from
dielectric measurements unless we know the product of
the Landau parameters c and C. This product can, how-
ever, be eliminated from Eq. (25) by the use of the elec-
troclinic effect. Applying an electric field of magnitude
Eo in the Sm-A phase will induce a tilt Oo, the magnitude
of which is given by

-'
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In Eq. (26) we have defined what we will denote as the
electroclinic coefficient k, which is the slope of the
straight line we obtain by plotting the induced tilt as a
function of the applied field at a given temperature.

T,
—

T (K)

FIG. 1. Experimentally determined tilt (X ) and polarization
(~ ) for (a) DOBA-1-MPC and (b) DOBAMBC.
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spontaneous polarization was measured simultaneously
with a Sawyer-Tower bridge at 70 Hz. Both methods are
dynamic, but allow the determination of the static quanti-
ties P and 0. The spontaneous polarization is determined
by extrapolating the saturated part of the hysteresis loop
to zero field. The tilt for DOBA-1-MPC and
DOBAMBC was determined at constant electric field
E =9.4 kV/cm and E =23.7 kV/cm, respectively, and is
equal to the spontaneous tilt except in the region
T, —T ~0.5 K because of the electroclinic' ' effect. In
Fig. 1 the temperature dependences of the obtained tilt
and polarization are shown.

The pitch was determined by the use of a polarizing
microscope. The resulting temperature dependence for
the two samples is shown in Fig. 2.

The frequency and temperature dependences of the
complex dielectric constant were measured in a frequency
range between 30 Hz and 15 kHz with a Hewlett Packard
4192 LF impedance analyzer. The experimental details
and the analysis of the data for this type of experiment
have been discussed by us elsewhere. ' From the data,
the temperature dependences of the relaxation frequency

3.5

and of the dielectric strength of the Goldstone mode were
determined. In Fig. 3 the results for the Goldstone mode
are shown. The shape of the maximum of the dielectric
strength which appears approximately 1.0 K below T,
depends strongly on the quality of the sample and on the
temperature gradient in the sample. For not very well
aligned samples and for not small enough temperature
gradients, the maximum disappears.

From the experimental data presented in Figs. 1 —3 we
have evaluated yG and K, by using Eqs. (19) and (17), re-
spectively. The temperature dependences of these quanti-
ties thus obtained are shown in Figs. 4 and 5. As a com-
parison, in Fig. 4(a) we have also shown the values of y G

for DOBA-1-MPC evaluated from experimental values of
ff obtained by Kimura et al. by the polarization rever-

sal current technique. In the evaluation [Eq. (11)] the ex-
perimental values for the tilt [Fig. 1(a)] were used. We
notice that the results of our method and theirs are in
good agreement with each other, except for the small
bump which our data exhibit close to T, ~ We believe that
the existence of this bump is mainly related to the
diSculties of determining the maximum of Ac& accurate-
ly. The bump close to T, in the determined temperature
dependence of E, which we notice in Fig. 5(a) is of the
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FIG. 2. Experimentally determined pitch for (a) DOBA-1-
MPC and for (b) DOBAMBC.
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FIG. 3. Experimentally determined values of the Goldstone-
mode dielectric strength (0) and of the corresponding relaxa-
tion frequency ( X ) for (a) DOBA- I-MPC and for (b)
DOBAMBC.



42 DIELECTRIC METHOD FOR DETERMINING THE ROTATIONAL. . . 2209

010—

0.07—

~E 006—

005—

0.04—

003—

X~

~ X

X

~ X

X ~ ~ X
Pe

35—

25—

20—

15—
~ ~ ~

~ ~ ~ ~ ~ 0
~ ~

0.02
16 14

l I I I

12 10 8 6

T, -T(K)

0
16 14 12 10 8 6

Tt- T (K)

I

4 2 0

0.10

0.09—

0.08
-'

~

0.06—

E 005-
004—

003—
002—

(b)

~ ~ ~ ~
~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

25

2.0—

15—

1.P—

05—

0 ~ ~ ~

(b)

~ ~ ~ ~ ~
~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ '~

001—

0 I

18 16

I I I I I I I

14 12 10 8 6 4 2 0

FIG. 4. Experimentally determined Goldstone-mode rota-
tional viscosity for (a) DOBA-1-MPC and for (b) DOBAMBC.
The crosses in (a) represents the measurements of y& performed
by Kimura et al. "

V. DISCUSSION

The main aim of this paper is to show how it is possible
to determine experimentally the Goldstone-mode rota-
tional viscosity yG for a ferroelectric Sm-C liquid crys-
tal from the measurements of the complex dielectric con-
stant in combination with the measurements of the spon-
taneous polarization and the tilt. The obtained ternpera-
ture dependence of the two systems is shown in Fig. 4,
where available data from another experimental method
are also shown for comparison.

In Fig. 6 we show the Arrhenius plots, i.e., lnyG versus
1/T, of the obtained rotational viscosities. The tempera-

same origin.
As was discussed in Sec. III B, it is important when

performing a dielectric experiment to check that the ap-
plied electric field is small compared with the critical
unwinding field of the system. By calculating b, p0 by the
use of Eq. (20), we can determine the ratio F0/F. , from
Eq. (22). In the case of DOBA-I-MPC, this ratio is
everywhere small enough not to introduce substantial er-
rors in the measured AcG. For DOBAMBC, where a
thinner cell was used (i.e., a larger electric field), we have
probably overestimated Ac& in the temperature interval
T, —T+0.5 K.

p
I I ) l ( I ) I

18 16 14 12 10 8 6 4 2 0

TG-T (K)

FIG. 5. Experimentally determined elastic constant for (a)
DOBA-1-MPC and for (b) DOBAMBC.
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FIG. 6. Arrhenius plot of the experimentally determined
Goldstone-mode rotational viscosity for (a) DOBA-1-MPC and
for (b) DOBAMC.
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ture dependence of y& obeys the Arrhenius law

yG-e" fairly well with activation energies p=0. 33
eV for DOBA-1-MPC and p=0. 51 eV for DOBAMBC,
respectively. These evaluated values of the activation en-
ergies compare well with the values p-0. 35—0.45 eV ob-
tained by Escher et al. for some other compounds. The
activation energy for DOBAMBC is comparable with the
value p=0. 52 eV obtained for DOBAMBC by Garoff
and Meyer' for the activation energy of the soft-mode
rotational viscosity of the Sm-3 phase. Close to T, we
observe in both liquid crystals the deviations from the
Arrhenius law in rotational viscosity. These deviations
can be attributed to various effects, which influence the
results of measurements close to T, :

(i) All the measured quantities (b, eG, fG, P, 8, p) are
strongly temperature dependent and therefore less accu-
rately determined close to T, .

(ii) The dielectric measurements were performed with
an ac measuring field which becomes comparable to the
unwinding field close to T, leading to large values for
AcG.

(iii) Quality of samples and finite temperature gradients
influence the shape of the maximum in Ac&.

(iv) The constant field values were used in the tilt mea-
surements.

The elastic constant E3 for DOBA-1-MPC and

DOBAMBC is approximately temperature independent
except for T, —T~1.5 K. The measured temperature
dependence in this temperature range is less accurate be-
cause of the effects mentioned above. The drop observed
in the elastic constant of DOBAMBC close to T, could
be explained by the renormalization of the elastic con-
stant following from the generalized model of ferroelec-
tric liquid crystals [Eq. (9)].

In conclusion, we summarize that we have presented
an alternative method of determining the Goldstone-
mode rotational viscosity of the Sm-C* phase based on
dielectric measurements performed on thick samples.
Such a method has the advantage that in a dielectric ex-
periment only small oscillations of the director are excit-
ed. Thus we avoid problems such as disclination forma-
tion and backflow effects. Both the compounds for which
we determined y G exhibit an Arrhenius type behavior for
the rotational viscosity with activation energies which are
in agreement with what other authors have obtained by
other methods. As the soft-mode rotational viscosity in
DOBAMBC was shown' to obey the Arrhenius law in

the smectic-3 phase also very close to T, with the same
activation energy as the one determined in this work for
the Goldstone-mode rotational viscosity y G in the
smectic-C* phase, we believe that the Arrhenius law is
valid for yG in the whole Sm-C* phase and that the two
viscosities match continuously at T, .
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