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We study numerically the dynamical behavior of a chain of classical particles with competing and
anharmonic interactions. Although this model possesses a complex potential-energy landscape with
exponentially many metastable configurations, we find ergodic behavior at all temperatures we in-
vestigated. Ergodicity is tested with respect to several correlation functions of pseudospins, the
spins describing the configurational degrees of freedom of the chain. The time dependence of the
autocorrelation function is consistent with a stretched exponential for intermediate times with ex-
ponents between 0.6 and 0.75. The corresponding relaxation times fit very well with an Arrhenius
law. Within a transition-state approach, it is shown that the relaxation dynamics can be described
by a kinetic Ising model. The consequence of this result on the autocorrelation function and the

central peak is discussed.

I. INTRODUCTION

Although the notion of ergodicity is one of the corner-
stones of statistical mechanics, the systems having
rigorously been proven to be ergodic are few and most of
them have only a small number of degrees of freedom.
This unpleasant state reflects the fact that it is almost al-
ways very difficult to prove or disprove analytically
whether a system is ergodic. Therefore a lot of work has
been done to test ergodicity numerically.

The seminal work for a many-particle system was done
in the 1950s by Fermi, Pasta, and Ulam (FPU) (see Ref.
1). They numerically integrated the equations of motion
for a chain of classical particles with anharmonic
nearest-neighbor interactions. To their surprise they
found the system not to behave in an ergodic manner at
all, despite the presence of anharmonicities. Although a
large amount of effort has been invested since then, it
seems to be very difficult to decide whether this breaking
of ergodicity is true, or perhaps merely an artifact of not
having extended the simulations to sufficiently long
times.> > Thus this question is not yet settled. In this
respect it is instructive to keep in mind a theorem by
Nekhoroshev.® This theorem states that a solution of a
nonintegrable system with Hamiltonian H does not devi-
ate from the solution of the integrable system by more
than O (%) for all times less than O( exp(1/€)), provid-
ed H satisfies some technical conditions. Here € is a mea-
sure of the nonintegrability and a and 3 are model-
dependent constants. Thus, for systems with weak nonin-
tegrabilities (as, e.g., the FPU model at low energies), this
can lead to very large times within which it is very
difficult to decide whether or not the system behaves er-
godically.” Very recently Pettini and Landolfi gave
strong evidence that, for the FPU model and a ¢* model,
such a divergence as predicted by Nekhoroshev really ex-
ists.® But although other systems besides the FPU model
have also been studied with respect to ergodicity,”'® no
clear picture has emerged as of today.

Ergodicity itself is just the lowest level in the hierarchy
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of statistical behavior of dynamical systems.!! Mixing is

the next higher level and means that a correlation func-
tion ( A(2)B(0))—(A){(B) goes to zero for t—oo.
These two properties were also used recently to describe
the glass transition.'>!® It is speculated that at the glass
transition temperature the undercooled liquid freezes into
a nonergodic state with density fluctuations relaxing to a
nonzero value. This interpretation has been strongly sup-
ported by the mode-coupling theory (see, e.g., Refs. 14
and 15). For a review of this theory the reader is referred
to Ref. 16.

Besides the ergodic behavior, the time dependence of
the relaxation functions is also of interest. For most
disordered materials a nonexponential relaxation (non-
Debye relaxation) is found,'>!”!® and very often a relaxa-
tion function ¢(t) can be fitted by a Kohlrausch-
Williams-Watts (KKW) law, also called ‘“stretched ex-
ponentia],”lg, i.e.,

é(1)=exp with 0<f<1 . (1)

N~

A value of 8 between 0.5 and 0.7 is common for structur-
al glasses®® and the relaxation time 7 often exhibits an Ar-
rhenius behavior near the glass transition temperature.
However, the reader should notice that many data sets
stemming from experiments as well as from simulations
can be fitted only by a KWW law in an intermediate
range (e.g., 0.99>¢(1)>0.01).2° For short times, tran-
sients resulting from microscopic time scales can lead to
a different behavior, while for long times it is usually
difficult to determine the correct relaxation behavior
from experimental data and even more difficult from nu-
merical simulations.

Despite the abundance of experimental systems show-
ing non-Debye relaxation, it is not yet entirely clear what
the relevant microscopic mechanisms are which lead to
this behavior. But it is widely accepted that cooperative
effects play a major role. For details the reader is re-
ferred to Refs. 20-22.
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It is interesting that simple models like Glauber’s one-
dimensional kinetic Ising model®® or the facilitated kinet-
ic Ising model** exhibit also nonexponential relaxation.
For the usual Glauber dynamics the spin autocorrelation
function C(¢) in the region 0.1<C(z)=1 can be fitted
with the KWW law,?’ whereas for ¢t — oo it behaves as
C(t)~t "2 exp(—1t /7). There does exist another special
case of the general Glauber model for which C(z) is
known exactly. For this case the domain walls between
“up” and “‘down” domains can undergo only a diffusive
motion and cannot be created or annihilated. The corre-
sponding autocorrelation function for large times is also
given by a KWW law with /32%.26’27 For the Glauber
model with the most general transition rates fulfilling the
condition of detailed balance, the autocorrelation func-
tion is not known exactly. Various semianalytical results
again show a stretched exponential behavior for times not
too large,”>?® but the significance of these fits is not clear
since the considered time range ¢ /7 is at most two orders
of magnitude.

The relaxation behavior is also interesting from a
different point of view. The Fourier transform S(g,w) of
the correlation function {x;(¢)x;(0)) —(x;)* [x;(1) is the
position of the ith particle] for a one-dimensional har-
monic chain with a symmetric double-well potential act-
ing on each particle was investigated by several au-
thors.”? 3! These authors found a central peak for low
temperatures. Its existence is related to the occurrence of
motions on a rather long-time scale associated with
domain wall motion.*°

It is the purpose of this paper to investigate these prop-
erties, i.e., ergodicity and relaxation behavior, for a one-
dimensional model for disorder. This model does not ex-
hibit a phase transition at nonzero temperature and it is
unclear whether a one-dimensional system can show a
real dynamical transition in the sense described by
Gotze.' However, glasslike metastable states may exist
with finite but rather long lifetimes at very low tempera-
tures. For this model, which is a chain of classical parti-
cles with anharmonic and competing interactions, we
have recently studied the static behavior.’*** The model
exhibits a complex potential-energy landscape and the
main outcome has been the one-to-one correspondence
(under certain conditions for the parameters of the poten-
tial) between all metastable configurations and all se-
quences o ={o;} of Ising spins (pseudospins) o, ==1.
This result was used to prove that the pair distribution
function and the low-temperature specific heat behavior
is like that of glassy systems. In this paper we will extend
these investigations to dynamical properties. The fact
that the vibrational (phonons) and configurational de-
grees of freedom (described by the Ising spins) can be
separated from each other exactly for our model will turn
out to be crucial. Particularly at low temperatures (com-
pared to the minimum barrier height) the dynamics of the
Ising spins becomes very slow. Besides this it can be
shown that for low energies the energy hypersurface is no
longer connected, and thus the system cannot be ergodic
in general. However, we have analytical evidence that
the total measure of the disconnected parts vanishes in
the thermodynamic limit. So one can ask whether ergod-
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ic behavior still exists for low temperatures and for
phase-space  functions depending only on the
configurational degrees of freedom. This point will be in-
vestigated for several static correlation functions of the
pseudospins for which the time average and ensemble
average will be computed.

The time-dependent correlation function (x;(¢)x,(0))
for the particle displacements x,(¢), which is needed to
calculate the relaxation behavior, can be obtained exactly
from the spin correlation function {o,(1)o;(0)). To cal-
culate the latter we will assume that the dynamics of
o,(1) at low temperatures can be described by a Markovi-
an process. This assumption leads immediately to a ki-
netic Ising model description from which the pseudospin
correlation function can be obtained. This approach also
enables us to discuss the existence of a central peak at
low temperatures which is associated with the slow dy-
namics of the pseudospins.

Our paper is organized as follows. In Sec. II we intro-
duce the model with its most important static properties
and comment on the molecular-dynamics (MD) method
used for our simulations. Section III investigates the er-
godic behavior. It is shown how the ensemble average
can be calculated analytically for some correlation func-
tions of the spins. These results are compared with the
time-averaged quantities following from the MD calcula-
tions. The time-dependent autocorrelation function of
the spins is studied in Sec. IV as well as the exact rela-
tionship between (x,(7)x;(0)) and the spin correlation
function (oi(t)aJ(O)). It is shown how the dynamics of
the pseudospins can be obtained from a kinetic Ising
model, which will be used to discuss the phenomenon of
the central peak. Section V contains the discussion and
conclusions.

II. MODEL

The model considered in this paper is a slight
modification of a model introduced and investigated ear-
lier to describe some aspects of glasses.’>™3* Here we will
repeat only those features relevant to the present work.
For details the reader should consult the papers cited
above.

We study a one-dimensional chain of classical, identi-
cal particles with an anharmonic on-site potential V,(x)
and a harmonic nearest-neighbor interaction V,(x).
Thus the total potential energy is given by>’

Vix)= 3 [Vi(x)+V,(x;+x; )], x={x,} (2a)
with
Vl(x)=w2l{[x—a+~a_0(x)]2—[c —a, —a_o(x)])],
C,>0 (2b)
and
C,
Valx)=—"(x —b)?, (2¢)

where C, can be positive or negative. The function o(x)
in (2b) is defined by



42 DYNAMICS OF A ONE-DIMENSIONAL “GLASS” MODEL: ...

o(x)=sgn(x —c)E{*£1} (3a)
and

a;=Ha,*ta;). (3b)

The constants C,, C,, a|, a,, b, and ¢ are model parame-
ters. The anharmonic potential ¥,(x) consists of two
parabola with the same second derivative C, and minima
at a,; and a,, respectively. These two parabola are
patched together at x =c. Hence a particle feels the
anharmonicity only by crossing this point. The
nondifferentiability of ¥, (x) at x =c has no importance,
as it has been shown that smoothing the cusp does not
change the following static results significantly.**

This simple model already exhibits a complex energy
landscape in configuration space with exponentially many
metastable states (Fig. 1). Each valley (configuration cell)
and its lowest point, the metastable configuration
x(0)={x;(0)}, is uniquely determined by a sequence
o={o0,;},0,==1 of (pseudo-) spins:

+ o .
xj(0)=A+B 3 n"‘aj+,, (4)
with
(1+n)%a, —2nb
a=—T0 T g, 1T (5a)
(1—m) l—7
c
=—y[1—(1—y )2, y=1+—2 . 5b
n=—y[l-(0—y ")) vy 2C, (5b)

The sequence o can be chosen arbitrarily provided
Inl <1 and the geometrical parameters a,, a,, b, and ¢
are in a certain range.’

Neglecting a constant term, the energy of a metastable
configuration x(o) follows from the Ising-like expression

E0)=Jy, 3 7" Mo,0,—h 3o, , (6)
j (#k) J

where the constants are defined as follows:
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FIG. 1. Schematic representation of the potential-energy

landscape. The configuration space can be decomposed into
cells characterized by sequences o of Ising spins. The
minimum-energy configuration {x,(o)} within a cell has energy
E(o).
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(1+m)2a, —(1—n)%c —2nb
h=Ca_ U —Cia_(4—0c)
(I—mn)
(7a)
and
C
Jo=——1F1 2 g (7b)
2 1—q

This one-to-one correspondence between metastable
configurations and sequences of Ising spins turns out to
be crucial. The configurational degrees of freedom are
described by o. Thus transitions between two adjacent
valleys are easily described by spin flips. The MD simu-
lation shows that the configurational degrees of freedom
change by single spin flips and not by, e.g., spin ex-
change. If the nth spin is flipped, the corresponding bar-
rier height is calculated as

C, 1—
b,,(a)—_—Tl—;]]-[xn(a)—c]ZZBmin>0, (8)
with B, denoting the minimum barrier height. The

difference between the energies of both minima is given
by

A (o)=4+4J,+2Cia_o,[x,(0)—C]. 9)

Hence each such pair of minima can be interpreted as a
simple two-level system with asymmetry A, (o) and bar-
rier height b,(o). The transition from one minimum to
one of its neighboring ones has the simple meaning that
the nth particle has crossed the point x =c. We will see
below that these two-level systems play an important role
in the dynamics of the chain.

So far we have discussed the static properties of the
model. The main purpose of this paper is to study its dy-
namics. For that reason we numerically integrated the
equations of motion. Some details of the numerical simu-
lation will now be given. As usual we have introduced
scaled variables, i.e., we set C;, =m =1, where m is the
mass of a particle. Tests with different integration
schemes have shown that in our case a predictor-
corrector algorithm (whose original form stems from
celestial mechanics®®) is superior to the usually applied al-
gorithms like Verlet etc. with respect to speed (for a
prescribed accuracy).

The predictor reads

h 2
q, +2:2qn +l—qn+_(l3qn+l_—zzjn+ijnvl) ’

2 (10a)
. . h .. .. ..
qn+2—qn+1+E(23qn+1—16qn+5qn‘l) ’ (IOb)
and the corrector is given by

h? . . ..
4 +2=24, +1—Qn+ﬁ(i]n+2+10‘in+1+qn) ’ (11a)
. . h .. .. .
qn+2_qn+1+.—(5qn+2+8qn+l_qn) . (11b)

12

We suppose that the superiority of this integration
scheme in our case is due to the nondifferentiability of
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V,(x) at x =c, which can lead to difficulties for a simple
predictor scheme.

As time step we usually chose A =0.008 time units [1
time unit=(m /C,)'/?], except for several runs with
h =0.004 time units to test the dependence of our results
on h. This step size led to a small drift in the tempera-
ture of the system of order 1% during a run. The num-
ber of particles was N =5000 and the longest runs were
1.8X 107 time steps, which took about 8 h of CPU time
on a CRAY XMP. Since a typical time scale of our sys-
tem is of order 27 time units, this results in more than
20000 periods of oscillation.

To generate the equilibrated initial configurations for
the system in phase space we proceeded as follows. First
we generated N Gaussian distributed random numbers
with mean ¢ and width o,. These numbers were used for
the coordinates of the particles at time zero. N further
Gaussian distributed random numbers with mean zero
and width o, gave the initial velocity of the particles.
The standard deviations o, and ¢, were chosen such that
the resulting temperature (defined as usual via the mean
kinetic energy) of the relaxed state was high (here and in
the following we will use the terms high and low temper-
atures always with respect to the maximum and
minimum barrier heights for single spin flips, respective-
ly). In Sec. IV we find that for high temperatures relaxa-
tion times are short, thus it is justified to expect the sys-
tem to be in an equilibrated state after a short time (e.g.,
after a few hundred periods of oscillation). After this
time period we switched on a small damping force pro-
portional to the velocity of the particles. Because the
damping constant was very small (6 X 10”7 inverse time
units), the energy of the system was decreased very slow-
ly. Therefore one can expect the system to stay in equi-
librium up to very low temperatures (this will be dis-
cussed intensively in a separate paper®’). Consequently,
we can extract from this cooling run the initial

|

() =5 — S e P [

conf ¢ S'a)

with

S'(o)=@®s;(0),

[—wic—xl(a)]?

SlO)I= e —x (), + o], o,=+1.

o,=—1

Here we made use of the Ising expression for the poten-
tial energy at x(o ) [see Eq. (6)]. Note that expression (13)
is still exact due to the piecewise harmonicity of the po-
tential.

If kyT <<B,,,, (the minimal barrier height) only small
deviations y will contribute to the integral. Expanding
f(x(o)+y) with respect to y, one obtains, in leading or-
der,

(fx)), =3 f(x(a))pla)={f(x(a))), , (15)

dVyf(x(a)+y)exp | —
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configurations in phase space corresponding to different
temperatures.

III. ERGODIC BEHAVIOR

In this section we investigate the ergodic behavior of
our model, i.e., we compare time averages with micro-
canonical ensemble averages. As the analytical calcula-
tion of the latter is very difficult, we substitute it with the
canonical average which differs from it, for intensive
quantities, only by O(N~!/2). This approximation
should be good for a system size as ours. The details of
the following calculations can be found in Ref. 38.

First we explain how the canonical averaging can be
done analytically. Due to the partition of configuration
space into disjoint sectors characterized by different spin
sequences, the computations of the ensemble average
(f), of a configuration space function f(x) can be per-
formed as follows (the subscript x in { ), stands for the
variables with respect to which the average is done):

(Fx)) =5 [a¥f e P (12a)
conf
=3 [ d%fxe P, a2
conf ¢ g
where
Zconf:dex e BV (12¢)

The configuration cell S(o) denotes that sector of
configuration space with o(x;)=o, for all i, and S stands
for the inverse temperature. To compute the
configuration integral we expand the potential V(x) for
every sequence o around the local minimum x(o ) defined
by that sequence. Denoting the deviations from x(o ) by
y we get with (2)

gz{:[(C1+2C2)J’i2+2C2YiJ’i+1] ) (13)
f
with

pow):é;e’”“”, Zo=§e"3£“”. (16)

This demonstrates that the statistical mechanics for the
chain at low temperatures is reduced to that of the Ising
model (6). The ensemble average of phase-space func-
tions f(x,p) can be obtained similarly.

If f depends only on the configurational degrees of
freedom, i.e.,

fx)=glolx,),0(x,),...,0(xy)), 17

the averaging is even simpler. From (13) we get

(f(x), =3 glopla)=(gla)),, (18)
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with the reduced distribution function

e*ﬁE(a)

p(a)zz—f*‘fs,(o)d[vy exp -—-g—z [(C,+2C,)y}
con i

with an effective spin Hamiltonian H 4(o). We stress
that this result is still exact.
As the integral in Eq. (19) cannot be computed exactly

(due to the domain of integration), we proceed as follows.

1aC The integral can be interpreted as averaging of
Wi+l | exp(—BC, 3, y,y; +1) over a weight proportional to

(19) exp GG Sy 30

which can be rewritten as 2 =~
plo)= ! e _BHCW“’), Zg=3e ~BHglo) , (20) A cumulant expansion yields after simple but lengthy cal-

Zg o culations,
J
plo)=Z e PE%exp | In,—C,8F ww, 1,
i i
232
L 2,2 2 3

+ 2wy —wiwyy 2w, qupw; = 2w wiw; 1) | HOWBC,)Y) (22)

2

i

The dependence of I,, w,, and u; on T and o has been
suppressed. These quantities are defined as follows:

172
T
I(T,0)= | ————— 1—o.erfd],
(T,0) 2B(C, +2C,) [1—o,erf8] (23a)
(T,0)= 2 7 o ® 23b)
Wi 5o mB(C,+2C,) 1—oerfs ’
(T o)= 1—0,-erf8~|~20,«7r‘1/269'82 30
4T TR, 20,1 — 0 erfd) ¢
with
172
T,o0)= g(c, +2C,) [c —x;(0)], (23d)

and erf(x) denotes the error function, the occurrence of
which originates from the domain of integration.

The exponent in Eq. (22) is an effective spin Hamiltoni-
an which is still rather complex. By expanding it up to
order 7 and including some terms of order 1* we find the
approximate effective spin Hamiltonian

Hg(T,0)=h(T,n) ¥ 0,+J(T,n) 3 0,0,
+I(Tm) 3004,
+J11(T’7])201A10101+1 . (24)

i

The 5 and T dependence of the coupling constants is
complicated and can be found in Ref. 38. Taking higher
orders of 7 into account leads to third- and higher-
nearest-neighbor interactions as well as to multispin in-
teractions. Of course, one has

lim H 4(T,0)=E(0), (25)
T—0

i.e., the multispin interactions become important only for

r

kgT >>B_,;,. For the calculation of the canonical aver-
ages of functions g(o(x;),...,o0(xy)) we have used
plo) with H 4 given by Eq. (24).

As is well known, the partition function for a one-
dimensional spin system with finite-range interactions
can be computed by the transfer matrix method. The
correlation functions can then be obtained by
differentiating the largest eigenvalue A,, of the transfer
matrix with respect to their conjugate field. For instance
the magnetization is given by

1 Ay

Co) =3, aBn T

(26)

Although it is in principle possible to compute the
derivative of A, for a 4 X4 matrix analytically, it is abso-
lutely impractical even with the aid of an algebra pro-
gram such as MACSYMA, due to its complicated form.
Therefore we proceeded in the following way. We com-
puted (using MACSYMA) the characteristic polynomial of
the transfer matrix and transformed it into the form

PAM)=A*+ AN +BA*+CA+D=0, 27

with coefficients 4, B, C, and D, which depend on the
coupling constants in Eq. (24). P(A) differentiated with
respect to Bh(T,n) yields dA,, /3[Bh(T,n)] as a function
of A, and the various derivatives 94 /9[Bh(T,n)],
OB /9[Bh(T,n)], etc. These derivatives can also be ob-
tained without difficulties with the aid of MACSYMA. Us-
ing these and A,, (which was calculated numerically), the
magnetization is obtained immediately. The nearest- and
next-nearest-neighbor correlation functions and the
three-spin correlation function {o; 0,0, ) can be cal-
culated similarly. Note that an analogous calculation is
still possible for more general spin Hamiltonians having a
larger transfer matrix and defying an analytical deter-
mination of its eigenvalues.

The results for the ensemble average of the various
correlation functions determined in this way are valid for
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all temperatures as long as C, (or 7)) is not too large (e.g.,
7 =0.15). This is due to the fact that for high tempera-
tures C,f3 is small, thus ensuring rapid convergence of
the cumulant expansion. For low temperatures the
temperature-dependent part of the coupling constants of
H . converges to zero. Thus the expression in large
parentheses in Eq. (22) is a good approximation to the
temperature-dependent part of H.4 for all temperatures.
If in addition |5/ is small, we are allowed to neglect all
terms higher than the leading order in 7 in the exponent
of (22).

Let us finally mention that the nth nearest-neighbor
correlation {(o(x,)o(x,,,)), can be calculated exactly
for T=.’® For instance, for the nearest-neighbor
correlation function one obtains

<O’()C, )U(xi+1))x(T:°o)

2 ]
= arctan , (28)
77(1_7]2)1/2 (1_7’2)1/2
which is different from Zero, whereas

(0(x;)) (T =00)=0. At first glance it might be surpris-
ing that even at infinite temperature there are correla-
tions between neighboring particles of the chain. This is
an artifact of our model because the force between adja-
cent particles increases unboundedly with distance.
Therefore at high temperatures, where nearest-neighbor
distances are large, the correlations remain finite (this
effect can be also observed in a purely harmonic chain).
Of course, such behavior is absent in more realistic po-
tentials such as, e.g., the Lennard-Jones potential.

We now discuss how time averages were computed.
We define the particle average f*(x) of a function

f(x)=g(o(x)) depending only on R neighboring
configurational degrees of freedom as follows:

1 N-R
f*(x)=N_R > glo,0,40,...,0,,r)=8%0) .

i=1

(29)
To compute the time average f of f*(x) we periodically
extracted the spin configurations o(¢) from the MD

simulation with a period of L time units (5<L <25 de-
pending on temperature) and obtained f from

f(z(0),N,L,M,K )=

1 Mil
g*(o(vL)), (30
M-K v=K

with z(0) denoting the initial point in phase space for the
simulation, M the total number of stored configurations,
and K the number of discarded configurations at the be-
ginning of the run. It was necessary to discard these
configurations because the initial configurations obtained
as described in Sec. II were not quite equilibrated for low
temperatures (see also Ref. 37). For ergodic systems f
will generally not depend on the initial point z(0), and K
for a given total energy if M is large enough.

Since M is finite for our simulation, f has a certain er-
ror, which were computed as follows. We made a parti-
tion of the data sets into several consecutive subsets of
equal time length which were much larger than the relax-
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ation time (see Sec. IV) at the corresponding temperature.
We computed the time average within each of these sets
and determined the standard deviation for the whole run
from these averages.

The temperature T is obtained from the mean kinetic
energy by

kyT=203 %7, (31)
N =1

and throughout this paper it is given in units of

7.25X 10°C, (kg/sec’) K.

Since the potential-energy landscape has exponentially
many local minima and barriers, the exploration of
configuration space will progress slowly at low tempera-
tures kg T <<B_;,. On the other hand, the motion will be
almost unhindered for k3T >>B_, . These two different
behaviors are illustrated in Fig. 2 where the magnetiza-
tion o*(¢) of the system is plotted as a function of time
for two different temperatures. For the higher tempera-
ture [Fig. 2(a)] the data points show almost no structure
(apart from the short-time fluctuations also present at
low temperature). For the lower temperature the func-
tion shows a sometimes erratic behavior with typical time
scales of the order of 10° time units. This feature
expresses the slow exploration of the spin space by the
system and its sudden entrance into regions characterized
by different magnetizations. This irregular behavior
makes the determination of time-averaged quantities
difficult at low temperatures since long runs must be
made to get reasonable statistics. Therefore the available
computer time sets a lower limit to the temperatures for

, 0.16 1

o

(a)

0.12

0.08

0.04+—
L0.76 ,_

g
0.741
0.721" T
0.70 - i b Por
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0 10000 20000
t (time units)

FIG. 2. Particle-averaged magnetization o *(¢) as a function
of time for two different temperatures. C,=—0.07, a . =5.009,
a_=0.201, b =11.698, c=4.672, h /2m|J,| =0.532,
B,,,=0.0144, B ,,, =0.0355. (a) T=0.0358, (b) T =0.00710.
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which the equivalence of time average and ensemble aver-
age can be tested.

Figure 3 presents the results for the magnetization,
nearest- and next-nearest-neighbor spin correlation func-
tion and for a three-spin correlation function. The mag-
netization and the three-spin correlation function were
calculated for a system with parameters such that the
“magnetic field” 4 is nonzero (otherwise these averages
are zero), whereas for the two other correlation functions
h =0 was chosen. The simulations extended from 15 000
time units for high temperatures to 140 000 time units for
low ones. The vertical bars in the figure stand for the er-
rors of the data. Note that we considered temperatures
well below and well above the minimum and maximum
barriers, respectively.

It is clear from this figure that the agreement between
time averages and ensemble averages is very good for all
configuration-space functions and all temperatures we
considered. Similar results were also found for several
other parameter values of the potential. This shows that
our system seems to be ergodic with respect to the
phase-space functions discussed here, despite the complex
potential-energy landscape.

IV. RELAXATION BEHAVIOR

Besides the time-independent quantities considered in
the preceding section, also time-dependent correlation
functions can be investigated to test whether a system
behaves ergodically or not. If all correlation functions
(A()B(0))—( A){(B) decay to zero for t— o, the
system is called mixing, and it is known that this implies
ergodicity (see, e.g., Ref. 11). Correlation functions of
most disordered systems decay nonexponentially'> and
very often their relaxation functions can be described by
a KWW law [Eq. (1)]. Thus, for our model we expect
nonexponential relaxation too. The goal of this section is
to test this supposition.

One of the most obvious correlation functions is
{x,(t)x(0)) —{x, )% Tt is an interesting aspect of our
model that it can be related exactly to correlation func-
tions of the configurational degrees of freedom.

Consider the following time-dependent correlation
functions:

S, (6)={x,(t)x(0)) —{(x,)?, (32a)
R,()={0o(x,(1))x4(0)) —(o(x,)){x,) , (32b)
C,()={0(x,(1))o(x,(0))) —{o(x,))?, (32¢)

where ( ) denotes canonical averaging over the initial
conditions in phase space. Using the equations of motion
for x,(t) [note that the equation for X,(f) contains
o(x,(t)) linearly ] we find

§,(0=11=C\5,—C,28,+5, +5,.)+Cia_R,],
(33a)
I'(',,(t)=—'::[—C,R,, —C,(2R,+R,_,+R, )

+C,a_C,]. (33b)
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In the derivation of these equations an inhomogeneous
term proportional to

—(x, )(C,+4C,)+Cia_(o(x,))+Cia, +2C,b (34)

occurs, which can be shown to vanish identically. Per-
forming a Fourier transformation with respect to n, a La-
place transformation with respect to time, and noting
that (x,(0)x,(0)) =0, we get

§(q,z)=izfowdte*"‘q"‘z"s,,m, Imz>0 (35

z

=— S(q,t =0)
2ot !
Cia._
z 1
+ R (q,t =0
Foalp m @Y
Cia_ C
1 Cloz) (36)
m (z°~wy)
where we have introduced the phonon frequency
wﬁziw, +2C,+2C,cosq) . 37
Thus, besides the static quantities S(g,z =0) and

R (q,t =0), only the time-dependent spin correlation
function is required to determine §(q,z). The static
quantities can be calculated as shown in Sec. III, and
therefore we now concentrate on the determination of
C(q,z).

The starting point is the observation from our simula-
tions that the spin configurations change by single spin
flips. At low temperatures a particle will oscillate for a
long time in one part of its local double-well potential,
and transitions between both wells (i.e., crossing the point
x =c) will be rare. Because of the coupling of the particle
to its neighbors (acting as a heat bath), we can assume
these transitions to be essentially uncorrelated from the

J

BJy+h2/4],)
wi(g)=age ° 0

[cosh(Bh )— o ;sinh(Bh)]
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previous ones, and also independent from the transitions
of the other particles, i.e., we assume Markovian behav-
ior. If p(o,t) denotes the probability to find the system
in configuration cell S (o) at time ¢, then p (o,1) is a solu-
tion of the master equation

ploy=—Swl. . .,o,..)p(...

+3wl...,—0, ... 0p. ., —0,..., 1),

(38)

where w;(o) is the transition rate for the spin flip
o,— —o0,;. We stress that these assumptions, which are
not fulfilled for high temperatures, eliminate two essential
properties occurring in the mode-coupling theory: non-
linearities and memory effects.!* 16 These two properties
seem to be crucial within this theory to obtain breaking
of ergodicity. However, since our system seems to be er-
godic, our ansatz, resembling more the facilitated kinetic
Ising model,?* should nevertheless be reasonable.

If the time the system needs to relax within a
configuration cell is much smaller than the mean sojourn
time within the cell, which will be true for low tempera-
tures, we may use transition state theory to determine the
transition rates. We find’®

C,+4C,

w,(o)=ayexp[ —Bb;(0)], a,= , (39)

m

with the barriers b; from Eq. (8). Note that the reduction
of the original Hamiltonian dynamics to a kinetic model
was already discussed qualitatively by Zwanzig®’ and that
our model makes it possible to do this reduction explicit-
ly. We also would like to mention that such kinetic equa-
tions have been used to discuss vitrification (see, e.g., Ref.
40).

If we approximate x;(o0) by A4 +Bl[o;,+nlo;,_,;
+0, )], which is reasonable for |5| << 1, we obtain from
Egs. (8) and (39)

X [cosh*(Bhn)—(o, _,+o,)sinh(Bhn)cosh(Bhn)+a, 0, sinh*(Bhn)]

i

o
X[cosh’K +0,_,0,,sinh’K] [1——(0;_,+0,, tanh(2K) | , (40)

2

with K =28J,(7.
The rest of this section will deal only with the case
h =0 for which we find the more familiar expression

(o) =aye™(cosh® K )1+ 80,10, 1)

w

X[1—=10,(0,4+0,_))tanh2K] , (41)
with §=tanh?’K. The transition rates (41) agree with the
most general transition rates for Glauber’s one-

dimensional kinetic Ising model with nearest-neighbor
coupling constant —2|J,|n. The parameter & is fully
determined by the temperature and the coupling con-
stants C, and C, of the particles. Using these transition

[
rates the equations for the n —spin correlation functions
are easily derived. From their solutions C(g,?) and
@(q,z) can be obtained, in principle. Unfortunately, the
solutions are only known for 8=0. Let us therefore as-
sume 8 =0 for the moment. From Glauber’s result it fol-
lows that

PN _ 1 —tanh’K
Clg,z)= 3
1+tanh“K —2 tanhK cosq
1

X . 42
ao[1—tanh2K cosq ]—iz “2)

Using the relation S(q,0)= lim,_ 2 ImS(g,0+i€) we
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find for S (¢,w) a contribution proportional to

1

(0~ 0} )*w*+af[1—tanh2K cosq]*) '

(43)

Note that o] is positive for all g. The first factor in the
denominator gives rise to the phonon peak. The singular-
ity in (43) is due to the lack of anharmonicities within a
configuration cell excluding phonon-phonon interactions.
The second factor is of Lorentzian type and leads to a
central peak. As expected, its height increases and its
width becomes narrower with decreasing temperature.
The origin of such central peaks was the subject of many
investigations in connection with displacive transi-
tions.?” 3! It was recognized that for pure samples the
peak was due to the slow motion of domain walls leading
to a very slow relaxation. For the Ising description of the
configurational degrees of freedom of our model the wall
picture emerges in an obvious way (see also Ref. 37). For
80 we expect a similar behavior for S (g,®).

We now proceed to the second main topic of our pa-
per, the relaxation of the correlation functions. As ar-
gued above, we can restrict ourselves to the correlation
functions between pseudospins. Only the autocorrelation
function C,(z) will be investigated. Let us first discuss
the existing analytical results for Cy(¢) for a one-
dimensional kinetic Ising model. For transition rates as
in Eq. (41) with 6= —1 Skinner found, by means of a con-
tinuum approximation, a KWW law with exponent f=1
for Cy(t)=(0,;(0)o,(¢)).*® Due to the continuum ap-
proximation, this result is valid only for low tempera-
tures. However, recently Spohn has proved rigorously
that for large times the result is true for all tempera-
tures.”” Budimir and Skinner?® computed Cy(z) by means
of a continued-fraction expansion, and used this to com-
pute C,(¢) numerically. This was done for §==*1 and
various temperatures. They found that C,(¢) could be
fitted well by a stretched exponential for C,(¢) in the
range 1= Cy(1)20.1 with a temperature-dependent ex-
ponent 8. In particular, they also fitted the exact result
for 6=0 by a KWW law and the fit was quite good, al-
though it is known that it cannot be exact, at least for
large t.

A disadvantage of the continued-fraction expansion, as
it was done by Budimir and Skinner, is that it fails to
converge at low temperatures and for long times. This
drawback was partially avoided by Bauer, Schulten, and
Nadler.®® They used a generalized moment expansion
and inverted the matrix containing the transition rates
numerically. The advantage of this procedure is twofold:
first, it can also be applied to cases where the transition
rates include more complicated terms, e.g., 0; _,0,0;1;
and second, the calculations are valid for all times and all
temperatures as long as the correlation lengths are small-
er than the (finite) system size. Therefore this approach
should in principle enable us to determine C(¢) even in
those cases where n<1, i.e., where the transition rates
cannot be approximated by (41). Bauer, Schulten, and
Nadler found that Cy(t) can be very well approximated
by a KWW law for times not too large for all & values
they investigated. Finally, it should be mentioned that

the facilitated kinetic Ising model, a modification of
Glauber’s model, exhibits a KWW law?* too.

So far we may conclude that the autocorrelation func-
tion for one-dimensional kinetic Ising models may follow
a KWW law for certain time regimes. If our chain of
particles is a reasonable realization of a kinetic Ising
model with transition rates (41), we expect Cy(t) to exhib-
it KWW law too. Since in our case 8(7) is temperature
dependent, i.e., it is not a free parameter, a quantitative
comparison with the results of Refs. 25 and 28 is not pos-
sible. We should also keep in mind that the assumption
of Markovian behavior is invalid for high temperatures,
thus the kinetic Ising model approach is doubtful. How-
ever, we have seen in Sec. III that strong cooperative
effects exist for 7— oo, which prevent some of the static
spin correlation functions from vanishing. From the gen-
eral discussion in the Introduction concerning the possi-
ble mechanisms leading to a KWW behavior, we there-
fore expect a stretched exponential even at high tempera-
tures, independent of Markovian or non-Markovian be-
havior.

To calculate the relaxation function C,(¢) numerically,
we proceeded analogously as in Egs. (29) and (30), and
write

1 1 M—-k—1 N

-_—— e — . k )
(th) N Igo lg](r,(lL)U,((l"‘ )L)

(44)

Apart from the particle average we also average over
time. The time averaging is only effective if the correla-
tion time 7 is much smaller than ML, the total simulation
time, since otherwise the configurations are still correlat-
ed. Our investigations for 5000 particles have shown that
the total simulation time has to be at least 100 times the
correlation time 7 to get a reasonable statistics for
Co(t)>10 2 This fact and the available computer
resources set the limit for the lowest attainable tempera-
ture for these calculations as 7 increases very fast with
decreasing temperature.

We also point out that for this kind of calculations it is
crucial to control the temperature. The integration
scheme we used increases or decreases (depending on the
parameters of the potential and the total energy) the tem-
perature in the course of time very slowly. In principle it
could be that, due to the time average performed for the
computation of C,(¢) [cf. Eq. (44)], we just sum over
several exponential functions with different relaxation
times due to a slowly varying temperature. It is well
known that such a superposition can lead to a stretched
exponential behavior.!?! We have excluded this possi-
bility by repeating the calculations with halved step size
(leading to a smaller drift in the temperature) and still
found the same results for Cy(¢). Thus a simulation with
fixed temperature as proposed, e.g., by Nosé*' seems not
to be necessary in our case.

The numerical results for Cy(t) are given in Figs. 4 and
5 in a logarithmic-linear representation to demonstrate
the nonexponential relaxation. Figure 4 shows C,(¢) in
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the case of high temperatures. The oscillations of the
curve reflect the oscillations of the particles in their on-
site potential. For this time and temperature region the
Markovian ansatz for the master equation is clearly not
justified as the particles have a memory due to their al-
most periodic motion. For larger times Cy(t) ceases to
oscillate and turns into a relaxation behavior which
sometimes can be well fitted by a KWW law . For other
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FIG. 5. Autocorrelation function Cy(t) for various tempera-
tures as a function of scaled time ¢ /7. The solid lines represent
the fit with the KWW law. (a) Parameters: C,=—0.032,
a,=5.0,a_=0.2,¢c=4.875229358, b=11.7, p=0.034. Tem-
peratures from top to bottom: 0.0110, 0.0204, 0.0275, 0.0370,
0.0918. (b) Parameters: C,=—0.044, a,=5.0, a_=0.2,
c=4.818446 602, b =11.7, n==0.048. Temperatures from top
to bottom: 0.0097, 0.0232, 0.0365, 0.0569.
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parameter values and high temperatures we found that
C,(1) decays so fast that no reasonable fit was possible.

For intermediate temperatures Cy(¢) drops rather
quickly to a value between 0.2 and 0.9. Thereafter the
function converges to zero in a way that can be well de-
scribed by a KWW law. For low temperatures one finds
C,(t) to behave as a stretched exponential from the very
beginning.

It is clear that the relative error of C(¢) increases for
growing ¢, as the magnitude of C,(¢) decreases. Thus the
curves begin to become bumpy at large times. To deter-
mine the maximum time ¢, up to which a given curve is
reliably determined numerically, we have divided the
data of the spin configurations into two subsets of equal
length in time and calculated Cy(¢) for both sets. The
time interval [0,¢,,, ] over which the two curves coincid-
ed within a few percent was considered to be sound and
was used for the fit with the KWW law. For this fit the
fast transients at short times were also discarded. There-
fore one has to introduce an amplitude 4 in the KWW
law, i.e.,

B
Co(t)= A exp

(45)

Figure 5 shows C,(z) as a function of t/7 for two
different parameter sets, where the relaxation time
7=7(T) has been determined from the KWW fit. Also
shown are the fitted stretched exponentials in those time
regions we have used for the fit. One observes that the fit
is very good. Thus one may conclude that C(¢) is well
described by a KWW law, at least for intermediate times.
For longer times this behavior can neither be excluded
nor confirmed.

Fig. 6 depicts an Arrhenius plot for the relaxation time
7(T) obtained from the fits. For both parameter sets, the
Arrhenius behavior over a rather large temperature range
is obvious. The activation energy E, obtained from these
plots are of the order of the barrier heights for single spin
flips considered previously. Note that the magnitude of
this activation energy is not just given by the bare barrier
heights of the two-level systems. This can be understood
best for the usual Glauber model with §=0. Although
no barrier is involved explicitly in this model the activa-
tion energy given by 4J is nonzero. To determine E,, it is
therefore necessary to calculate the spin-spin correlation
functions which, however, is not feasible for §#40. It is
interesting to note that for most of the cases we tested
(7=0.034, 0.048, 0.117, 0.277) the activation energy is
larger than the minimum barrier height, but we found
also one case (7=0.034) where E, was about 30% lower
than the minimum barrier height. The Arrhenius behav-
ior shows that for high temperatures the relaxation times
are short enough to ensure that the initial configurations
in phase space used for our simulations were a represen-
tative of the equilibrium distribution.

Finally, Fig. 7 presents the exponent 8 of the KWW
fits as a function of temperature. Although there is a
significant scattering of the data, a clear trend that B de-
creases with increasing temperature can be observed.
The scattering reflects the fact that B is not very well
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determined by the fit, and a slight fluctuation in the data
can lead to a noticeable change in 3. The decrease of B
with increasing temperature expresses the fact mentioned
above, that the system becomes more cooperative for
larger temperatures due to the harmonic nearest-
neighbor coupling. Hence such an effect should be absent
for more realistic potentials.

V. SUMMARY AND DISCUSSION

In this paper we have studied the dynamical behavior
of a one-dimensional model with anharmonic and com-
peting interactions. The potential-energy landscape of
this system in configuration space has previously been
shown to possess exponentially many metastable
configurations. It can be shown that for low energies the
energy hypersurface is no longer connected since many
“valleys” of the energy landscape become isolated from
the rest. Therefore the finite system cannot be ergodic in
a strict sense. However, we have analytical evidence that
the disconnected part of this hypersurface is of measure
zero in the thermodynamic limit N — oo.

We have investigated the ergodicity of this system with
respect to certain pseudospin correlation functions,
where the spins describe the configurational degrees of
freedom. The time averages were computed numerically.
For the calculation of the canonical averages we have
shown that an effective spin Hamiltonian can be deduced.
This Hamiltonian contains all types of multispin interac-
tions up to arbitrary distance, and the corresponding cou-
pling constants are temperature dependent. This gives
rise to unusual features, e.g., certain correlation functions
do not vanish at high temperatures.

Our results show that, despite the complex energy
landscape, time- and phase-space averages agree within
the error bars of the simulation, even at low temperatures
where the dynamics is strongly hindered by the high bar-
riers. Therefore there seems to be no breaking of ergodi-
city as reported by other authors for the FPU model,' —*
a rotator model,’ or a binary mixture of soft spheres.!® It
is not clear to us where this difference comes from. It
might be that for certain models the time scales to find
ergodicity are very large (see the work by Kantz* and
Pettini and Landolfi® for the FPU model), so that com-
puter simulations are not yet able to decide definitely this
question for these models. It might also be that the ini-
tial conditions used by these authors are rather nongener-
ic, leading to huge transient times to find ergodicity. Er-
godicity breaking in any dimension for a model similar to
ours (a ¢* model) was also predicted by Aksenov et al."
using a mode-coupling approximation. These authors
have shown that nonergodic behavior occurs for
sufficiently large coupling strength. For all the coupling
strengths and phase-space functions we investigated, er-
godic behavior was found. If our model is really compa-
rable to a ¢* model, this discrepancy could be explained
as follows: either the coupling constants used by us are
still too small, or the mode-coupling approximation with
its decoupling might be unreasonable, at least for a one-
dimensional model.

The second main result we found is the nonexponential
relaxation of the autocorrelation function of the pseudo-
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spins. On a time scale varying with temperature between
about 1072Q and 107*Q [Q=(C,/m)'/? is the micro-
scopic frequency], this function could be fitted by a
KWW law.*? It is known that relaxation phenomena on
this mesoscopic time scale play a role for the glass transi-
tion.'® The exponent 8 of the KWW law decreases with
increasing temperature. This is due to the harmonic in-
teraction leading to a large cooperativity at high temper-
atures. The relaxation times 7(7T) exhibit an Arrhenius
behavior over a large temperature range.

Although the fit with the KWW law is very good, its
significance is not quite obvious because the maximum
range of ¢ /7 is only about an order of magnitude. How-
ever, additional support for a KWW law follows from
our description of the spin dynamics at low temperatures
by a kinetic Ising model. Within a transition state theory
we have found that our chain of particles is a realization
of a kinetic Ising model. For such models several au-
thors?® 2% have shown that the autocorrelation function
can be described by a KWW law for intermediate or even
for arbitrarily large times.

Using the kinetic Ising model with usual Glauber dy-

namics (i.e., 6=0), we were also able to calculate S(q,w),
the Fourier transform of the correlation function
(x,(1)x0(0)) —{x,(0))2. As expected from earlier work
for a similar model,?’ 3! we found a central peak at low
temperatures related to the slow motion of the pseudos-
pins, which is described by the kinetic Ising model.
Summarizing we can say that we have found nonex-
ponential relaxation which is characteristic for disor-
dered systems. Ergodicity breaking was not found for the
temperatures and parameters we investigated.
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