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%'e discuss the equilibrium properties of highly supercooled binary soft-sphere fluids by a
modified hypernetted-chain (MHNCS) equation proposed recently by us. The MHNCS approxima-
tion is made by a proper interpolation of the bridge functions of the Percus-Yevick hard-sphere
model and the leading term of the elementary diagrams that were first successfully applied to classi-
cal one-component plasmas. The MHNCS approximation has been found to work well for one-

component soft-sphere fluids above and below the freezing point. For a more crucial test, the
MHNCS equation is extensively studied for the binary soft-sphere fluids. We have obtained numeri-

cal solutions of the MHNCS equation for a binary mixture of the 12th-inverse power potential with
dift'erent core diameters. These results are compared with those of computer simulations and the

Rogers-Young approximation. Below the freezing temperature, the solution of the MHNCS equa-
tion reproduces a splitting of the second peak of the pair distribution function (PDF) for various

core size ratios, compatible with the computer simulations. Using the PDF thus obtained, thermo-

dynamic and structural properties of the highly supercooled binary soft-sphere fluids are investigat-
ed.

I. INTRODUCTION

Integral equations of Quid theory have played an im-
portant role in the investigation of structural and thermo-
dynamic properties of liquids. ' For a multicomponent
Auid in which particles interact through spherically sym-
metric pair potentials u;, (r), where the subscripts denote
the species indices, the integral equation results from the
combination of two relations. The first one is the
Ornstein-Zernike relation

M

h, (r)=c„(r)+p g xk f dr'h, „(r')c„~()r—r'~),
k=1

M M
PU/N= —2+2m'Ijp g g x;x& f g, (r)u; (r)r dr,
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pkttTyT=I+4rrpg gx, x f [g, (r) —1]r dr,
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(1.4)

(1.5)

where N is the total number of particles. The calculation
of the PDF with the integral equation needs the bridge
function B (r) in Eq. (1.2). It is well known that B(r) can
be expanded in terms of h-bond elementary diagrams as'

B„(r)= g [e„„(r)],
n=4

(1.6)

where h(r) is the pair correlation function, c(r) the direct
correlation function, p the number density, M the num-
ber of components, and x, the number concentration of
the ith species. The second one is the closure relation

—Pu, (r)+y (I')+B (I')

g, (r)~=e (1.2)

where g(r)=h{r)+1 is the pair distribution function
(PDF), y(r)=h(r) —c(r) the so-called sum of the nodal
diagrams, B(r) the bridge function, and P the inverse
temperature 1/kBT. The PDF allows one to calculate
the internal energy U, equation of state PP/p, and the
compressibility gT as follows

where [e„.„(r)] represents a set of n point elementary di-

agrams. However, the convergence of Eq. (1.6) is gen-
erally too slow to be applicable to practical calculations
for a highly dense liquid state. For such a difficulty in the
calculation of B(r), various approximations for the in-

tegral equation have been proposed. For example, well-
known classical hypernetted-chain (HNC} and Percus-
Yevick (PY) approximations are equivalent to substitut-
ing in Eq. (1.2} B(r)=0 and —y(r)+ln[1+y(r)], respec-
tively. '

The reliability of such approximate integral equations
can be tested by comparing their solutions with the "ex-
act" results obtained by computer simulations for a wide
range of density. It has been concluded that neither the
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HNC nor PY approximation works quantitatively far be-
fore the freezing point. ' Since the properties of approx-
imations involved in the integral equation are directly re-
lated to the approximation for B(r), better approxima-
tions could be obtained by modifying B(r) in some way.

Recently proposed thermodynamically consistent ap-
proximations with a parametrized bridge function have
been found to yield a better approximation up to the
freezing point over the HNC or PY approximation. '
Among these approximations, the Rogers-Young (RY)
and reference HNC (RHNC) (Ref. 5) equations have been
studied most extensively for various potentials, including
one-component plasmas (OCP's), hard-sphere, soft-
sphere, and 12-6 Lennard-Jones fluids. It has been shown
that even in an equilibrium supercooled liquid regime the
thermodynamic properties predicted by the RY integral
equation agree well with computer-simulation data for
soft-sphere fluids. This is, however, not the case in
pair structures. It is well known that the PDF's calculat-
ed by computer simulations yield a clear splitting of the
second peak near and below the glass-transition tempera-
ture for both one- and two-component fluids. ' ' The
PDF's by the RY approximation show a different behav-
ior between one- and two-component fluids. For binary
mixtures of soft spheres with a specific core-size ratio
o.2/cr, =1.4, the RY equation yields a behavior of the
PDF accompanied by the second peak splitting similar to
that of the computer simulation. ' On the other hand,
the PDF's for one-component soft-sphere fluids yield no
splitting of the second peak below the glass-transition
temperature, nor broadening in an equilibrium super-
cooled state, in disagreement with the results of the com-
puter simulation. For this reason, it is our intention to
study a better approximation for the integral equation in
both one- and two-component supercooled fluids.

In our previous papers we proposed a modified HNC
equation for highly supercooled soft-sphere fluids
(MHNCS) and it has been tested for the one-component
fluid. ' '" Near and below the glass-transition tempera-
ture, the solution of the MHNCS equation has been
found to show a splitting of the second peak of the PDF
compatible with the computer simulations. In the
MHNCS approximation, the bridge function is approxi-
mated by a proper interpolation of the bridge function of
the PY hard-sphere model and the leading term of Eq.
(1.6), which was first successfully applied to OCP
fluids. ' ' In this paper, we will proceed to test the
MHNCS approximation for binary mixtures of soft
spheres. We also present the results of our calculations
with the RY approximation for supercooled binary fluids
of the twelfth-inverse-power potential with different di-
ameters, to be compared with the MHNCS approxima-
tion. Thermodynamic properties depending on the core-
size ratio and the number concentration will be discussed:
S, , (0), the concentration-concentration structure factor
at q (wave number) equals 0, is of our particular interest
in connection with the problem of phase separation,
characterized by S, , (0)~ oo.

II. THK MODEL
We consider binary mixtures composed of two species

with diameters o
&

and o.2, interacting through the purely

repulsive twelfth-inverse-power potentials:
' 12

u,, (r)=e (2.1)

where the diameters are assumed to be additive, i.e.,

o; =
—,'(o;+o ) . (2.2)

2 2
3 3Oea=

I J

(2.4)

The corresponding effective coupling constant becomes
3

r„=r
0 )

(2.5)

Hereafter, we use ( I,s, x i, o z jo i j to assign each ther-
modynamic state of binary soft-sphere mixtures. The
freezing and glass transitions of this model, in the one-
component case (xi =1), are found to be at I,a-—1. 15
(Ref. 14) and 1.56 (Refs. 6, 7, 15, and 16), respectively. In
the present work, we study the three cases of I,~=0.8,
1.2, and 1.5, which are stable, moderately supercooled,
and highly supercooled liquids, respectively. After hav-
ing confirmed the validity of our approximation, we dis-
cuss the structural properties and stabilities of the alloys,
which significantly depend on x, and o.z/0. , as well as
I ea.

III. ROGERS- YOUNG APPROXIMATION

Rogers and Young have proposed a thermodynamical-
ly consistent integral equation based on an idea of mixing
of the HNC and PY approximations. The RY approxi-
mation uses the following bridge function:

exp[f,, (r)} „(r)]—1

B, (r}=—y, (r)+ln 1+IJ IJ f;, (r)

(3.1)

where f (r) is a mixing function with adjustable parame-
ters. According to the work by Hansen and Zerah, we
take a single mixing function as

f(r) =1—e (3.2)

where a ( )0) is an adjustable parameter to be deter-
mined by the requirement of a self-consistency condition
for the equations of state obtained in two ways, i.e., Eqs.
(1.4} and (1.5) to be identical. We have solved the RY in-

The advantage of the inverse-power potential is due to its
scaling property. According to this property, all reduced
equilibrium properties of binary mixtures, in excess of
their ideal-gas counterparts, depend on two independent
variables, i.e., the number concentration of species 1, x „
and the coupling constant I, defined as'

(2.3)

According to the conforrnal solution theory, ' an
equivalent one-component soft-sphere fluid is introduced
with the effective diameter
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tegral equation for highly supercooled soft-sphere mix-
tures at I 1.5, 0.5, 1.2 I, I 1.5, 0.5, 1.3 I, and I 1.5, 0.5, 1.4 ) .
The resultant PDF's are shown in Fig. 1.

In our previous papers, ' ' " it has been shown that the
PDF's for the RY approximation for one-component
soft-sphere fluids do not yield a splitting of their second
peak even in the highly supercooled regime, because of
the lack of the approximate bridge function which takes a
negative value at any distance. Therefore it is anticipated
that the PDF's obtained using the RY equation for
binary soft-sphere fluids yield no splitting of their second
peak either. It is obviously seen from Fig. 1 that such an
anticipation is true. However, the PDF s begin to show
an asymmetric structure around their second peak as the
core size ratio increases. Similar results have been ob-
tained by Bernu et al. ' Thus, there are other origins,
not directly related to the detailed form of the bridge
function, resulting in such asymmetric behavior depend-
ing on the core-size ratio: Equation (1.2) is written in the
view of the diagramatic expansion as

pl/3

FIG. 1. Partial PDF g»(r) calculated with the RY integral
equation in a highly supercooled regime. The thermodynamic
states are t 1.5, 0.5, 1.2) (solid curve), (1.5,0.5, 1.3) (dotted
curve), and I1.5, 0.5, 1.4) (dashed curve).

(3.3)

where the i, j, and integers attached to circles denote the
respective species. For a pure system (0 ~=cT~), the
second and third terms of Eq. (3.3) are identical. For the
binary system (cT,Acr&), however, the later term differs
from the former term by a factor of about
(o; 2+cr2)J/(o„+rc~ )J. For this reason, it tnay be sup-
posed that an asymmetric structure in the second peak of
the PDF appears for a binary mixture for a large core-
size ratio.

IV. THE MHNCS APPROXIMATION

Recently, we proposed the MHNCS approximation for
one-component soft-sphere fluids, which reproduces the
correct behavior of the PDF in both stable and super-
cooled liquids. ' '" The PDF obtained with the MHNCS

approximation yields a clear splitting of the second peak
near and below the glass-transition temperature, compati-
ble to that of computer simulations. Our approximation
is based on the idea of a universality of the short-range
part of B(r), suggested by Rosenfeld and Ashcroft, ' and
the relevant work for the one-component plasmas by Iye-
tomi and Ichimaru. ' According to the former, the form
of B(r) at short interparticle distances can be expressed
in terms of the PY bridge function of the hard-sphere sys-
tem with an adjustable core diameter d, i.e., BH (r, d ), ir-
respective of the choice of potentials for repulsive cores.
Iyemoti and Ichimaru, on the other hand, have shown
that an approximate B(r) based on the leading term of
Eq. (1.6), e4(r), together with a rescaling assumption'
could be in good agreement with computer simulations

+f(r, d„)e„;,(r ), . (4. 1)

where d, is an adjustable hard-sphere diameter,
0 ~f(r, d ) ~ 1 a continuous mixing function, and d„are
de6ned as

d, (cr, +o )

20-,
(4.2)

The mixing function is simply taken to be of the
10, 11,18-20

1 T —df(r, d ) = —1+tanh
2

(4.3)

where 8'is a dumping parameter that may be determined
from the magnitude of the thermal vibration of particles
(root-mean-square amplitude) or the width of the first
peak of the PDF. The leading term of Eq. (1.6), e~(r), is
explicitly written as

for a highly supercooled OCP fluid state, leading to a
splitting of the second peak of the PDF. Similar results
have successfully been obtained for two-component plas-
mhs by Ballone, Pastore, and Tosi. ' Therefore we as-
sume an empirical bridge function of the form of a linear
combination of the short-range-distance part BH (r, d)
and the long-range-distance part e4(r). ' '"

The MHNCS approximation is easily extended to
binary mixtures' assuming three bridge functions as

BJ(r, d, ) = [1 f(r, d;, )]BH—.;,(r, d, )
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H (0)=P[F'"(0,N ) —F'"( 1, N —2)], (4.5)

where F'"(n, m ) is the excess free energy of the system
with n coupled particles and m single particles. Assum-
ing that the entropy difference between two terms in Eq.
(4.5) is negligible, H(0) can be evaluated by the respec-

The adjustable parameter d, in Eq. (4.1) is determined
by using the property of the "screening potential"
H(r)= y—(r) B—(r) at r =0: H(0} is related to a ther-
modynamic function of the excess free energy of the sys-
tem,

tive internal energy U(O, N) and U(1, E—2). In soft-
sphere supercooled fluid states the excess internal energy
per particle, u'", can be written simply as '7

Pu'"= ', +—b f,tt, (4.6)

where b is a "Madelung" constant. For the present pur-
pose of the calculation of Eq. (4.6), we assume
g(r)=(5(r —a) for the thermodynamic states to which
Eq. (4.6) is applicable. Recalling the conformal solution
theory, we obtain' '"

2 2

Pu '"= '
, + 2—nPp g g x;x~ f g, ( r )u,j ( r )r dr

2 2
=—,'+2m.Ppg gx, x,

i j
= T3+2nga ' I

'3
1J

gO« ~1MO«01 «Ol d«01

(4.6')

and b =2m/a '0, where g is a scaling constant, a the dis-
tance between a specific particle and nearest-neighbor
particles surrounding it (first shell), and the 0 index
denotes the equivalent one-component system. Further-
more, u'"'"" " containing two particles (a coupled parti-
cle) within the shell can easily be estimated from Eq.
(4.6') by replacing a with 2'/ a for the requirement of
constant density inside the shell, and then we obtain

Pu ex, couPled —2( 3 +2
—10/3b Qeff (4.7)

Using Eqs. (4.6) and (4.7), Eq. (4.5) is written as

H(0)=2(u'" ——')(1—2 ' ') .
2

(4.8)

The superscripts in and out denote the input and output
functions, respectively. We used e ~"'"'—1 as an initial
input function for c'"(r). Successive input functions are
replaced by the output functions with

6

c,',"(r)=[c,"'(r}],—g /1„[[c "'(r}]„—[c,"'(r)],I,
k=2

A set of Eqs. (1.1), (1.2), (4.1), and (4.8) constructs the
MHNCS approximation for the binary soft-sphere mix-
ture, which can be solved numerically in a self-consistent
way. We should note that the MHNCS approximation
differs from the usual thermodynamically consistent
methods, for we do not use any thermodynamic self-
consistency condition.

V. RESULTS

A. Numerical procedures

The method used here to solve the integral equation is
essentially the same as an iterative procedure proposed
by Ng for the OCP fluids and that used in our previous
papers. ' "" A number of iterations were made so that
the following self-consistent measure 6 is minimized:

1/2

g g I ~c,'"(r) —c "'(r)~ r dr

where [c'"'(r)]1, is the output function at kth step before
and Ak are calculated by requiring the constraint that
b =0. It took about 100 iterations for b to be less than
5 X 10 ', which is considered to be small enough for the
present purpose, to ensure the validity of the solutions.
BH (r, d) in Eq. (4.1) has been calculated with the analyti-
cal solution of the PY approximation for the hard-sphere
model given by Lebowitz.

To solve the integral equation, we used dimensionless
length x=r/'1, where 1=p '/. The number of grid
points and step size used in numerical integrations were
chosen to be 2048 points and hx =0.01, respectively, and
the fast-Fourier-transform routine was used in each itera-
tion step. Iterations have been carried out on a FACOM
M-780 scalar processor.

The numerical integration of Eq. (4.4) has been carried
out on a FACOM VP-100 vector processor, using the
Legendre expansion of h(r) obtained from the HNC
equation, which was discussed in detail in Ref. 12, and
originally used for the calculation of the virial coefficients
by Barker and Monaghan. In our calculation we have
taken the first 11 terms of this expansion, which confirms
an expansion error to be smaller than about 1%. A
dumping parameter 8'in Eq. (4.3) is taken to be 0.21 for
all present calculations, because the magnitude of the
root-mean-square amplitude of particles is not
significantly changed over a wide range of I"s in super-
cooled liquids. "'

B. Solutions

Calculations of the MHNCS integral equation have
been made for three different I,ff's, three x, 's and four
o.2/o. , 's. For the study of thermodynamical and
structural properties of these systems, we calculated the
equation of state PP/p, the reduced inverse compressibil-
ity (yT) '=p(pyT) ', and the concentration-
concentration structure factor S, ,(q ) defined as
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S, , (q ) =x ixq [ 1+x ixqp[h i, (q)+ hq2(q)

—2h, 2(q)] I,
where h(q) is the Fourier transform of h(r). Our results
are summarized in Tables I—III and Figs. 2 —4.

From Tables I—III, it is clearly seen that the equation
of state obtained agrees excellently with the computer-
simulation results. The equation of states depends slight-
ly on the number concentration x

&
and the core-size ratio

e2/o. &. This means that the equivalent one-fluid approxi-
mation works well at least for this quantity.

The PDF's of the MHNC equation exhibit a clear
splitting of their second peak at I,&=1.5 in a highly su-

percooled regime (Fig. 2), revealing a remarkable contrast
to those of the RY approximation (Fig. 1) or a stable
liquid state (Fig. 3). The splitting is, however, sharper
than that of the computer simulation. " This may be
reasonably understood by taking into consideration of
slow-relaxation phenomena near the glass transition.
Computer-generated samples at the highly supercooled
regime are not fully relaxed, due to slow relaxation.
Therefore, the feature of the PDF may be smeared by
biased dynamical fluctuations caused by the nonequilibri-
um nature of the system. The splitting of the second

TABLE I. Thermodynamic properties calculated from the
MHNCS equation and molecular-dynamics (MD) simulations
(Ref. 29) with the twelfth-inverse-power potential at I,&=0.8.
The values in parentheses are the hard-sphere parameters d, /I
for the MHNCS integral equation. The first line of each pair of
xi and cr, /o, shows the equation of state PP/p and the second
line the reduced inverse compressibility {yz)

0. 1

0.1

0.1

0.5

0.5

0.5

0.5

0.9

0.9

0.9

0.9

1.2

1.3

1.4

1.2

1.3

1.4

1.2

1.3

1.4

22.232
63.885
22.288
64.115
22.377
64.371
22.482
64.666
22. 175
64.811
22.352
65.739
22.684
66.794
23.109
68.204
22.227
63.968
22.302
64.472
22.474
65.225
22.732
66.272

MHNCS

(0.8935)

(0.8245)

(0.7647)

(0.7127}

(0.9291}

(0.8839)

(0.8402}

(0.7991)

(0.9644)

(0.9536)

(0.9415)

(0.9286)

MD

22.243

23.11

TABLE II ~ Thermodynamic properties calculated from the
MHNC equation and molecular-dynamics (MD) simulations
{Refs. 7 and 29) with the twelfth-inverse-power potential at
r„=1.2. The values in parentheses are the hard-sphere param-
eters dl /I for the MHNCS integral equation. The first line of
each pair of x, and crz/o, shows the equation of state P13/p and
the second line the reduced inverse compressibility (yz) '. The
MD data for o., /cr 1

=1.4 were taken from a numerical interpo-
lation of the simulation data in Ref. 7.

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.5

0.9

0.9

0.9

0.9
0.9

1.2

1.3

1.4

1.2

1.3

1.2

1.3

1.4
1.4

8.270
22.458

8.278
22.573

8.298
22.666

8.323
22.746

8.231
22.823

8.246
23.305

8.312
23.759

8.409
24.206

8.267
22.495

8.275
22.709

8.310
22.956

8.365
8.365

23.258

MHNCS

(0.8298)

(0.7662)

(0.7109)

(0.6627)

(0.8639)

{0.8238)

(0.7845)

{0.7469}

(0.8958)

(0.8866)

(0.8761)

(0.8646)

MD

8.481

peak of the PDF is essentially dominated by the form of
Eq. (4.1).' '" We note that e4(r) is nearly equal to zero,
except for the core region in stable liquids, while below
the freezing temperature it begins to oscillate around zero
value in the intermediate distances, where the second
peak of the PDF appears (Figs. 2 and 3). On the other
hand, the bridge function for the RY or PY equation al-
ways has a nonpositive value everywhere, thus resulting
in no splitting of the second peak.

It is made clear that the detailed structures of the
PDF's at same I,z depend significantly on the core-size
ratio o.z/o, and the number concentration x, . For a
small number concentration (x, =0.1), the first peak of
three partial PDF's yields almost the same height ir-
respective of the value of core-size ratio. However, the
first peak of gz2(r) becomes very sharp and higher as x

&

and oz/o, increase [Fig. 2(b)]. This behavior suggests a
phase separation to be predicted.

The concentration-concentration structure factor at
q =0, S, , (0), measures mixing or demixing properties of
the binary mixtures: The ratio x,x2/S, , (0) is equal to
unity for the random mixing (ideal mixing); otherwise it
deviates from unity. Figure 4 shows dependencies of
x,x z /S, ,{0) on the thermodynamic state
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CO

(a)
TABLE III. Thermodynamic properties calculated from the

MHNC equation and molecular-dynamics (MD) simulations
(Refs. 7 and 29) with the twelfth-inverse-power potential at
r„=1.5. The values in parentheses are the hard-sphere param-
eters dt/I for the MHNCS integral equation. The first line of
each pair of x

&
and o z/o, shows the equation of state PI3lp and

the second line the reduced inverse compressibility (yT) '. The
MD data for cr2/a.

&
=1.4 were taken from a numerical interpo-

lation of the simulation data in Ref. 7.

02/0 ) MHNCS MD

2 3
1/3

5

2
1/3

yp
3 4 5

FIG. 2. Partial PDF's and the bridge functions calculated
with the MHNCS integral equation in a highly supercooled re-
gime (g» and B», solid curve; g» and B», dotted curve; g»
and B», dashed curve). The thermodynamic state is (a)
I1.5,0.5, 1.2) and (b) I1.5,0.9, 1.3].

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.5

0.9

0.9

0.9

0.9

1.2

1.3

1.4

1.2

1.3

1.4

1.2

1.3

1.4

42.690
126.734
42.824

126.759
42.990

127.373
43.195

128.307
42.608

128.179
43.036

129.200
43.748

131.173
44.650

134.540
42.679

127.040
42.876

128.300
43.302

130.326
43.915

132.903

(0.9298)

(0.8576)

(0.7954)

(0.7414)

(0.9290)

(0.9182)

(0.8723)

(0.8296)

(1.0036)

(0.9921)

(0.9793)

(0.9657)

42.806

44.76

O
"05-

X o
CA

s

i.
/I
Ij
I

II I

I /

tet( =0~ brett -1.2 let(=1.5

0 0.5 1 0 05 1 0 0.5 1

2
1/3

rp
3 4 5

X1 X1 X1

FIG. 3. Partial PDF's and the bridge functions calculated
with the MHNCS integral equation in a stable liquid regime
(g» and B~&, solid curve; g» and B», dotted curve; g» and B»,
dashed curve). The thermodynamic state is I0.8,0.5, 1.2).

FIG. 4. x &x2/S, ,(0) vs the concentration x
&

for ~2/~~ =1 1

(solid curve), 1.2 (dotted curve), 1.3 (dashed curve), and 1.4
(dotted-dashed curve). The curves are obtained using a spline
interpolation of the data.
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[I',~, x, , oi/cr, }. It is clearly seen that the demixing

tendency becomes remarkable as the core-size ratio
exceeds about o-2/o, =1.3 for the highly supercooled
state (I,tr= l. 5). This tendency is consistent with the be-

havior of gz2(r) in the highly supercooled regime men-

tioned above (Fig. 2). The dependency of x,xi/S, ,(0)
on the number concentration x, is not symmetric about
the equimolar mixture (x& =0.5). Similar results are ob-

tained for the hard-sphere mixtures by Barrat et al.

VI. DISCUSSION

We have made a crucial test of the MHNCS integral
equation with the binary soft-sphere fluid up to a highly
supercooled liquid regime. The MHNCS solutions result
in an excellent agreement of the equation of state with
that of the computer simulations. The PDF obtained
shows a clear splitting of the second peak at a highly su-
percooled regime, in excellent agreement with the results
of the molecular-dynamics simulations. Glasses are
nonequilibrium states in nature, in which the structural
relaxation time is many orders of magnitude larger than
that of an equilibrium liquid. Therefore, structures of
computer glasses simulated over an overly short time in-
terval compared with the structural relaxation time may
depend on the quenching rates and their routes as well as
initial configurations. On the other hand, the PDF calcu-
lated from the integral equation based on the statistical
theory of fluids is that for a fully relaxed "fluid" state,
which may be produced by quenching a liquid at an
infinitely slow cooling rate. Intermediate- and long-
range-distance parts of B(r) can be well approximated by
the leading term of elementary diagrams, e4(r), which is

responsible for the characteristic feature (second peak
splitting) of the PDF at intermediate distances for highly
supercooled liquids. Since e~(r) has almost no contribu-
tion for stable liquids, the MHNCS integral equation is
equivalent to the RHNC or RY approximation above the
freezing temperature. On the other hand, for high1y su-
percooled liquids, e4(r), exhibiting a significant oscillato-
ry behavior around zero value, reproduces not only the
splitting of the second peak, but also a correct gross
feature of the PDF in excellent agreement with the re-
sults of the computer simulations. Thus we conclude that
the MHNCS works very well over a wide range of the
soft-sphere fluid states, including supercooled liquids and
glasses for both one- and two-component fluids.

Another important conclusion of the present paper
concerns thermodynamic and structural properties de-
pending on the number concentration and core-size ratio
in the supercooled regime, especially for I,&=1.5. As
the number concentration and core-size ratio increase, we
observed that the first peak of the partial PDF, gzz(r), be-
comes sharper and higher, and the demixing tendency of
binary mixtures becomes remarkable. With these results,
the theory predicts a phase separation under suitable
choices of I l,tr, x „oi la, I.
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