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An extended mean-field approximation for statistical operators is derived within the context of
information theory. The ensuing scheme is applied to (many) boson mean-field approaches within a

completely general statistical framework. Numerical examples are given within the context of the

finite-temperature anharmonic oscillator problem. Fluctuations are also discussed.

I. INTRODUCTION

Information theory' (IT) provides a very general and
convenient framework on which to base statistical
mechanics. ' ' It allows for the straightforward exten-
sion of statistical descriptions to finite systems, off-

equilibrium situations and nonconventional ensem-
6—12

The aim of the present effort is to discuss approximate
self-consistent mean-field descriptions within a general IT
statistical context. Approaches such as thermal Hartree-
Fock' or Hartree-Fock-Bogoliubov' ' and ensuing
cranked' (i.e., rotating frame) extensions' ' in fermion
systems, as well as similar statistical Hartree-Bose
schemes, ' ' arise as a consequence of the need for tract-
able descriptions of interacting many-body (albeit possi-
bly finite} systems, and are able to provide a vivid physi-
cal picture, including the prediction of phase transitions
and metastable solutions. ' In the case of finite systems,
these mean-field transitions constitute in general a signa-
ture of significant changes in the structure of the system.
These, in turn, arise as the consequence of the variation
of certain control parameters, and may manifest them-
selves more clearly in mean field approaches than in exact
descriptions.

Within the information-theoretic context, as sha11 be
discussed below, these self-consistent schemes can be im-
plemented by including very specific ingredients in the
construction of the density operator. Together with the
maximum entropy criterion, the observer chooses the
operators appearing in the exponent of p, in terms of
which the available data will be processed.

A quite general self-consistent approximation for sta-
tistica1 operators is derived in Sec. II within the
information-theory context. The scheme includes, as a
particular case, the standard statistical mean-field
descriptions, which are generalized in Sec. III to accom-
modate a completely general statistical context. An illus-
trative example is given in Sec. IV, where mean-field solu-
tions are constructed directly from a set of expectation
values (and not from a set of Lagrange multipliers as usu-

al). This allows for a diff'erent picture of the behavior of
mean-field quantities, appropriately suited to the IT phi-
losophy. The ensuing effective temperatures and
Lagrange multipliers are accordingly calculated, and the
inference of fluctuations is also examined. Numerical re-

suits are given in Sec. V for the case of an anharmonic os-
cillator, and compared with exact predictions. Finally,
some conclusions are drawn in Sec. VI.

II. GENERALIZED SELF-CONSISTENT
APPROXIMATION

A. Introductory remarks

Let us consider a quantum system, about which the
only available information consists of the expectation
values 0, of n linearly independent observables 0;. Ac-
cording to IT, the least biased normalized statistical
operator describing the system is

p=exp —
Ao

—g A, ;0, (2.1)

The operator (2.1) maximizes the entropy (we set
Boltzmann's constant ktt = 1)

S=—Trpln(p},

subject to the linear constraints

(0, ) =TrPO, =0, ,

(2.2)

(2.3)

where the trace is taken over the set of accessible states.
The parameters A, , are Lagrange multipliers which are to
be adjusted in order to comply with (2.3). The normaliza-
tion parameter Ao is obviously given by

A.o
= ln Tr exp

—g A, ;0, (2.4)

(2.5a)

and can also be interpreted as the Lagrange multiplier as-
sociated with the identity operator Oo —=I.

We remark that, within the information-theoretic con-
text, the observables 0; are completely arbitrary. They
constitute, in general, a non-Abelian set, and the operator
(2.1) is not necessarily stationary, being thus suitable for
the description of arbitrary systems in off-equilibrium sit-
uations.

The ensuing maximum entropy S =AD+ +,",A, , O, , as
a function of the n relevant mean values 0, , verifies
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whereas its Legendre transform S'=S—g," ( A. , O, =A.o,
considered as a function of the n A, s, fulfills

sidered as a function of the remaining A. 's through (2.4)
and (2.5b)]. Using (2.7), the approximate density opera-
tor can be written as

as' 0
a~,

(2.5b)

p, =exp —ko —g P, o, (2.11)

B. Self-consistent approach

Let us state now the basis of our approach. In the spir-
it of IT, one builds up p with the given operators 0;.
However, the corresponding statistical operator may con-
stitute a formidable object indeed, especially if some of
the 0; are many-body operators, since a diagonalization
of the exponent over the complete set of accessible states
is required. The whole IT machinery may thus become
useless, due to the intractability of the concomitant set of
equations. Exceptions occur if the observables are of a
simple character, and can be written, for instance, as
one-body operators in some representation, or are simul-
taneously diagonal in a given known basis. In these cases
the relationship between Lagrange parameters and expec-
tation values is of a straightforward nature, and the infer-
ence of arbitrary mean values poses no diSculties. We
propose thus an approximate density of the form

with

- ao, „
o, =g R, .

J=l j
(2.12)

Tr[p, (R, )R, ]=R, j=l, . . . , m . (2.13)

Expression (2.11) leads obviously to a nonlinear system,
since the approximate statistical operator depends upon
the very mean values R that it determines (self-

consistency). The exception occurs if all operators 0, are
linearly related to the R, 's, in which case (2.12) implies

g 1 PJ=g, p;0, . Otherwise, one faces the nonlinear
system (2.7), where the right-hand side depends on the
AJ's through (2.8) and (2.9). If the expectation values ap-

pearing in (2.7)—(2.9) can be easily expressed in terms of
the mean values R 's, it is possible to deal instead with

the equivalent problem

p, p
=exp —

A,o
—g A,JR,

j=l
(2.6) C. Some elementary considerations regarding

the self-consistent description: Fluctuations

S'= —Trp, „ ln(p, )+ g P, O,

stationary with respect to the yet unknown expectation
values R, , we obtain, using (2.5a) [applied to (2.6)],

where

g p; A;(B( ', J = I, . . . , m,
l=l

(2.7)

and

A,(= = —(R (0;)= —(O,*R()
I

(2.8)

JaR8
ak

Ao

lax,,
= —(R (*RJ ) . (2.9)

We denote by R the so-called Kubo transform

R *=I (p, ) "R (p, )'du Tr(p, R ), (2.1—0)
0

such that Bp/M, = —pR *, (R *)=0 [Ao has been con-

where tR, ,j =1, . . . , m, m ~n) is a set of suitable
operators, chosen by the observer in order to render (2.6)
"tractable. " The parameters A,j will be determined by
maximizing the entropy S associated with (2.6) subject to
the n constraints Trp, ppO' 0;. Introducing n additional
multipliers ((3, , and making the quantity

A,
'+'= g g P;[A ((B')(J '],

i =1 l = 1

(2.14)

where the superscript s denotes the corresponding itera-

The present, general self-consistent approach yields ob-
viously a lower bound to the exact S and S' for fixed
values of the 0 s and /3, 's, respectively (if traces are eval-

uated by summing over the same set of accessible states),
since we are constraining the trial densities to adopt the
form (2.6). The most general statistical mean-field treat-
ment can be straightforwardly obtained from (2.11), if the
operators R, are chosen to be general quadratic functions
of creation and annihilation operators, as will be seen in
Sec. III.

Since the Eqs. (2.7) [or (2.13)] are nonlinear, more than
one solution may exist for fixed parameters P, , and not all

of them will correspond to maxima of S'. Certainly,
minima and saddle points may also occur. The exact
solution (2.1) is, however, unique and always yields a
maximum.

On the other hand, for fixed mean values 0;, the ((3, 's

must be determined from the constraints (2.3), and will

not coincide, in general, with the exact parameters ap-
pearing in (2.1). A general solution will not always exist
in this case, since the range of mean values 0;, spanned

by (2.6), may be smaller than the exact range. At the
same time, the nonlinearity may give rise to various
simultaneous solutions for the 13, 's, the best of which is,
in principle, that which yields the highest entropy.

System (2.7) (or 2.13) can be solved by iteration, start-
ing with a set ((., , with which the initial matrices (2.8) and
(2.9) are to be calculated, i.e.,
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tive step. The iteration process is to be continued until
self-consistency is reached, i.e., convergence in the A,, 's or
in the mean values R 's.

The approximate S and S', constructed with the solu-
tion (2.11), still fulfill the relationships (2.5), i.e.,

from the IT viewpoint. We shall examine the case of a
boson system. The corresponding fermion expressions
can be straightforwardly obtained from the boson case.
The most general one-body statistical operator can be
written as

as
ao

=@

as' = —0;,
ap,

(2.15a)

(2.15b)

p=exp A,
—g—[A„b; b + ,'(I—;b, b +I;,b b; )]

—g ( r); b; +q,'b; ) (3.1)

due to the stationary condition (2.7), which may be used
to relate expectation values and Lagrange parameters.
However, A,o and S' cease to be identical:

ao;
a)33k aPk aP,

(2.16)

However, in the present self-consistent picture (2.16) is
no longer valid due to the P dependence of the operators
(2.12). We have instead [cf. (2.11) and (2.12)]

In the exact picture, it is possible to identify thermo-
dynamic derivatives with fluctuations, or, within the gen-
eral non-Abelian context [see (2.10}],with

where b, (b; ) creates (annihilates) a boson in the single-
particle (SP} state labeled by the index i =1, . . . , I.
(assumed discrete). Obviously, the Hermiticity of p im-
plies A; =A';, and we can set I; =I, . It is convenient
in this context to define Z =(b, , . . . , bi, b, , . . . , bz ),
F =(rj', , . . . , rjL, rj, , . . . , rjL ) (with Z and F the adjoint
column vectors), and the Hermitic matrix of multipliers

(3.2)

%'ith the above definitions, the boson commutation prop-
erties [b;,b ]=5, can be written as ZZ
—[(Z )"Z'"]'"=11, with

I 0
rI= 0 I (3.3)

aR ~ aRi

a13
jk X jl p

where [see (2.9)]

m aok
C = —(o'R )=—g

1=1 I

(2.17)

(2.18)

and the operator (3.1) can be succinctly cast as

j=exp[ —
Ao

—
—,'(Z MZ+F Z+Z F)]

= exp[ —
A, ,'&

—
—,'(Z') MZ'],

where AD=i(0 —
—,tr(A), XO=AO ,'F M 'F,—a«—

(3.4)

n ao.

i=i
n m a~0

,~„~,~'aR, aR, ,
"'

Therefore,

(2.19)

Z'=Z+M 'I' (3.5)

Z' denotes the set of "centered" boson operators b, with
vanishing mean values. The complete set of one-body ex-
pectation values can be conveniently accommodated in
the column vector (Z ) and in the generalized SP density
matrix, which can be defined in this context as

R. m

a
' = g (I D),i'Cik-
k I=]

(2.20)
D=(zz'& —II=D'+&z) &z'&,

where D' is the "covariance" matrix

(3.6)

and finally,

ao, - ao,'=z
j,/=1

(2.21)

so that (2.16) is recovered when D=0. Actually, the
thermodynamic derivative may provide a better estimate
of the "true" fiuctuation than a direct evaluation (see
Secs. IV and V).

D'=(Z'(Z') ) —II=
B I+3* (3.7)

asap

lD
aM.

IJ

(3.8)

with A,j = ( (bj')"b,'), B;j= ( bj'b, ') In this way . [see
(2.5b)],

III. GENERAL STATISTICAL MEAN-FIELD APPROACH
FOR BOSK SYSTEMS

We shall apply now the previous formalism to the case
where the operators R- are general one-body operators.
Let us first discuss the statistical one-body description Z'= WZ'= W(z+M 'F), (3.9)

and —,
' (Z );= M,olaF;, ,'D'; = ——aA.O/aM, ".—Both D

and A are Hermitic, while B is symmetric. The operator
(3.1) can be put into diagonal form by means of a general
Bogoliubov transformation for bosons,
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S=g [(f,+1)ln(f;+1)—f;ln(f;)] .

Y* X* (3.10)

a unitar matrix with respect to the metric
II( WII W = 11), in order to preserve the boson commuta-
tion relations. In the primed SP basis defined by (3.9), we
have, obviously, M= W M'W D'= WD'W, which can
be conveniently rewritten as

(M II)=U-'(Mll)U, (IID')=U '(IID')U, (3.1 1)

where U= W . By choosing M' diagonal [which entails,
according to (3.11), the diagonalization of the non-
Herrnitic matrix MII], (3.1) can be finally written as

p=exp[ —
A,o

—g A;b,
'

b, ], (3.12)

with A,ii=l,t+ —,'g; A, Therefore, the corresponding den-

sity matrix D'= ( Z'Z'") —II is also diagonal, so that

(b b' )=(b'b )'=0, (b,' bj')=f 5;, .

The entropy is evidently independent of the multipliers
g„depending solely on the covariance matrix D', deter-
mined completely by M.

For Tr(p) to be finite, it is necessary that A, , )OVi. We
should remark, however, that the diagonalization of the
exponent of p by means of a transformation of the type
(3.9) is not always possible. Physically meaningful expec-
tation values (which fulfill, for instance, the uncertainty
principle) correspond to a normalizable statistical opera-
tor (see Appendix for a specific example). In such a case,
the matrices MH and HD' can be diagonalized, and have
real eigenvalues (A,;,f, , respectively), that appear in pairs
of opposite sign. This entails that the hermitic matrices
M and D' possess only positive nonvanishing eigenvalues.
The vector F and the expectation values ( b, ) can adopt,
obviously, arbitrary values.

A very important situation is that in which the avail-
able information is expressed in terms of generalized
coordinates and momenta

In a standard grand canonical (GC) ensemble, we obtain
the well-known formulas

1,0= —g in[1 —exp( —A, , )]

i (b, —b, ) 12—'

Q (b +bt)y21/2

(3.16a)

(3.16b)

and

f; =[exp(A, ;)—1]

which can be written in matrix notation as
IID'=[expIM'II] I] '. The—refore, by means of (3.11)
and (3.6), we are led, in the original basis, to the final re-
sult

with [Q, ,P, ]=i5,, The whole formalism can be recast
in terms of the operators (3.16), in which case, the ex-
ponent of (3.1) is a general (hermitic) quadratic function
of I'; and Q;, and (3.9) represents a linear canonical trans-
formation, with (3.5) a translation (in I' and Q ).

On the other hand, if I =F=0 in (3.1), W reduces, ob-
viously, to a standard (boson-number conserving) unitary
transformation X (Y=0), and p can always be put into
the diagonal form (3.12). (3.13) reduces in this case to

IID'= [exp(M 11 )
—I ]

(Z)= —M

(3.13a)

(3.13b)
A =[exp(A) —I] (3.17)

0=M~ = [In[(IID ) '+I ]I;,

O=F; =[M(Z)], ,

(3.14a)

(3.14b)

which determines those elements D, , (Z), previously
unknown, according to the maximum entropy principle.

The mean value of a general one-body boson operator
0 =Z OZ+G "Z can be expressed in terms of (3.13} as
(0)=tr[OD]+G (Z), where tr denotes the trace in
the 2L-dimensional quasiparticle space. In particular,
the entropy acquires the appearance

S= A,o+ —,
' tr{MD'), {3.15)

which in a standard GC ensemble coincides with the
well-known formula

which gives the relationship between Lagrange multi-
pliers and expectation values in the GC ensemble, ena-
bling one to determine p from a complete knowledge of
D' and (Z), and vice versa. Our IT formalism allows
one also to conventiently deal with situations of incom-
plete one-body information, in which case (3.13) provides
a set of appropriate equations, namely,

and (Z) =0. However, in this situation canonical en-
sembles (with a fixed number X of bosons) can be con-
sidered, in which case (3.17) should be replaced by an ap-
propriate numerical relationship between the eigenvalues
of D and A. No restrictions upon the sign of A, ; would
arise in this case.

In the case of a fermion system, the multipliers g, van-

ish, and the Bogoliubov matrix 8' is Hermitic with
respect to the standard metric (II~I). The correspond-
ing fermion matrices M and D [defined as in (3.8)] are for-
mally equivalent to MH and D H, but are now hermitic,
and (3.13a) should be replaced, in a GC ensemble, by
D =[I+exp(M)]

Let us turn our attention now to the generalized
mean-field approach, in which the exact statistical opera-
tor is approximated by a density of the form (3.1). We as-
sume that the available information consists of the expec-
tation values of n arbitrary boson operators 0, . In a GC
ensemble, it is possible to employ the general statistical
version of Wick's theorem, which enables one to express
expectation values of arbitrary n-body boson operators
[with respect to (3.1)] as products of SP mean values, and
hence, to use (2.13). According to Sec. II, the effective
operators (3.12}will now be SP operators of the form
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o, =
—,'(Z M'Z+Z F'+F' Z), (3.18)

where —,'Mk& =ao, /aD k, ,'F—'=ao;/a(Z"), or, in a
more explicit fashion,

dt

=Hn(n&z))+G .
dt

(3.25)

nD'= [exp[M(D', (Z) )n] —r )
-'

(z &
= —M-'F(D', (z & ),

(3.20a)

(3.20b)

where M =g,",P;M', F=g,",P;F', which condenses
the general statistical Hartree-Bogoliubov Boson equa-
tions. Notice that if (0; ) is considered a function of D'
(instead of D) and (Z ), (Z"), (3.20b) is equivalent to

a(o & . a&o &

and g,
*=a(o; ) /a(b; ), where ( 0, ) is considered a func-

tion of the elements of (3.8) and (Z). Both M' and F'
will depend on D' and (Z). The relationship between
Lagrange multiplers and mean values in a Gc ensemble
is thus given by the nonlinear system

The evolution of D' is thus decoupled from that of (Z ).
In a similar fashion, we obtain analogous equations for
the Lagrange multipliers,

"' =[Hn, Mn]
dt

i =HIIF —(MII}G.. dF
dt

(3.26)

If H is an effective mean-field Hamiltonian, Eqs. (3.25)
[or (3.26)] constitute the general (statistical) time-

dependent Hartree-Bogoliubov boson equations. In this
case, H and G depend on D' and (Z ). Nevertheless, the
eigenvalues of nD, and MII (and hence the entropy) are
preserved by (3.25) and (3.26). The temporal evolution
can thus be completely described by an optimal (time-
dependent) Bogoliubov transformation (3.9).

a y p, o, (D', (z), (z")) a&z') =0, (3.21) IV. APPLICATION

X A'

Y A"

where A,"=A,', 5;~, so that [writing (3.20) explicitly],

which asserts that F=0 in the basis where (Z' ) =0.
System (3.20) can be solved by iteration, starting, for

instance, with an initial matrix D and an initial vector
(Z) . This entails the diagonalization of Mn in each
step, i.e., (see 3.11)

w' —r'* x'
QS +S ilc

(3.22)

We shall consider, as a simple and illustrative example,
the case of a one-dimensional, one-particle system, de-
scribed by a Hamiltonian (we set m = 1)
H= ,'P +V(Q—), with P and Q defined according to
(3.16}. The general case where the information deals with
expectation values of arbitrary functions of P and Q is
dealt with in the Appendix. Let us consider here a situa-
tion in which the available information deals with the ex-
pectation values of H and of a set of functions of the
coordinate F, (Q). The corresponding (exact) statistical
operator can be written as

P= exp( —
AD

—PH'), (4.1)

A '+ ' =X A 'X+ Y"(I+A ') Y*,
B'+'= —X A'Y —Y'"(I+ A')X',

(b )'+'= —(x c'x+ Y'"c' Y*) "7l

+(X'C' Y+ Y"C X*}q',

where

(3.23}

(3.24)

with H' =H +g, (p, /p )F; ( Q ). This p constitutes a quite
difficult object to deal with, even in this simple situation.
One requires, first of all, the knowledge of the eigenvalues
of H', and then, the determination of the particular
values of the Lagrange parameters which adjust the avail-
able data. Hence, it is reasonable to consider a first-order
description based on an approximate one-body density
cperator of the form

A,
' =[exp(A, ;)—1] '5;, , C~ =(&';) p=exp( —

AD
—Ph')=exp( XQ A'b' b'—), —

, (4.2)

where h' is an efT'ective SP operator constructed as in
(2.12), and b' a boson "quasiparticle" operator related to
the "unperturbed" ones by [see (3.9)]

b'=xb+yb +z, (4.3)

with ~x~
—

~y~
= 1. Since the only relevant one-body

mean values are (P ), (Q ), and (Q ), h' can be writ-
ten as [cf. Eq. (2 12)l

g&-,
a&g &

(4 4)

where

V'( Q ) = V( Q ) +g (P; /P )F, ( Q ) .

M'+ ' and F'+ ' are then built according to (3.19) using
A'+', B'+' and (Z)'+'. In canonical ensemble treat-
ments, (3.20) is no longer valid, and it may be convenient
to work directly with (2.7) and (2.14).

Finally we would like to remark that the operator (3.1)
preserves its form in time if the temporal evolution is de-
scribed by a general SP Hamiltonian 8= ,'(Z HZ-
+6 Z+Z G), basically because the semialgebra formed
by 8 and the set of general one-body operators is closed
under commutation. The ensuing equations of motion
can be conveniently cast in terms of D ' and ( Z ), and are
easily shown to be, by means of Ehrenfest theorem (we
set A'=1),
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o. =((Q —(Q))') =t (f+—'), (Q & =q,
(P') =(f+ ,')It—'=(f+,')'l—o,

(4.5a)

(4.5b)

where f=(b' b') is the average boson quasiparticle
number. By recourse to Wick's theorem, it can be easily
shown that

( ( Q q
)2n ) —atl2n (I(2lln () (4.6)

which corresponds, obviously, to a Gaussian density, i.e.,

( V(Q ) ) = f V(x)exp[ —(x —q)' /2o ] /(2mo )' 'dx

—:V(o, q) . (4.7)

Moreover, in this situation, x, y, and z are real, so that
the Bogoliubov transformation (4.3) becomes et]uivalent
to a scale factor plus a translation in P and Q, ' i.e.,
Q = tQ'+q, P =P'/t, with t =x —y, q = —tz&2 T. he
basic elements for calculating expectation values with
respect to (4.2) are [see (A10)—(A13) with 6=(=0]

ap
=[—a/cr+(Pa/o )o )I[b —(Pa/o )cr ]'

0
— '

f

and

(4.14)

aalaP=a, +a,(af IaP), aqlaP=q~+q (ao laP),

(4.13)]. Equations (4.13) are obviously equivalent to
(A18)—(A19), after the appropriate replacements are
made.

A physical self-consistent solution will exist wherever
the value of f obtained from (4.9) is real and non-
negative. In case (H ) is the sole information, a solution
will obviously exist only if H is greater than the ground-
state energy of the zero temperature Hartree-Bose ap-
proximation, ' ' obtained from —,

' —0. a V/ao. =0,
a v/aq =0.

The thermodynamic derivatives (2.20) can be explicitly
calculated in this context using equations (A17)—(A19).
For the derivatives with respect to p, we obtain (sub-
scripts denoting partial derivatives)

A similar expression holds obviously for the expectation
value of any function of P, with cr replaced by (P ) (and

q =0).
The mean-field equations in this situation, for fixed p

and P s, can be found in the Appendix (see also Ref. 18).
We shall focus here our attention upon the form that
these equations adopt for (fixed) given mean values. Us-
ing (4.5), the mean energy can be written as

where

crt3= —[ V —
—,'(a lo )

—
Vq V~/V~~) l(DP),

of =(alcr )/D,

D = V' —
( V' ) /V~~+ a lo

with

a =(f+—,'), b =Plcr+1/[f(f +1)] .

(4.15)

(8 ) = ,
'

(f+ ,' ) lcr —+V( c—r,q ) =H . (4.8)

f= [2o [H V(cr, q )]I
'i ——

—,
' .

The corresponding effective multipliers (2.15a) will be

(4.9)

S = 0',0' (4.10)

as
P, = =a(H —v —oav/acr),

ao

Pz= = —ao (a V/aq ),as

(4.11)

(4.12)

where a=(aS/af ) l(f + —,
'

)=»[(f+ 1)If ]I(f+ ,
')—

In case cr and (or) q are unknown, the maximum entro-

py criterion implies p, =0 and (or) p2=0, and hence the
equations

II —v —~a v/a~ =0,
a V/aq =0,

(4.13a)

(4.13b)

which express the mean-field equations directly in terms
of the available data [and not in terms of the unknown
Lagrange multipliers, which do not appear explicitly in

It is evident from (4.5) that in this situation o, q, and f
suffice to determine p. Therefore, the mean-field ap-
proach is able to adjust, in addition to the mean energy,
the mean values of just two independent observables F,
(which would determine o and q). Let us examine thus
the case where F

i
= ( Q

—( Q ) ), F2 =Q. the operator
(4.2) will be completely determined by cr, q, and H, with f
given by

Using (4.8) and (4.14), a(H ) /aP can be calculated. It is
to be remarked that p and the remaining Lagrange pa-
rameters entering (4. 14) and (4.15) are inferred from the
available data by means of (4. 10)—(4.12). In case (H ) is
the only information (P; =0), we obtain

a(H&
ap

= —(a lo ) l[b —P(a la ) ID ], (4.16)

which for a quadratic potential ( V =
V~ =0) reduces

to the exact expression f (f +1)(a lo—) . Equation
(4.16) provides a much more accurate estimate of the ex-
act energy fiuctuation (H ) H than a di—rect evalua-
tion by means of Wick's theorem (see Sec. V).

All the above formulas can be straightforwardly gen-
eralized to a d-dimensional case. In the special case
where H= ,'P + V(R ) —(with R =gd

& Q;,
P =g,",P, ), and the functions F; depend solely on R
[O(d)-invariant case], we have instead of (4.2),

d

p=exp —
A,o

—
A,

' g b b (4. 17)

Finally, we obtain instead of (4.7)

( V(R )) =Cf V(r)Iexp[ r /2o]l(2vro )" )r—" 'dr, .
0

(4. 18)

where all 6,-' are equally related to the unperturbed opera-
tors by (4.3). In this situation we have obviously
( Q; ) =0, and (4.5) must be replaced by

(R )=dt (f+ —,')—=do, (P )=d(f+ ,')It—
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where C =2m" /I (1/2) is the area of the d-dimensional
unit sphere. Hence, things behave as in the one-
dimensional ease, with an effective even potential

V,fr(r)= CV(r F '/[2d(2mtr)'" ""].

In this way,

&, H&/d= ,'(f+—,')'/ —+V,( ),
and expressions (4.9)—(4.11)can be utilized.

(4.19)

V. RESULTS

As a numerical example, we have chosen the case of a
general quartic anharmonic oscillator

V(Q)= AQ +BQ +CQ (5.1) h I I I I I I I

in which case, using (4.7),

V(o', q)= A(q +o')+B(q +3qo )+C(q +6q cr +3cr 2) .

(5.2)

This type of potential has attracted a great deal of
work during the past years (see, for instance, Refs.
25 —27, 17, and 18) due to its relevance for studying
molecular vibrations and nonlinear quantum field
theories. Exact statistical averages for this Hamiltonian
can be calculated by means of a diagonalization in a trun-
cated optimized Hartree basis.

Figures 1 —5 depict results corresponding to B =0,
A =

—,', and two different values of C (obviously, by means
of a proper scaling, one can bring one of the coupling

T

FIG. 2. Predicted value of (P ) (in units of mfico}. Details
are similar to those of Fig. 1. Curves 1 depict exact results and
those given by the mean-field approach (1), almost undistin-
guishable in the scale of the figure, whereas curves 2 correspond
to the mean-field approach (2). Dashed lines indicate threshold
points of mean-field solutions.

constants to a fixed desired value; this choice corresponds
to an unperturbed oscillator energy A'co= 1). We have ex-
amined two different situations, in which the mean-field
solution (4.2) is constructed with information concerning
(H) (case 1), and [(H), (Q )I (case 2). Theseexpecta-
tion values were obtained from the exact averages corre-
sponding to the system heated at a temperature T, in
which case the exact multipliers are P=l/T (we set
Boltzmann constant kz =1), P&=0. In this situation, q
vanishes (P2=0). Quantities are plotted in terms of the
exact temperature.

Teff

T
FIG. 1. Entropy {in units of Boltzmann constant k&) vs tern-

perature (in units of A'co/k~ in all figures, with ~ the frequency
of the unperturbed harmonic oscillator) for the anharrnonic po-
tential {S.1), for 3 = —', B =0, and C=1 (curves a), C=10
(curves 6). In each group, the upper curve corresponds to exact
results, the intermediate one to the mean-field approach {1),
constructed with information about (8), and the lower to the
constrained mean-field approach (2},constructed with (8) and
(Q ') (see Sec. V}.

j I I I I I I I !

FIG. 3. Effective temperatures. Curves 1 and 2 depict the in-
verse of the multiplier (4.10) according to the respective mean-
field solution.
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10

FIG. 4. The prediction of the energy Auctuation

OH=(8') —(8)' [in units of {fico)'] for the case A =
—,',

B =0, C = 1. Curve 1 depicts results given by the mean-6eld ap-

proach (1), employing expression (4.16), which lies only slightly
above the exact prediction (denoted by ex.). Curve 2 depicts the

corresponding results of approach (2) [employing (4.14) and

(4.15)]. Curves 1' and 2' show the respective direct evaluation

using Wick's theorem.

Results indicate that in case 1, the approach (4.2) is
quite reliable, independent of the value of C, yielding very
accurate inferred values of S, T,{{=1/P[cf. (4.10)] and
one-body observables (such as P ), for temperatures
above the threshold value. Moreover, the prediction of
fluctuations, such as cr H

= (8 ) —(H ), is also in excel-

I [ I I I I I I I

0.8

Cv

0.4

0.2

FIG. 5. Predicted value of the specific heat C„,=B(H)/BT
(in units of kz) for the same case of Fig. 4, according to exact
(ex.) and mean-field results {1) and (2) [constructed using
(4.14)—(4.16) and the inferred effective temperature].

lent agreement with the exact results, provided the corre-
sponding thermodynamic derivative (cf. 4. 16) is utilized.
However, as can be seen in Fig 4, the results yielded by
these derivatives differ appreciably from those given by a
direct evaluation of the fluctuation (by means of Wick's
theorem), which yields a finite value even at the threshold
point, where the inferred temperature vanishes.

The specific heat C, = —P B(H ) /BP, shown in Fig. 5,
is constructed with the inferred value of P (4.10), and also
lies quite close to the exact value. As T~ (x), the mean-
field approach yields the exact leading order of first-order
averages (not fluctuations) and thermodynamic deriva-
tives, providing the correct limiting value of a quartic os-
cillator C, =

—,
' (see Ref. 17 for results in the conventional

formulation). For sufficiently high temperatures, the
effective inferred temperature is slightly greater than the
exact one. At the threshold point f vanishes, while its
derivative with respect to H remains finite, implying thus
an infinite initial slope of the inferred entropy and tem-
perature.

On the other hand, in case 2, where ( Q ) is clamped
at that value corresponding to the exact average, the ap-
proach (4.2) obviously yields a lower value of the entropy
(due to a higher amount of available information), and in
general poorer estimates of the remaining quantities, due
to a reduced number of degrees of freedom. The con-
strained description also becomes feasible at a slightly
higher value of H. The additional multiplier P, (4.11)
does not vanish, and is negative, since the unconstrained
solution underestimates the value of (Q ). P, diverges
at the threshold point, although the "chemical potential"
)33, /P remains finite. The finite value of P~ implies a
departure from the exact behavior in most inferred quan-
tities, even as T increases. %e should remark that just a
single physical self-consistent solution exists in both cases
1 and 2, for given mean values of (H) (and (Q ) in 2),
and that no "phase transitions" are encountered.

The addition of a small cubic term to the potential
does not alter the previous conclusions. The picture
varies dramatically however, in case the coefficient 8 in
(5.1) increases, or A becomes negative (bistable case).
For instance, Fig. 6 depicts results for the inferred entro-

py for C =1, 8= —0. 1, and A = ——', A„ in which case
the potential possesses two wells of different depth
[A, =(243C /2)' is the critical value such that for
A & —A„ the zero-temperature Hartree approximation
exhibits a displaced symmetry-breaking solution' for
B =0, centered in either of the wells].

On this quasibistable situation, the agreement between
mean field and exact predictions is only of a qualitative
character. Up to five different types of unconstrained
mean-field solutions (information about (H ) only) may
exist for the same value of (8), starting at difFerent
threshold energies. They correspond to three maxima of
S and two intermediate saddle points, if S is viewed as a
function of q [with a and f expressed in terms of q by
means of (4.9) and (4.13b)]. Only the solutions corre-
sponding to a local maximum are exhibited in Fig. 6.

The solution labeled as b corresponds to a density lo-
calized at the deepest well of the potential (q close to the
value which minimizes V), and is the first to appear.
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VI. CONCLUSIONS

FIG. 6. Entropies for the bistable cubic case, with

3 = —
—,
' A„B=—0. 1, C =1. Curve a denotes the exact entro-

py, whereas b, c, and e correspond to different mean-field solu-

tions (constructed with (8 ) alone). Curve d depicts the mean-

field solution built up with (8) and (Q ). The dashed line in-

dicates the onset of solution e, which starts at a nonvanishing

entropy.

Solution c corresponds to a density localized at the shal-
low well, whereas solution e corresponds to a density al-

most centered at the origin (q small). This solution starts
with a nonvanishing value of S. The solution d depicts a
constrained situation, in which the value of (Q ) is sup-
plied in addition to that of (8). This solution practical-
ly coincides with e above the threshold value, yielding
thus a very small value of P2 (4.12), except at the thresh-

old point. For higher values of T, solutions b and c
disappear, and only d and e remain. A fully constrained
mean-field solution, in which 8, 0., and q are to be adjust-
ed, does not exist for the shown range.

In the unconstrained (inferred) picture, the solution
yielding the highest value of the entropy, changes from b

to e at the critical value H, =——0.553, which corresponds
to the (exact) temperature T, —=2. 7. Therefore, a "phase
transition" arises as (H ) increases, in which the system,
according to the unconstrained mean-field description,
would "jump" from a situation appropriately described
by a solution localized in the deepest we11, to that corre-
sponding to a near symmetric solution. This abrupt tran-
sition is correlated with the sudden (albeit smooth) de-
crease in the value of (Q ), as T increases, exhibited by
the exact density at low temperatures. '

Within the IT context, one can assert that a mean-field
treatment of the available information amplifies a nearly
critical behavior. Notice however that the inclusion of
additional information may induce one to choose a solu-
tion different from that yielding the highest entropy. For
instance, the addition of information concerning ( Q )
leads one to choose solution e even before T, is reached,
since this solution practically coincides with the con-
strained solution d.

The problem of (many) interacting particles exhibits
severe difficulties if one wishes to deal with exact descrip-
tions. This is true in classical mechanics and to a much
larger degree in quantum mechanics. The Information-
theory approach, although widely regarded as an ex-
tremely convenient and illuminating one, cannot escape
the restrictions any one faces in looking for exact solu-
tions. The physicist is to be satisfied with approximate
treatments, which either contain just a few of the essen-
tial ingredients of the "real" problem or, at the very least,
contain within themselves a criterion for their validity.
In this respect, IT can often lead to rewarding results.

Mean-field methods constitute, in many instances, the
standard basic approach to the quantum many-body
problem, and we have here reformulated them from a
particular IT viewpoint. In this view, they arise as a
consequence of building up the density operator with a
special set of observables chosen by us, and not forced
upon as by the nature of the available information, as is
the case of the (by now) classical formalism of Jaynes.
The maximum entropy principle leads then, in a natural
fashion, to a general self-consistent approximation for
statistical operators, which contains, as a very particular
case, the (previously) known statistical mean-field treat-
ments. The approach provides a generalization of
thermal many-body mean-field theories, inserting them
within a completely general statistical context, and allow-

ing for the possibility of dealing with arbitrary ensembles
and trail density operators.

The IT framework allows also for a new interpretation
of these mean-field descriptions, viewing them as an ap-
proximate processing of the available data in terms of a
particular choice of relevant operators. In this sense, we
have examined the feasibility of the construction of
mean-field descriptions directly from the knowledge of a
given set of expectation values, obtaining in this way
different lower bounds for the exact entropy, and a set of
effective temperatures and Lagrange multipliers. Statisti-
cal mean-field descriptions of Bose systems have been ex-
amined within this general context.

Finally, different possibilities for the approximate
inference of fluctuations from the available information
have been studied, and general formulas for obtaining

thermodynamic derivatives within the general self-
consistent scheme have been derived. We have shown, by
recourse to a numerical example, that statistic mean-field
approaches are able to predict, in general, quite accurate
values of fluctuations, provided a thermodynamic expres-
sion is utilized instead of a direct evaluation.
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APPENDIX

For the sake of completeness, we shall consider explic-
itly the statistical operator corresponding to the general
one-dimensional case, where there is just a single accessi-
ble boson state,

Q'=(Q —
q )[A.'/(2P)]'~2, (A8)

where L =PQ+QP, A, '=2(aP —5 )', and [choosing
phases such that Im(y —x ) =0]

p=expj —
A,o

—A, b b —,'[—yb +y*(b ) ] r)—bt q—'b)

(Ala)

P'= [2P/A, ']'~ [(P—p )+5(Q —
q )/P], (A9)

=exp( —
A,o

—
A,

'b' b'),

where

X' =A, [1—( ~ y ~
/A, )']'~',

and b'=xb+yb +d, with

lx I'=-,'(~/~'+ l }=1+ lyl', 2~'y'x =y,

(A lb)

(A2)

q=(Q) = 2—(P( 5—f)IA', ,

p = (P) = —2(ag —g')/A, '

The relations (A3) correspond to

(A10a)

(A lob)

and d=(xg —yg')/A, ' . The normalizable case corre-
sponds thus to ~y~ & ~A,

~
and A, )0. The matrices D' and

M [(3.2} and (3.7)] are now two dimensional and the rela-
tion (3.13a) between them can be written explicitly as

IID'=(MII)(f + ,' )/A,
'

,'I—, ——

1.e.)

0, —= (Q ') —(Q &'=2p(f+-,')/&',

= (P ') —(P )'=2 (f+ —,
' )/A, ',

—:(L ) —2(Q)(P) = 45(f+ ,'—)I&' . —

(A 1 1)

(A12)

(A13)

( b b &
—

~ & b )
~

=A, (f+ —,
'

) /A,
' —

—,',
( b') —( b ) '= —y'( f+ —,

'
) I&',

(A3a)

(A3b)
Besides, the quantity 5 (A5) can be written now as

where h=tr~o~ crt /4 . — (A14)

f=(b' b') =[exp(A, ') —1] (A3c)

and

(A4)

In order to obtain the Lagrange parameters from the
available data, we can employ again (A3) and (A4) but ex-
pressing f and A, '=ln[f /( f+ 1)] in terms of the expecta-
tion values, i.e.,

(A5)

p =exp( —
A,o

—aQ PP 5E —
gQ gP—)— —

=exp[ —
A,o

—
—,'A, '(Q ' +P ' )], (A7)

Consequently, since f ~0, the statistical operator can
be constructed only if 5 ~

—,', which represents the uncer-
tainty relation in terms of the mean values of b, b. The
ensuing maximum entropy S=(f+ l)ln(f +1) fln(f)—
depends thus only upon 6, vanishing for 5=

—,'.
When written in terms of P and Q, (Al) reads

It is clear from (A14) that (Al) can be constructed only if
the available information fulfills the uncertainty relation.
The minimum uncertainty corresponds to the pure case
(S =0).

In the particular situation where /=5=0,
(A10)—(A13) lead to (4.5), if we set t =(P/a)'~ . The
normalizable case corresponds to 5 &aP. For A, '=0,
both f and A,o diverge, although some mean values con-
verge. For instance, if 5 and a are vanishing quantities of
the same order and P remains finite, p tends to a free par-
ticle density, and it can be seen from (Al 1) and (A12) that
cr diverges as 1/(2a ), whereas cr = 1/(2P),
crL= —5/(aP). The system possesses in this case an
infinite entropy, corresponding to an infinite fluctuation
of the coordinate.

The general mean-field equations for the one-
dimensional case (for fixed multipliers P, ) can now be
straightforwardly obtained from (A3) and (A4) or
(A10)—(A13) by expressing the Lagrange parameters in
terms of the one-body mean values (or vice versa) by
means of (2.7), which can be easily accomplished using
Wick's theorem. We obtain in general a set of five cou-
pled nonlinear real equations. The matrix 8 (2.9) [and
with it the thermodynamic derivatives (2.20) and (2.21)]
can be easily calculated in the general case by deriving re-
lations (A3) and (A4), or alternatively (A10)—(A13).

In the particular situation of Sec. IV, the system
reduces to a set of two equations in o. and q, namely,
(A10a) and (Al 1},with
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g( V ) t)V'(t7, q)

(j(g )
(A15)

associated with H'. The ensuing final equations can be
rewritten in terms of f, o, and q:

V'(cr, q ), (A16)

av'(~, ,q) (f+ ,')'-=0
2'q q

(A 18)

A, '=P' 2 (A17)
(A19)

and P=P'l2, with f given by (A3c) and P' the multiplier
which could have also been obtained through a direct
minimization of S'.
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