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First-passage-time distribution in a random random walk
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A detailed study of the statistical properties of first-passage times in a one-dimensional random
environment is presented. It is found that the spectrum of relaxation times of the master equation
describing the hopping dynamics in such a system possesses a gap, which separates the leading re-
laxation time from the next one by an amount that is exponentially large in the square root of the
size of the system. The leading relaxation time for a given (typical) system equals ~, the mean first-

passage time for that realization. One consequence of the existence of this gap is that for times that
are larger than a fraction of the mean first-passage time ~, the probability of the first-passage time to
have a value t is approximated, to a high degree of accuracy, by (1/~)exp( —t/~). The appearance
of the above-mentioned gap is, surprisingly, related to the existence of a dominant single effective
trap (or "potential well" ), the next leading trap being of no importance for large systems. A detailed
study of the properties of the mean first-passage time and its fluctuations among the members of the
ensemble of realizations is presented (the probability distribution of ~ is shown to possess anomalous
long-time behavior). The realization-averaged mean first-passage time is shown to be dominated by
rare realizations and is contrasted with typical values of that quantity. The mean first-passage-time
distribution is shown to be related to a new characterization of random walks that we coin the ex-
tent. The latter quantity is investigated in detail.

I. INTRODUCTION

It is by now well established that transport phenomena
in random environments are qualitatively very different
from those in regular ones. ' Even minute amounts of
randomness may be of major consequences for all trans-
port properties. It is pointless to summarize the wealth
of already existing knowledge in this rapidly developing
field. Here, we shall concentrate on the properties of a
prototypical model for one-dimensional random trans-
port, known as the Sinai model. The Sinai model con-
sists of a one-dimensional random walk where the
nearest-neighbor hopping probabilities are independent
identically distributed random variables. Thus the model
describes diffusion in systems with quenched disorder.
Among the numerous physical and chemical examples
for which this kind of model is relevant, we wish to men-
tion diffusive electronic transport in amorphous media,
transport in porous media, turbulent passive scalar
diffusion, ' molecular charge transfer in large molecules,
and charge separation in photosynthetic systems. "'

The model has also been shown to possess a (1/f)-type
noise. '

Pioneering work on the Sinai model has shown that the
diffusion rate in such a system is drastically slower than
that in the corresponding regular system. Sinai's own
work and subsequent investigations' ' have found that
the mean square distance (x ) travelled by a random
walker in such a system is proportional to ln t, t being the
time. Moreover, Sinai has shown that the position of the
walker, starting at i=0, after n steps, denoted by y(n),
assumes values of order ln n for large n. Asymptotically
in n, the probability distribution of y(n)/ln2(n) becomes

concentrated in an arbitrarily small neighborhood of a
value which depends on the realization of the hopping
probabilities. The model was generalized to higher di-
mensions and studied by using the replica method and
the renormalization-group technique. ' ' Using these
techniques it was found that for dimensions d ~ 2 the
diffusion is regular whereas for 1 d &2 it is not. The
current understanding is that in one dimension the walk-
er is trapped in deep wells in which the exit time in-
creases exponentially with the depth of the well. In
higher dimensions the walker has suScient "phase space"
to avoid these wells, whereas in one dimension the walker
must cross each of them as he advances.

It is interesting to note the difference between the Sinai
model and two other kinds of random hopping models.
One is a random-bond-hopping model' with finite
mean waiting time. In that case, the diffusion rate is
given by (x ) =2Dt +O(&t ) where D is the effective
diffusion constant. Another form of randomness is that
of the waiting times ' at sites which produce anoma-
lous diffusion. An example of this behavior can be found
in the diffusion on a random comb in which the length of
the teeth L is distributed according to P(L)
~ L '+&' (L & 1 and y )0). It is found (Refs. 21 and 22)
that when the mean waiting time does not exist (corre-
sponding to y&1) then (x ) ~tI'+r' (where (x ) is
measured along the backbone). When y ~ 1, i.e., a mean
waiting time exists, the diffusion is regular: (x ) ~ t
When a bias is applied in the direction of the teeth of a
random comb defined by the above distribution of teeth's
lengths, one obtains (x ) ~ (lnt) '. The physical
difference between the latter model and the Sinai model is
rather obvious: while random waiting times at a site can
be interpreted as motion of a particle having a space-
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dependent random mass, the Sinai dynamics is that of the
motion of a particle in a random potential. It has been
realized ' ' that the potential itself can be regarded as
performing a "random walk" in space. Thus when a seg-
ment of length x is considered, one expects a typical po-
tential barrier whose size is of the order of &x. The log-
arithm of the time required to traverse an opposing field

of an extent of &x is typically proportional to &x; thus
one might expect (x ) ~ln t. As mentioned before, this
argument is borne out by rigorous derivations. Another
quantity of interest in any model for random walk is the
mean first-passage time. It has been shown by the
present authors that in a finite segment of length L, the
typical mean first passage time r satisfies Inr ~ &L. The
average of ~ over the ensemble of realizations of the ran-
dom hopping rates (r ) satisfies ln(r ) ~ L, which shows
that some rare realizations have very long mean first-

passage times, affecting the average.
In the present paper, the latter result is generalized in

two ways. First, the distribution of first-passage times in
a long segment is found for typical (i.e., almost all) reali-
zations. The distribution of mean first-passage times
among the various members of the ensemble of realiza-
tions is also computed. The investigation of these proper-
ties involves the study of a new quantity characterizing
random walks, which we coin the extent: it is the maxi-
mal positive distance travelled by a random walker in a
given time. We relate this quantity to the properties of
the effective potential encountered by the random walker
in the Sinai model.

The present article is organized as follows. Section II
presents the formulation of the model as well as the main
results obtained in the paper. Sections III and IV can be
skipped by readers uninterested in the technical details.
Section III is devoted to an analysis of the properties of
the mean first-passage time. Its probability distribution
in the ensemble of realizations and its average and typical
values are computed. In Sec. IV, the probability distribu-
tion of first-passage times in a typical realization is corn-
puted. This distribution is shown to be simply related to
the value of the mean first-passage time. The properties
of the characteristic polynomial of the master equation
describing the Sinai walk are elucidated, the existence of
a gap in its spectrum is established and the size of the gap
is computed. Section V offers a brief summary. Techni-
cal details involving lengthy calculations are presented in
the appendices.

II. FORMULATION OF THE PROBLEM
AND STATEMENT OF THE MAIN RESULTS

Consider a one-dimensional lattice of length L:
0~ j~L —1 (j being integers). At each site j there is a
probability p to hop to site j+1 per (discrete) time unit
and a probability q =1—p- to hop to site j —1. The set

Ip I is one of independent random variables satisfying
0&p &1. A probability distribution for the values of
Ip I is defined so that log (p /q ) has zero mean and a
finite variance o. . The system is assumed to have
rejecting and absorbing boundaries at sites 0 and L, re-
spectively. For simplicity, we choose po = 1 (else one may

introduce a waiting time probability at 0). At site L:
qI =0. Consider a given realization of the random envi-

ronment (i.e., a specific set Ip I ). Assume a random
walker starts at time 0 from the origin (site 0). Define

P, (n) to be the probability to find the random walker

after n time units at site i. Clearly, the P's satisfy the fol-

lowing master equation:

P, (n) =p;,P, , (n —1)+q, +,P, +,(n —1) (2.1)

with P
~

=0 for convenience. The generating function
D (z) (z can be complex) corresponding to any probability
distribution function (PDF), D(n) is defined as

D(z)= g D(n)z" .
n=0

(2.2)

+q, +,zP, +,(z)+5; o, O~i ~L —1 . (2.3)

The probability distribution function for the first-passage
time Gz(n) is the probability that a walker starting at 0
arrives at L, for the first time, after n steps. This quantity
is related to P,. in an obvious manner:

L —
1 I. —

1

Cl (n+1)= g P, (n) —g P;(n+ I) . (2.4)
i=O I=0

It follows from Eqs. (2.2) and (2.4) that Gl (z) is given by

L —1

G&(z)=1+(z —1) g P, ~, ~
.

i=0
(2.5)

In Appendix A we present a summary of the relevant
properties of generating functions and calculate some
PDF's which are useful in the sequel. There, it is shown
that Gi (z) is analytic inside a disc of radius 1+e where e
is the distance of the nearest singularity of GI (z) to the
unit disk. The only singularities of Gr (z) are L simple
poles located on the real axis (see Appendix A). The
poles are the zeros of an Lth-order polynomial (the
characteristic values of the master equation) whose
coefficients are functions of the set IP„ I of hopping prob-
abilities. Higher-order poles can exist in principle but the
realizations leading to such situations have vanishing
probability (in the nonrandom case, i.e., ally, =const, the
poles are distinct). In addition, it can be shown that the
residues corresponding to these poles are real (see Appen-
dix A). For definiteness, we consider the case of even L
(when L is odd, the formulas below are modified as shown
in Appendix A). The main results remain unchanged.
One has

Gt(z)= g +K
zi

(2.6)

with ~z, ~) 1, the Iz, I being real, ( A, I are the corre-
sponding residues, and K is a constant. In the latter sum,
to every pole zi there corresponds a pole —zi accounting

Multiplying both sides of Eq. (2.1) by z" and summing
over n from zero to infinity, the following master equa-
tion for the generating functions of the P's is obtained:

P, (z)= p, izP, i(z)
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for the fact that 6L(n) vanishes for odd n (since L is as-

sumed to be even). Transforming back to "time" space
(i.e., inverting Eq. (2.2) with D replaced by Gt (see Ap-
pendix A) one obtains, for even n,

L/2

CL (n)= —2 g
, =I (z;)

(2.7)

where the sum extends over the positive z, 's. It is as-

sumed that the z s are ordered so that ~z, ~

~ ~zz ~

~
It is shown (Sec. IV) below that for long segments
(L ))1) and for "times" satisfying n & r exp( pv'L—), p
being O(1), the sum in Eq. (2.7) is dominated by its first
term. Thus, for large times [much smaller though than
the mean first-passage time (MFT)], Cl (n) decays at a
single (exponential) rate r, —= I/in(~z, ~). The value of r,
is computed (Sec. IV) and found to equal r, the mean
first-passage time corresponding to the given realization
up to a correction which is exponentially small is v'L:

[r1 —exp( —y&L )] where y =O(1). Consequently,
for a given typical realization, the distribution of first-

passage times is well approximated by (2/r)exp( n/—r)
[since L is assumed even CL(n) =0 for odd n, explaining
the factor of 2]. Figure 1 presents results of a simulation
demonstrating this result. The physical source of this re-
sult is the fact, proven below (Sec. IV and Appendix C)
that, in a random environment there is typically only one
leading "trap. " In other words, a random potential in a
system of length L has one effective well of leading depth
(which may contain smaller wells inside), the next deepest
wells being insignificant for transport processes.

The probability distribution of the MFT itself, among
the members of the ensemble of realizations is also com-
puted (Sec. III). It is found to be related to a property of
one-dimensional walks, which we coin the extent (see Ap-
pendix B); the latter entity is defined as the maximal (net)
distance travelled by a random walker in a given direc-
tion. We find that [cf. Eq. (3.10)] asymptotically in L (the
number of sites), the probability for the logarithm of the
mean first-passage time v to be smaller or equal to a is
(i.e., L ~ ~ and keeping the ratio a/v'L constant)

times are obtained from the nth derivative of G~(z) [cf.
Eqs. (2.5)] at z= l. Obviously,

G (1)= y G (n)=1,
n=0

(3.1)

since the walker arrives at site L with probability unity.
We also define the following moments:

d 6
GIk)( 1 ) dz' z=1

It can be checked that the solution of Eq. (2.3) for z= 1 is

L —
1 ks=—X rr'

k =i I =i+1
(3.2)

with the convention that g. , +, rj =1 when k (j + 1.
Using Eqs. (3.2) we find that the MFT (Refs. 11 and 27)

L —
1 L —1

1
L —1 k

Xs, = X —X II
i =0 i =0 ~& k =i j=i+1

(3.3)

Equation (3.3) contains a sum of L(L+1)/2 products.
Assume p, & c & 0, c being a constant, for all 0 &i & I. —1.
It follows from Eq. (3.3) that

kmax, g r &r
J =I +1

In particular GL"(1):r i—s the mean first-passage time,
and Gl '(L) =E(n )

—r is the mean-square fluctuation of
the first-passage times. The symbol E denotes the expec-
tation value (for a given realization of the set [p;I).
Averages over an ensemble of realizations are denoted by
( ). It follows from Eq. (2.5) that GI"'(1)= req—uals

L —
1r=ps, ,

1=0

where S, =P, (1). —We define

prob(inr &a L)=— e
—(«~2m+&~ vr ~sa 1

4 "
( —

) 2 2 2

0 2m+1
1 L(L+1)

max0&,
c 2

k

~k ~L —1 ~j
J —i+1

(3.4)

(2.8)

When a))&L the latter can be summed and the result
transformed to yield the probability density for ~:

4 11n~ 1
Prob(r) = exp&~Lo'

Notice the slow decay (essentially proportional to I /r) of
this probability density and the nonstandard exponential
factor which ensures that Prob(r) is normalizable.

The lower bound for ~ is obtained by keeping the largest
product in the sum, in Eq. (3.3), whereas the upper bound
is obtained by replacing each of the products in Eq. (3.3)
by the largest one. Recall that, by assumption, the ran-
dom variable g =logr, has zero mean and a variance of
o . We define Xo =0 and X = g~

& (, for I ~j ~L. The
variables X are coordinates of the path of an unbiased
random walk, whose steps are g, and (g, ) =o . Notice
that here the space coordinates O~i ~I. play a role
equivalent to that of time in a conventional random walk.
Taking the logarithm of inequality (3.4) yields

III. THE DISTRIBUTION OF MEAN
FIRST-PASSAGE TIMES

In this section we study the properties of the mean
first-passage time, denoted by ~, for the problem at hand.
This quantity as well as higher moments of first-passage

k

maxo &p &I ~ g ( (in'
J =&+1

k

(maxo«, 1,. &L & g ( +ln[L(L+1)/2c] .
J=f +1

(3.5)
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S =[XO j LI

and the quantity p(S;L):

(3.6)

Thus, ln~ is bounded both from above and below by sums
related to an unbiased random walk. It is convenient to
define the set S (coordinates of a given path, consisting
of L steps)

time 1n(r ) is proportional to L whereas its typical value
(i.e., with probability 1) is proportional to v'L. This
means that rare values of ~ do influence ~ in a significant
way. To see how this comes about, we investigate the tail
of the distribution of MFT's. Let e=L~ o. /Se, then
Eq. (3.10) reads

(3.12)
I.

p(S;L)= max, &;&k(t (3.7)

which is the maximum (over all points) of the distance be-
tween any point on a given path and any previous point.
We shall call the quantity p the extent of the path. This
quantity is to be distinguished from the span (or range)
r(S;L) defined as I (s)=I,(s)+I~(s)+I3(s), (3.14)

where I(e)=P(a, L}, for later convenience. We define
the Laplace transform

I(s):—J e "I( e)d e. (3.1 3)
0

Using straightforward manipulations one finds

r(S;L)=max(x;x CS )
—min(x;xCS ) . (3.8)

where
The essential di6'erence between r and p is that the extent
is an oriented quantity whereas r is not [see Fig. (2)].
They coincide for half of the paths. For the other half,
the span corresponds to a "negative extent" (i.e., the ex-
tent for the corresponding backward going path starting
from L). Surprisingly, it turns out that r and p have
diferent statistical properties. Their distributions differ
(even asymptotically) and so do the corresponding mo-
ments. A detailed analysis of the properties of the extent
is given in Appendix B. We define

P(a;L)=Prob[p(S;L) ~a] . (3.9)

The limit distribution (L ~ ~,alv'L const) is found to
be

I,(s)=— (
—1)

0 2m +1+i&s

The sum in Iz(s) can be performed by noting that

1)m f —a(2m+)+(v s )d
2

m=0 0

(3.15a)

(3.15b)

(3.15c)

(3.16)

4 "
( —1) L(2m+1) tr oP a;L =— exp

7r,„o 2m +1 ga2

(3.1 1)

It is intriguing that Eq. (3.10) coincides with the Erdos-
Kac formula for the maximum displacement in a ran-
dom walk. It follows from Eq. (3.9) that
E(p ) =(vr/2)o L ' and E((p ) ) =2Gcr L, where G is
Catalan's constant (G =0.916966+). This is to be con-
trasted with the average of the span which equals
E(r )=i 87rcrL'

As seen from Eq. (3.10), the typical values of a are all
of order i/L: a=P/i/L, P typically being O(l). Using
Eqs. (3.5) and (3.7) it follows that asymptotically in L,
ln~=p(S;L), a quantity whose distribution is given by
Eq. (3.10}. Hence, typically,

Pv'I,

1 oc
—ta&s

I2(s)=- dc'
ms 0 cosho.

Hence

1
Ia&s

Iz(s)+I3(s) = — Re J da .
'IT's —oo coshcx

(3.17)

Using complex integration analysis (i.e., considering a
contour that includes the real axis and an upper-half cir-
cle) one finds the value of the integral in Eq. (3.17), from
which by adding I, (s) =1/s,

I(s)= y ( 1)m e acr(m +(/2)& ~ )d (3 18)
1 2

m=0 0

The limit of small e corresponds to large values of s. In
that limit, one can find the inverse Laplace transform of
Eq. (3.18) using the method of steepest descent. The re-
sult is

where i3 is an O(1) parameter whose expectation value is
i/vr/2 and the parameter 13 is realization dependent
Averaging r over all realizations (denoted by ( ) ) one ob-
tains

I (
4i/2e "

1 ~'(n + 1/2)

(3.19)

2x x —1

x —1 1 —x
x+1
x -1' Since

where x =(g/p ). The latter equation shows that the
logarithm of the realization averaged mean first-passage

La crI(e)=Prob in'(a; e=
8a
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[cf. Eq. (3.10)] one can transform Eq. (3.19) to obtain the
probability density for the value of r, P(r) T. he result is

IV. THE DISTRIBUTION OF FIRST-PASSAGE TIMES
FOR A TYPICAL REALIZATION

4 1 ln~ 1P(z) = exp&~L~'
(3.20)

The above result shows that the tail of the distribution
decays very slowly, which is the reason for the dial'erence

between the average and the typical value of ~. Notice
that the (nonstandard) exponential factor insures integra-
bility of the distribution function.

A. The characteristic polynomial

P =M(z)P+ ea (4. 1)

where P is an L vector whose ith component is P; (z) and
eo is the unit vector with components 6, o and

In this section we study the generating function of the
first-passage times Gz(z). The master equation [see Eq.
(2.3)] can be written as

zpo

zq]

zp1

zq2

Zq3

~ ~ o 0
~ ~ o 0

0 (4.2)

ZpL —2

The matrix T—:I—M is L XL and tridiagonal with the
following nonzero elements:

t, , =1, t;, ]=—
zp, ], E, , +]=—zq, +)

(row and column indices range from 0 to L —1).
Since from Eq. (4. 1) P = T 'e0, it follows that the poles

of P; (z) in the z plane are also zeros of the determinant of
T. By Eq. (2.5) these are also the poles of Gl (z). Next
we compute the determinant of T which is a polynomial
of degree L in z. For definiteness, we consider the case of
even L (see Appendix A for the case of odd L). In this
case, Gl (n) must vanish for odd n It is easy . to see that
as a result Gl (z) is an even function of z. Recall that the
poles of GI (z) are real and satisfy IzI ) 1 (cf. Appendix
A). Hence a pole at z (real and z~ &1) must be accom-
panied by a pole at —z . Let the variable p be defined by

D(i, k, p)=detIU"I . (4.5)

It follows that D(O, L —l,p) =detI WI. When p=O, it is
convenient to define D(i, k, 0)—=E(i, k). The poles of G(
(or the zeros of detI W ) are the solutions of
D (0,L —1,p ) =0. It is straightforward to see that the
D's satisfy the following recursion relation:

D(i, k, p) = 1+r, +
p&

D(i + l, k, p)

—r, +,D(i +2, k, p)

uz o
—1+ra+ & uz & ]

—1, ua cz+] ra
p(-~

where the row and column indices range from i to j. Ob-
viously, W= U '. The determinants D(i, k, p) are
defined as

—= —(1+p) .
1

z
'4')

Next, we perform elementary transformations on T. Di-
viding the ith column of T for each and every i by —zp,
(i =0, . . . , L —1) we obtain a new (tridiagonal) matrix,
denoted by 8'. Thus

D ( k, k, p ) = 1+r(,. +p jp k . (4.6)

Solving the recursion Eq. (4.6) backwards in i, for

p, =0, we find for D (i, k, O) [:E(i,k)]—
L —]

E(i, k) =1+r, +r, r, +]+ . - +r, . - .
r& (4.7)

det IXI =d«I W z g p,
j=0

(4.4)

N „=1+r +
pa

a, a+ i ra+] .

We define the set of tridiagonal matrices
I

U'~)
(0 i j L —1) whose elements are

Since we know that GL(z} is regular at z=0, the zeros of
det

I
T

I
are those of det

I
WI. Using the relation

1/p =1+r (recall that r =q /p ), the nonvanishing ele-
ments of Ware (0 a L —1):

(which is also easy to prove by direct induction). Thus
E (k, k) = 1+rl, and it is convenient to define

E(k + l, k) =1.
The determinant D(O, L —1,p) is a polynomial of de-

gree L in p:

D(o L —1 p)=f0+fit +f2p'+ +f1.p' (4.8)

where the f's are functions of the set (p, I. From Eq.
(4.8), f0 =D (O, L —1,0)=E (O, L —1). It follows then
that f0=1 since F. (O, k)=1 for all k (because p0=1, by
assumption, implying r„=O). The other f, 's are calculat-
ed below.
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First, the constant f, is equal to the sum of the minors
of elements w (0&a &L —1) in which p has been set
equal to zero. Thus

f, = E(1,L —1)+ E(0,0)E(2,L —1)
1 1

Po P1

+ E(0, 1)E(3,L —1)+1

P2

+ E(—O, i —1)E(i +1,L —1)
1

PI

+ + E(O, L —2) .
1

PL —
1

Using the fact that E (0, k) = 1,

1 E(1,L —1)+ E(2,L —1)
1

Using Eq. (4.7) in Eq. (4.9), we obtain the r.h. s of Eq.
(3.3). Hence f, =r.

The next term f2 is found by deleting rows and
columns i and j of the matrix 8 and summing the ap-
propriate minors over i and j:

L —1J —
1

f2= g g E(i+ 1 j —1)E(j+1,L —1) . (4.10)
j=1 i ——0 Pipj

Note that in the r.h.s. of the above, the factor E (O,i —1)
has been omitted since it is unity. Also, the convention
E(i,i —1)=1 takes care of the case i =j —1. The sum
over i in Eq. (4.10) is identical to the sum defining f, in
Eq. (4.9) where L is to be rePlaced by j. Defining ro ~

as
the MFT for walk from site 0 to site j (under the same
conditions as the walk considered so far), we find

(4.1 1)
Po P1

1 1+ + E(i +—1,L —1)+
Pi PL —

1

(4.9) The general structure of f„can now be written (and
proven by induction):

Using:

L —I J2

X X
P Pj =n —1

n

~ ~

Jz ~Jn
E(j i+1,j2 —l)E(j2+1,j3 —1) E(j„+1,L —1) .

J2
—

1

E(j,+1,j2 —1),O, J

the sum over j, can be performed to yield

r(0, j2)E(j2+I,js —1) . E(j„+1,L —1) . (4.12)

Also, note that

L —
1

J=1 PJ

It is convenient to define the rescaled variables x—:p~.
In terms of this variable, the equation D(O, L —I,p)=0
reads [see Eq. (4.8)] r„,=E(r+l, s —1)+ E(r+2, s —1)+ +1 1

Pr+1 Ps —
1

unity, one may consider the distribution of first-passage
times from site r to site s, in analogy with the one from 0
to L. That is, the walker starts at r and is not allowed to
return to r —1. Clearly, the MFT for such a walk is [cf.
Eq. (3.3)]

f2, f.1+x+ x + + x "+ =0
7-2 n

(4.13) (4.15)

In Sec. IV B an analysis of the values of the coefficients
f„as given by Eq. (4.12) is presented.

B. Analysis of the coefficients f„

(4.14)

In order to find the solutions of Eq. (4. 13), we investi-
gate the values of the coefficients f„given by Eq. (4.12).
It turns out that it is convenient to define the following
"small parameter" for large L:

~=e-~'
f 1

L —i

2 2 OJ JLc~
(4. 16)

In particular r I )E (j +1,L —1) since all terms in
(4.15) are positive. Clearly, since p )c (by assumption)
one has

1 . 1E(j +1,L —1) &—E(j +1,L —1) &—r(j L) . —1

PJ c C

The latter inequality combined with Eq. (4.11) yields

Consider a segment fr, s] belonging to [O,L]. When the
hopping probability at the leftmost site p„ is replaced by

Denote the index of the maximal term in the above sum
by M. It follows that
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2 L( ~ ro MrM, L
fz (L+1)' g(O, M)g(M, L)

4c g(O, L )

(4.22)
Henceforth, the extent of [r,s] will be denoted Ext(r, s).
According to the results of Sec. III [see Eq. (3.5)], Inr„,
(the logarithm of the MFT for the segment [r,s]) satisfies
the following inequality:

The r.h.s. of Eq. (4.22) is investigated in detail in Appen-
dix C. It is proven there that for a typical large system
(L ))I) there is an O(1) number y such that the above
ratio of g's is O(er). Thus

Inr„, &Ext(r, s)+in (s —r)(s —r +1)1

2c
(4. 18)

(4.23)
We define

Since r )Ext(O,L), it follows from the last inequality that
(4. 17}

g(r, s) =exp[Ext(r, s)], (4 19} The coefficient f, can be read off Eq. (4.12) for n =3:

that is [cf. Eq. (3.7)]
k

g(r, s)=max„&, «&, g r (4.20)

L —2 L —
1

f3= X X ro, ,
E(ii+1 j2

J 1
] J2 j + ] Pj ~pj 2

XE(jz+1,L —1)

Using Eq. (4.18) and definition (4.19), to bound ro ~ and
in Eq. (4.17) and replacing factors like L —M by

L + 1, one obtains the following bound:

or by rearranging terms and dividing by ~:

roy E(J1+1,L —1)K(j~,j2)
PJ

(4.24)

—g(O, M)g(M, L) .
4c

(4.21)
where K(j„jz) is defined as

E(j,+1,j2 —1)(1/p, )E(j2+1,L —1)
K(J1 J2} X E( ' +1 L —1)J2=J1+ ~ J)

(4.25}

and K(L —l, j2)—:0. Thus, f, /7 as given by Eq. (4.24)
is represented by I/r times the sum appearing in the
r.h.s. of Eq. (4.11) with every term weighted by K (j„j,).
It is shown next that K (j, ,jz ) & 1 implying f3/r
&f, /r'.

First, we note that since all the terms contained in

E(j, +1,jz —1) are also contained in E(j, +1,L —1) we
have

L —
1

K(j„j,)& — g E(j,+1,L —1) .
p

Replacing j]+1 by zero increases the r.h, s. of the above
inequality,

L —1

K(ji,j2) & —g E(j,+1,L —1) .

j2 =0 pJ

It follows that Eq. (4.9) and the fact that f, =r that the
r.h.s. of the last inequality is unity. Thus E(j, ,j2) &1
and f3/r &f3/r . This result can be easily generalized
to arbitrary n: the sum defining f„~, is to be rearranged
as a sum over terms belonging to f„weighted by the
same K, as defined in Eq. (4.25). Hence

1+x+6 x + ''' —0, (4.27}

where 0 & w2
& v3 are O(l) numbers.

When @=0, there is only one solution x = —1 to Eq.
(4.27). This means that for finite, yet very small e, there
is a solution of Eq. (4.27) of the form

x] = 1+0)E (4.28)

where ai is O(1). The other zeros x (2 &j&L) tend to
infinity as some positive power of e [Ref. (29)]:

x-=a eJ
(4.29)

where the a 's are O(1) numbers. Let us consider the neg-

ative poles z, of Gr (z) only (as mentioned before each z,
has a corresponding pole —z ). Since x =pr and
1/z= —(I+@) [cf. Eq. (4.3)], the pole corresponding to
x, [Eq. (4.28)] is given by

1

1 —(I/r)(1 a, e ')—

C. The zeros of the characteristic polynomial

It follows from Eqs. (4.23) and (4.26) that all
coefficients [f„/r"; n ~ 2) are bounded by positive powers
of e. Thus the characteristic polynomial Eq. (4.13) has
the form

n+1 n

n+1 n
(4.26) = —1 —(I/r)(l —a, e ') (4.30)
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(4.31)zJ
1+—a eJ

and those corresponding to x [Eq. (4.29)], are given by

1

R &exp(b ),
where

b =kL+(n+1)[e ~ —la, . le ' v'L ] .

(4.35)

Next, we prove that the z 's are separated by an exponen-
tially large gap from z, . Using definition (4.14) and Eq.
(4.11), it follows that r=e ~ H.ence, from Eq. (4.31)

It follows from Eq. (4.35) that the condition for R. to beJ
far smaller than unity is 6&& —1. Since 5 &0 and
w=e~, this condition is equivalent to

pv'L

zJ p —51+a e
(4.32)

kL
n » ge (4.36)

—5j
z ——1+aJ J (4.33)

Note that p cannot be smaller than 5~, otherwise the
denominator in Eq. (4.32) would be larger than I, thereby
yielding a pole inside the unit disc which is forbidden by
the analyticity of GL (z) in that domain. Thus p~5, . If
P) 5 then

for all j. Since k and la
l

are O(1), it follows from Eq.
(4.36) that the first term in Eq. (4.34) dominates for

—S v'L
n »~e

that is, for an exponentially small (in v'L ) fraction of the
mean first-passage time. This result is demonstrated in
Fig. 1(a).

(note that, a &0 by analyticity of GL(z) inside the unit
disc). In this case, the sought exponential gap in the re-
laxation time spectrum [lnlz I is obtained at once:—5
lnlz2l/lnz, l=-e '. The case p=5, is examined next.
Here one has

-I I 5

z. —
J

1

1+a

GL(n) = —2A,
1

Z
1

1—232'
Z2

+ ~ ~ ~

(4.34)

The condition z & —1 implies —1&a &0. Now, for z
to be close to —1, a must be close to zero. Hence
lz~+ 1

l
)& I/r, else a~ is a positive power of e, contrary to

assumption.
It remains to show that the residues A, [see Eq. (2.6)]

are well behaved, that is, they are not too large so as to
compensate for the "gap" in the poles. In Appendix A,
an explicit formula yielding the residues as functions of
the poles is derived. It is found, there, that
l A, /A i l

& e", where k is an O(l) number. For odd n,
GL(n)=0, whereas for even n

n+1 X

-I2 5

6—

4

2—

0—

2—

l, i i I. . . , I

50000 I00000 I50000 200000

.(b)

since L is assumed even, here (see Appendix A). Denote
by R the absolute value of the ratio of the jth term to
the first term in Eq. (4.34). Thus

-4—
0

l

IO
I I I I I I

20

FIG. l. {a) The logarithm of the first-passage time distribu-
tion as a function of the number of steps for L=30. The MFT
computed by means of formula (3.3) in the text equals
1.563 X 10 for the specific configuration [see (b)]. The inverse
of the slope equals the MFT within numerical errors. Note that
the exponential behavior begins at n =1000, well before the
MFT. {b) The realization for which the first-passage time distri-
bution is computed. The y axis represents the value of the ran-
dom potential X(n) =g,",1n(p, /q, ) and the x axis is the num-

ber of steps. The distribution of the hopping probabilities is
taken in this simulation to be binomial .Prob(p J 4 )

=Prob{p, = —')= z. Note that the span and the extent coincide
in this case and are situated between sites 11 and 25.

n+1

z

11+—
kL

J 1 —51+—la leJ

Hence

Using Eqs. (4.30), (4.33), and the upper bound for
l

A /A, l
one finds that
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V. SUMMARY

It has been shown that the MFT in the Sinai model is
typically dominated by one largest potential barrier. The
latter is identified with the exponential of a quantity
called the extent. The probability for having a first-
passage time t is (I lr)e ' ' for times t that are larger
than a small fraction of r H.ere r is the MFT of the (typ-
ical) realization considered. It is thus different for
different realizations. The spectrum of relaxation times
of the master equation corresponding to hopping in a
finite segment has an exponentially large gap, which is
the reason for the simple exponential decay of the distri-
bution of first-passage times. This demonstrates, as has
been shown directly, that, surprisingly, the next to the
leading "potential barrier" in a one-dimensional random
potential is, typically, exponentially small with respect to
the leading one. The distribution of mean first-passage
times in the ensemble of realizations of the environment
is shown to have a long (1/r) tail, cut off by an exponen-
tial term in (Inr), which explains the strong difference
between the average value of r (i.e., ln(r) ~L) and its
typical value (In~ ~ &L ).

function always lie outside the unit disc. The PDF corre-
sponding to a given generating function can be found us-
ing Cauchy's theorem. Thus

1 dz
D~a(n) = J +i DAii(z

2m r z" +' (A2)

2
z 1

~N
(A3)

where I is a contour enclosing the origin. It turns out
that most generating functions of interest have simple
poles only. In this case, by considering the (infinite)
domain outside the unit disc, the value of the integral,
Eq. (A2), is given as a sum over residues (the infinite cir-
cle z~ = ~ does not contribute in most cases of interest).
Moreover, generating functions for processes in finite sys-
tems possess a finite number of poles.

As an example, we solve the simple problem of finding
1'ott(n) for a one-dimensional lattice of length %+I
with a nearest-neighbor hopping probability equal to —,.
To z and Qo tt are denoted by tz and q~, respectively
The following relations can be easily verified (see Refs. 30
and 31):

APPENDIX A: THE METHOD OF GENERATING
FUNCTIONS

z
t =— 1—
N

' 1/2

(A4)

1. Outline of the method

In the present appendix we outline some relevant
features of the method of generating functions. A de-
tailed analysis can be found in Refs. 30 and 31. Consider
a discrete network of sites with hopping probabilities
defined among them per unit discrete time. The follow-
ing probability distribution functions are called elementa-
ry.

(i) T„ti(n): the probability to leave site 3 on the first

step and reach B, for the first time, in n steps, without
ever returning to A.

(ii) Q„ ( ti):nthe probability to leave A on the first step
and return to 3 for the first time without ever reaching
8, after n steps.

It turns out that many other PDF's of interest may be
expressed in terms of these elementary PDF's. The first-

passage probability distribution of going from A to B,
C„tt(n), is defined similarly to T~tt(n), except that re-
turns to 3 are allowed. P „(n ) is defined as the probabili-

ty to be found at A after n steps. Note that n=0 is in-
cluded in the definition. The generating function D(z)
associated with any PDF, D(n), is defined as

We define the quantity

It follows that

and

Z ~(V 1)/2 1x21AN (A5)

A summation over the residues yields the sought result
[cf. Ref. 31)]

It remains to invert tz(z) to find t~(n). First, tjv has
no branch point at A= 1 (a rotation in z plane around
z=1 implies A~ —A which leaves t~ invariant). The
poles of t~ (as a function of A) are the ¹hroots of unity
(but A = 1 is not a pole):

D(z)= g D(n)z"
n=0

(A 1)
t~(n)= g (

—1)~+'cos" tan
2% N N

(A6)

with z complex. The total probability of paths belonging
to the class described by a PDF D(n) is D(z= 1). Mo-
ments of n can be obtained from the nth derivative at
z = 1, e.g. , E ( n ) =D '(1).

Since the sum of probabilities of any process does not
exceed unity, Eq. (Al) is an absolutely convergent series
on the unit disc. Thus, the singularities of a generating

Approximating the cosine by an exponential, we obtain
for large X

7T2
-, („) ~, -(~/x)-n

A' (A7)

which is a valid approximation for n ~ X . Note that the
leading terms are p=1 and p =N —1. When N is even
(odd) ttv (n ) vanishes for n odd (even) as it should.
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2. The first-passage time distribution of the Sinai model:
analytic structure

In this section the analytic structure of GL [cf. Eq.
(2.5)] is analyzed for the one-dimensional random walk
(many of the properties are valid for more complicated
networks, as well}. Consider Eq. (2.5) in the text, where
Eq. (2.3) applies. The singularities of GL (z) are those of
[P;(z)]. The linear set of L equations (2.3) can be solved

by Cramer's rule, the poles of P, (z) being the zeros of the
L XL determinant of the matrix describing Eq. (2.3) [cf.
Eq. (4.3}]. Thus, GL (z) must have at most L poles outside
the unit disc and no branch point. P;(z) is a rational
function of z with numerator and denominator of degree
L —1 and L, respectively. Thus, when z tends to infinity

GL tends to a constant E. Therefore GI is of the form

L/'2 A
GL(n)= —2 g, , n even

i =1

Gt (n) =0, n odd .
(A9b)

6, L(z)= g, +K',
1 Z Z;

(A 10)

Consider now the case of odd L. Let G11 be defined as

the generating function corresponding to the first-passage
time distribution from point 1 to point L, in which case
the walker is allowed to visit site 0. Clearly, Eq. (2.5) is

also valid for 6, L (z) and on the r.h.s. of Eq. (2.3), 5; o is

replaced by 5, , The number of steps in this process is

even and G, L is a function of z . By the same reasoning
that led to Eq. (A8)

A,
GL(z)= g +K .

i=1 i
(A8)

with poles at z,
' and —z,'. Noting that GL (z) =zG, L we

have

2z, A,
GL(z)= g ~ ~+K .

i=1 Z Z
(A9a)

Hence [since Cz ( n ) is the coefficient z" in the expansion
of GL (z)]

Note that CL (n ) vanishes for even (odd) n when L is odd
(even). We consider the case of even L first. Since GL (z)
is a function of z, to each pole z;, associated with a resi-
due A;, there must be a corresponding pole ( —z; ), associ-
ated with a residue ( —A; ), as can be easily deduced from
Eq. (A8). There are precisely L/2 poles with z; )0; let
their indices be i = 1,2, . . . , L /2. It follows that

2Z, B,
GL (z)= g, ~

+K'z,
, —1Z Z

(A10a)

In Sec. IV it is shown that the master equation (2.5)
can be written as Eq. (4.1), where P is an L vector with
components P;(z) and eo is the unit vector with corn-
ponents 5; o and

where L'=(L —1)/2 (that is, L —1 finite poles plus one
pole at infinity). It is thus obvious that the analysis of the
case of odd L is simply related to that of even L. There-
fore, it is sufBcient to analyze in detail only the latter
case, which is what is done below.

a. Proof that the poles and residues are real

ZPO

—zq,

ZP1

Zq2

Zq3

ZqL

~ ~ ~ 0
~ ~ 0 0
0 0 0 0 (A 1 1)

0 0 ZJ L —2

d«ITI =0. (A12)

Dividing all columns of T by —z and defining k—= 1/z,
one obtains a matrix T whose nonvanishing elements are

t;;=0, tii —
1 Ji —1 ti i+1 qi+1 ~

i.e., a positive tridiagonal matrix (obviously detlTl =0
when detlTl =0). The matrix T belongs to a class of ma-
trices for which it known that the spectrum is real. The
reality of the eigenvalues was realized in similar cases.

Thus the matrix T:I—M is a (L X—L ) tridiagonal matrix
whose nonvanishing elements are

t;; =1, t, ; 1= —zJ; 1, t, ;+1=—zq;+1

(row and column indices range from 0 to L —1). The
poles of Gt (z) are the solutions of

Hence, all the poles of GL (z) are real. Consider now Eq.
(A8) for z E [ —1, 1]. Clearly, GL (z) is real, since

CL (n) )0 are real (and positive). Consequently, the resi-
dues (i.e. , [ 3, I ) must be real.

L/2

g x, u,
"=K 6„O, 0 & n & L /2 —1,

i=1
(A13)

where x, =—2A, /z, and u, —:1/(z, ) have been defined for

b Relation be.tween poles and residues of Gt

In this section we find expressions for the residues of
GL (z) in terms of its poles. Clearly, CL(n) =0 for n & L
Thus the l.h.s. of Eq. (A9b) vanishes for every n &L (it
vanishes trivially for odd n} yielding the following linear
system of L /2 equations for the L /2 residues A s:
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convenience. The matrix of this system is of the Vander-
monde type and can thus be solved explicitly using
Cramer's rule:

Using now the definition of p [Eq. (4.3)],

1—= —(1+@),
Z

(A14) we have

where V; is the minor of matrix element (l, i) and Vis the

Vandermonde determinant of the system:

)(+ I
I

j & k;j, kWi

(u —uk ), (A15)

V= II (u —uk) .
g (k

Using Eq. (A14) and the definition of x;, we find

z1 V,

z, V1

(A16)

(A17)

L L

Q(z)= g a„z"=aL II (z —z, ) . (A18)

We define the function h (1/z2),
T

Next, a closed-form representation for this ratio is ob-
tained in terins of the characteristic polynomial of the
master equation. The determinant of the matrix
T=I M i—s a p—olynomial, which we denote by Q (z), it is
of degree L in z and its zeros are the poles z;. Hence

d

d(1/z2) 2(l+p) dp

Finally, using Eqs. (A17), (A20), and (A21),

fi+2fzp, + +LfLp,

fi+2f2pi+ +LfLpi
(A22)

By our convention [cf. Eq. (2.7)] min, ln~z, ~
=—1/r. Thus

~z; ~
) 1+1/w, which, by the definition of p, , Eq. (4.3), im-

plies

1 1 1—2+ —~p ~ —— p= ——
t ' t ' t

Since the f, 's are sums of products [ofno more than L ra-
tios of hopping probabilities (see Sec. IVB)], it follows

koL
that an O(1) constant ko exists such that

~ f, ~
(e ' . This

fact, in conjunction with the bound for the p s shows
that the numerator in Eq. (A22) is bounded in absolute

k)L
value by e, k, being a constant (which is close to ko).
Next, the denominator can be rewritten, using the fact
that p, = —(1/v) and f, =r as

or

1
h

Z
2

Q(z)
L

OLZ Z

j=1

L
1 1

L/2
h —= II ———= II

Z ' —
f

Z Zj ' —
1 Z Z'2 2 2

(A19)
r

+3

It has been proven before (cf. Sec. IVB) that f, /rj are
small quantities, i.e., positive powers of e . Thus, the
denominator is bounded from below by, say, —,

' t=
—,
' e

Consequently,

V;= d 1

Z'
(A20)

Using Eq. (4.4)

L —1

Q(z)=det~T~=det~LV~ z II pj
j=o

and Eq. (4.8)

det~ IV~ =D(O, L —1,p) =1+f&p+ fop + +fLp

Thus

L —1

h
1

Z'
j=0

L

al IIz,
j=1

(fo+fip+fzp + ' 'fr.p

(A21)

by symmetry of the poles. It is easy to see that the
derivative of h (1/z ) with respect to 1/z, calculated at
1/z, equals V, [cf. Eq. (A15)] (recall that u;

—= 1/z, ):

~i k)L —P&L

A1
( (e

where k is an O(1) number (when L is large enough, one
may choose k =ki). This concludes the proof of Eq.
(4.36) in the text.

APPENDIX B: THE PROBABILITY DISTRIBUTION
OF THE EXTENT

1. Calculation of the PDF of the extent

The following language will be used for convenience.
A given set S" [cf. Eq. (3.6)) is called a path. First, con-
sider the rescaled variable g, /cr to be denoted g,' thus

(g;) =1 [see the paragraph preceding Eq. (3.4)]. The
variable g; is called the length of the ith step (in the path).
We first treat the simple case Prob(g; =1)
=Prob(g; = —1)=-,'.

It will be shown below that for large L, this assumption
leads to the same result as the general case would, due to
a universality property (the "invariance principle" ). In
this case, there are exactly 2" different paths. Let G "(a)
be the set of all paths for which p(S";n) (a [cf. Eq. (3.7)],
for a EZ. Obviously, G "(a)=tI} for a (—l. Also, G "(a)
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contains all 2" paths when e ~ n.
We define

Mk=min, &j&k, [X,}, 1(k(n . (81)

1 i(a;z)=N (a;z)+N +, (a;z)+N 2(a;z)+1,
Z

(812)

8'(a;n +1)=80(a;n)+2[N(a;n) —8'0(a;n)],

No(a;n +1)=N, (a;n),

Ei(a;n+1)=A', ,(a;n)+8'+, (a;n), 1(j (a —2,

(82)

(83)

(84)

Define Gk(a) to be the subset of 6"(a}which satisfies
X„=M„+a—k(k EZ+). Let Nk( a;n), N( a;n) be the
number of paths belonging to Gk(a) and 6"(a},respec-
tively. Obviously, N +&+ (a;n}=0 for all m ~0 since
otherwise X„=M„—(2+ m), which is impossible (i.e., the
value of X„cannot be lower than that of previous X„
by more than 1, by construction). The quantities N(a;n)
and Ai, (a';n) satisfy

1—N (a;z}=N,(a'z),
Z

1—N +, (a;z)=N (a;z)+N +, (a;z)+1 .
Z

(813)

(814)

z 1
N 2(a;z)+ ——N(a —1;z)=—

1 —z z 1 —z
(815)

The system of Eqs. (811)can be solved using the ansatz

The number of parts of n steps increases at most as 2".
Hence, as can be seen from Eq. (89) all the above GF's
are analytic in the disc z~ ( —,

'. Equations (812)—(814)
can be solved to yield

N, a;n+1)=N (a;n)+8' +, (a;n)+N 2(a;n),

(85)

N (a;z)=aiV++bU

where
' 1/2

(816)

N (a;n+1)=N, (a;n),
8' +, (a;n +1)=8' (a;n)+A' +, (a;n)

(86)

(87)

N (a;1)=5J i+5) (88)

is most conveniently solved by means of generating func-
tions. The generating function (GF) D(z) associated with
a quantity D(n) is defined here as (note that the sum
starts at k =1):

for n ~ 3. When a (3, the above equations simplify in an
obvious manner.

Equations (83)—(85) are based on the following obser-
vation. Each path having (n+1) steps is constructed
from a path containing n steps and the last step. If
X„+,—M„+,=a —j (j(a —2), then the corresponding
path can be constructed from any path in 6"(a) for
which either X„—M„=a —j—1 and („+,= 1 or
X„—M„=a —j +i and g„+ i

= —1. When j=a —1, we
consider all paths of n +1 steps for which X„—M„=2
and g„+,= —1 or a path for which X„—M„=O and

g„+,=1 or paths for which X„—M„= —1 (i.e., the last
step in the path produced a new minimum) and g„+,=1.
Equations (82), (86), and (87) are based on similar
reasoning. The system of equations (82)—(87) with the
obvious initial conditions

A+ +1

2z

1 —1
4z

(817)

and the constants a and b are to be determined by Eqs.
(810) and (815). We find

1 +
No(a;z) =-

z A, +'(1 —k )
—k++'(I —k )

(818)

and from Eq. (82) [noting that N(a;1)=2 for a~O] one
obtains

N(a;z)= 2Z

1 —2z

We define

Z
No(a;z) .

1 —2z
(819)

P(a;n)=Prob[p(S";n)(a] . (820)

Since P(a;n)=2 "N(a;n), it is easily seen that
N (a;z /2) in Eq. (819) is the GF corresponding to
P(a;n). It follows from Eq. (818) that N(a;zl2) is ana-
lytic in the whole complex plane except possibly at
z =+1 which are branch points of A, +(z/2). However, it
is easy to check that No(a;z/2) has no such branch
points (since A, +~A, + upon a rotation around z=2, leav-
ing No(a;z/2) invariant. } Also No(z)~ oo when z~ oo.
Defining the variable 0 by A, +(z/2) =e+-', Eq. (818)
yields for the poles 0 (or z ), of No(z;2):

D(z)= g z"D(k) .
k=1

(89)

The following system of equations corresponding to Eqs.
(82)—(87) and initial condition Eq. (88), is obtained:

(2m +1)7r
2(x+ 3

1
or z =, m =01, . . . , ++1.

cosO

—No(a;z}=N, (a;z),1

Z

1 N(a;z) =N, (a;z—)+N +,(a;z),
Z

1&j&a—2,

(810)

(811}

(821}

Using Eq. (819), the result is obtained from Cauchy's
theorem applied to the exterior of a circle of radius 1+e
around the origin and we find
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P(a, n) 5 +, it is obvious that

+] g
g ( —1) cos

2a+ 3

0
sin

2
cos"0

(822)

and

E (R ) = —,'S "++
—,'S

E(p) = ~S+++-'S-+
2 2

where

(2m+1)~
2@+3

The limiting distribution for large n can be easily ob-

tained. Asymptotically in n, terms for which
in(cos8 ) )& 1/n vanish exponentially. Thus, in Eq.
(822), this leaves terms for which 1 —cos'8 &O(1/n),
i.e., (a) 0 O(1/n) or (b) 6I nO.(—1/n) and this is

possible only if a & n —0 (n ' ). Now, the factor
[sin(9 /2)] ' in Eq. (822) is O(a) and O(1) for the

terms belonging to above categories (a) or (b), respective-

ly, and only terms belonging to (a) are to be kept asymp-

totically. In the same limit, the sum may be extended to
oo (this introduces an exponentially small error) yielding

the Erdos-Kac formula for the maximum displacement
in a random walk (in units o = 1):

P(&;&)=—g exp
4 "

( —1) n(2 m+I) ~
~ m=0 2m +1 8a~

(823)

2. Extent versus span

The asymptotic average value of the extent equals
i/vr/2 n ' whereas that of the range equals i/8/n n '

The range and the extent coincide for half of the paths
(those for which the range is determined by a positive
value of X„—X, n )m). For the other half, the range is
given by the "negative" extent. When Prob(/J )

=Prob( —
g, ), it follows from symmetry considerations

that in half the paths, the range corresponds to the ("pos-
itive") extent. Defining in an obvious way a negative ex-
tent, it follows that in the other half of paths, the range
corresponds to the negative extent. Defining S +,S+
to be the average extent and the average negative extent
for the first half of paths and defining similarly S and

The general validity of the limiting distribution of
P (a; n) [in Eq. (823)] follows from Donsker's theoremis
together with the corollary 1 of theorem (5.1) in Ref. 36.
In short, if X„~Xin distribution, then h (X„)~h (X) in

distribution, when h is a a continuous function. Since,
obviously, the extent of a walk is a continuous functional
on the set of paths, the invariance principle applies
here.

The following results can be derived from Eq. (823):

n +~ 1i2E(p")= n ' +O(1) for n )) 1 .
2

The second moment is similarly obtained, yielding
E [(p") ]=2Gn, where G is Catalan's constant
(G =0.916966+). A similar result to Eq. (823) can be
obtained using the result of Golosov. ' The same formu-
las apply for the original g, (i.e., without rescaling) except
that n (the number of steps) is to be replaced by n o

Thus, the ratio of the average negative extent to that of
the range is asymptotically a universal constant. Furth-
ermore, using Donsker's theorem it is obvious that the
requirement of symmetry on Prob((; ) can be lifted.

APPENDIX C: THE GAP PROPERTY

The present appendix is devoted to proving the fact
used in Sec. IV 8, that f2/r =O(e )nowhere y is an O(1)
number, i.e., Eq. (4.3). This fact is called, below, the gap
property. Recall Eq. (4.22), where the index M is chosen
so as to maximize the product on the r.h.s. of the above
inequality. Also recall Eq. (4.20) which defines g(r, s) as

the maximum among the products g; k r; where

r & k m &s and r, =q, /p;. It is convenient to define

~(k, m)= g r, .
i=k

(Cl)

In what follows, the interval [ko, mo] for which the
above product attains its maximal value will be called the
generator of the extent of [r,s]. Let [A, B]be the genera-
tor of the extent of [O, L]. That is, the initial and final
positions of the extent of [O,L] are A and B, respectively
(cf. Fig. 2). In a similar manner, let [a„ai] and [b„b~]
be the generators of the extent of [O,M] and the extent of
[M,L], respectively. Obviously ai & M & b, . We observe
that on [az, b~], the product n(az, j) for all j &M is
smaller than unity. Otherwise, one could choose an index
J, say, such that upon changing az to J the product

(a „J)would 'be larger than a(a ~, a2), which is impossi-
ble since [a„a2) generates the extent of [O,M]. Also,
n(J, b~ ) (1 for M &J & b~ for similar reasons.

Consider the various possibilities for the location of M
with respect to A and B:

1. M& A: In this case [b„bz]=[A,B] since [A,B]
generates the extent of [O,L) and certainly also the one of
[M,L]. Since g(O, M)&g(O, A) in this case, one must
have M = A when g(O, M) =g(0, A). When g(O, M)
(g(0, A) one may choose M = A. Thus, case 1 reduces
to M =A.

2. M ~ 8: This case is analogous to case 1 and

[a, , az]—:[ A, B]. In this case M =B.
3. A (M &B. Here, we have to consider several pos-

sibilities.
The possible locations of az (which by definition must

satisfy a2 &M) are now considered. If a2 ( A, it means
that the generator of the extent of [O,M] is to the left of
the segment [A, M]. Thus g(O, M)=g(0, A). Next, since

Since both E(R) and E(p) are known and since
S++=S and S+ =5+ by symmetry, we find that

S+ =——1=0.S7+ .S++
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250

0
y(n)

-250

-500—

Recall that by definition [cf. Eq. (4.19)]

1ng(r, s) =Ext(r, s)

and that

Ext(O, L ) =r+ 0 (lnL) .

(C4)

(C5)

-750—

-IOOO —, I. . . . I, . . . I

IO 2xIO 340 4xIO

FIG. 2. The position of a random walker in a symmetric

(p =q =
—,
'

) random walk as a function of the number of steps.
The extent and the span, for a walk of length 400000 are indi-
cated by ( A, B) and (B,C), respectively. The thick line has been
drawn to guide the eye.

the extent of [O,L] is generated by [A,B], it follows that
g(A, L)=g(O, L). Now g(O, L) is larger than g(M, L), or
else A would have satisfied M ~ A, contrary to assump-
tion 3. Consequently, g( A, L )g(0, A ) is larger than
g(O, M)PM, L), contrary to our assumption as to the
choice of the point M. Hence a2 ~ A. Next, consider a &.

If a, & A, one may conclude that m.(a, , A) &1, or else
n(a„a2} could be increased by redefining a, = A, con-
trary to the definition of g(O, M), However, m(a„A) &1
one has rr(ai, B))m(A, B), which is impossible since
[A,B] generates the extent of [O,L]. Thus, the assump-
tion a

&
( A leads to a contradiction. If a, ) A, it follows

that m(A, a, ) &1, or else m(A, az)) m.(a„a2) contrary to
the definition of [a „a2]. However, for rr( A, ai ) & 1 we
obtain rr(a, ~I&n(A, B) contrary to the definition of
[ A, B] Hence a, .& A also leads to a contradiction.

We conclude that only a~ = A is possible. Similar
reasoning yields b2=8. All in all we have to consider
only three cases: case (i): M=A and g(M, L)=g(O, L);
case (ii): M=B and g(O, M)=g(O, L}; and case (iii):
A &M (8; a, =A and b2=8. We shall now consider
each of these cases separately. Since cases (i) and (ii) are
analogous, it is sufficient to consider cases (i) and (iii)
only.

Case (i) In this .case g(M, L)=g(O, L). It is convenient
to define

Tsr =
[ [XJ; 1 &j & M j;Ext(O, M) & r) . (C7)

Under the conditions of case (i), g(M, L)=r We defi. ne
Ps(Q )a) and PT(Q & a) to be the probability distribu-
tions of a functional Q on the spaces of paths S(O,M) and
T(O, M), respectively.

The probability that lny exceeds a number —
~
u

~
is now

considered (obviously, y &1). Clearly, for a given value
of r and when case (i) is considered

Prob(ln ) —
~
u

~
) =Probs [Ext(0,M) & lnr —

~
u

~ ] . (C8)

When one enlarges the set S(O,M) to T(O, M) one has

Probs [Ext(0,M) ) lnr —
~
u

~ ]

& Probr[Ext(O, M) ) lnr —
~u~ ] . (C9}

Also,

Prob r [Ext(0,M) & lnr —u
~ ]

=1—Probr[Ext(O, M) &lnr —
~u~] . (C10)

As in the text, it is convenient to define g; =lnr, as the
size of an elementary step. We also define X;=g'
as the coordinate of a random walker after i steps (cf. Sec.
III). The path corresponding to case (i) has the following
structure (see Fig. 3): X, is the minimal value of

1

IX~;0&j&a2I. Also XM &X, (or else the extent would
I

have been generated by [a„B]). Also note that

, g, & 0 for a2 & k & M. Obviously, the extent ofJ &2 J

[O,M] equals In[((O, M)] and it does not exceed
1n[g(O, L)] by definition. The paths: IX.O; &j &M

I

which are consistent with the presently discussed case (i)
are thus defined by

Ssr = [ [X;I j M I;Ext(O, M) &r;XI=mini MX ] .

(C6}

A larger set of paths containing SM as a subset is defined
by

g(O, M)
g(O, L)

Equation (4.27) then reads

(C2)

y(n)

T

f2 (L +1)
ln & lny + ln

4c
(C3)

L

When M =O(1), one has g(O, M)=O(gl and y =O(e ),
trivially (recall e=e and r=e ~ ). When M &)1
and M «L, i.e., M=0(L' "), 0&r) &1 then
y =O(exp(p2&L —piv M)) [cf. Eq. (3.11)] where p, and
pz are O(1) numbers and the gap property is trivially
satisfied again. It remains to consider the case
M =O(L). FIG. 3. The configuration for case (i) in Appendix C.
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It is easy to see that (for x & Inr)

(C 1 1)

(M, l r) —A (M, In' —~u~)

A (M, inr)

for given M and r. Choosing now
~
u~ =L"with 0 (i)(—,

'

we have

(C12)

p b(1 Ln) ——A (M, lnr) —A (M, lnr L")—
A (M, inc)

(C13)

Using Eq. (3.10), the numerator, denoted by Num, ap-
pearing on the r.h.s. of Eq. (C13) equals

4 ao
( 1)mNum=- (e

—K(m) e
—K(m)B(m))

o 2m+1

where

(C14)

P b [E t(O, M) (x] Prob[Ext(O, M) x]
Prob[Ext(O, M) & 1n~]

where the Prob on the r.h.s. of the above denotes the
probability distribution in the space of all possible paths
from 0 to M (i.e., without restriction on their extent).
This probability distribution is the one given by Eq. (3.10)
with L replaced by M and will be denoted, hereafter, by"A" for clarity of notation. Thus

2
Prob & exp —L" (, 0& g( —'

L I/2 —g ' (C21)

and since the factor (L+1) /4c is much smaller than
exp(L ") it may be ignored. The latter inequality

fo
expresses the fact that with probability approaching oc ing one
or large L, f212 is smaller than exp( L"—) for anyr any g

smaller than —,'. Hence

ln
2 =O( —i/L ) (C22}

for typical systems, as claimed.
Case (iii) In .this case, A &M &B; a(=A and a2=B.

It is convenient to define the following quantities (see Fig.
4).

h, =Qg, , hi=
j=b

I

B bl

h= gg, , b, =—
g= A J =02

(C23)

where g
—= Inr Obviously, 6 )0 else g(O, M)g(O, L)

could have been increased by having az =b ~. We wish to
estimate the logarithm of the r.h.s. of Eq. (4.27):

and

)
Ma (2m+1) ~

81n2g
(C15} In((O, M)+1ng(M, L}—2 Inr=h i +hz —2h .

Clearly (see Fig. 4)

h =In[((O, L}]=h,+hi —)5, . (C24)
L '9

B(m)= 1—
ln~

For typical values, lnr=O(v'L ) and

(C16) As mentioned, 1nr=h +O((lnL)). Since the logarithmic
correction is clearly negligible, it will be ignored below.
It is convenient to define the (positive) variable x:

B(m)=1+ +O(L " ') .
2(L"

ln~

Using (C17), the mth term in (C14) thus equals

(C17)
x =2h —(h, +hi) =h —5 . (C25)

4 ( 1) —sc(e 1 —exp
—2K(m)L"

lnv
(C18)

Since M is assumed to be O(L) and lnr=O(i/L ), one
finds that for suIIiciently small m, K(m) in Eq. (C15) is
O(1) and the term appearing in the exponent in the square
brackets of Eq. (C18) satisfies

L"
2K (m) =0 (L" '

)
1n~

(C19)

and this quantity vanishes for large L. For large m, each
term in (C14) vanishes exponentially. Now, A (M, lnr),
the denominator in Eq. (C12), is the probability that in a
path of length M the extent is smaller than ln~. This
probability is O(1) for M =O(L). Finally, the following
bound is obtained.

Prob(lny ) L")&—R
L 1/2 —g

for any choice of M and typical )(3; R in Eq. (C20) is an
O(1) number. Since y )f&/r we have finally obtained

FIG. 4. The variables h, h &, h2, and 6 as defined in Appendix
C. Note that the quantity 5 corresponding to the extent ( A, B)
in Fig. 2 is very small compared to the extent.
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Thus, Eq. (4.27) becomes (omitting an irrelevant prefac-
tor):

2 (e

It is shown below that x =0 (&L ) with probability tend-
ing to one in the limit of large L. In what follows, we
consider the rescaled variable g ~cr 'g and assume
that the (rescaled) gj's are binomally distributed. The
case of a general distribution is obtained by invoking the
invariance principle ' (cf. Appendix B).

The problem can be posed as follows. Given that (a)
the extent equals h and (b) the size of the generator of the
extent does not exceed L, it is required to prove that the
largest negatiue extent b, in the segment [A,B] is much
smaller than h. Since h =0 ( &L ) and x—:h —6, it is
equivalent to prove that x =0(&L ). This problem can
be set as a one-dimensional symmetrical random-walk
problem, as follows.

A walk is defined as a collection of paths satisfying
some restrictions. First, we define an x-type walk. A
random symmetric walker starts at site 0 and reaches site
h, for the first time. In the process he may return to 0 or
h, as many times as he wishes but is restricted to the seg-
ment [0,h i ]. After his last visit to h „he leaves h, back
to point h, —b, . The walker then proceeds towards h

without ever reaching h i
—6 —1 (repeated visits to

h, —b, are allowed). Once h has been reached, the walk is

stopped. Furthermore, an x-type walk is a walk for
which the values of x and h are fixed [hence by Eq. (C25)
of b, as well], yet h, ~0 and h2 ~0 can take any value).
Such a walk is schematically depicted in Fig. 4.

Next, an R-type walk is defined. Consider an n-step
path starting at site 0 and ending at site g (on a lattice)
which is restricted to the segment [O,g]. In the process,
the walker is not allowed to return to 0. Once g has been
reached for the first time the walker may return to g as
many times as he wishes. After n steps, the walker must
be found at g where the walk is stopped. Let R(g, n) and
R (g, z) be its PDF and corresponding GF, respectively.
Obviously, R ( ng) and R (g, z) depend only on the length,
g, of the segment. The generating function correspond-
ing to this walk is easily constructed in terms of the ele-
mentary GF's defined in Appendix A. A walk containing
r "departures" from g contributes a term q~tz to R (g, z).
We recall that t is the GF for leading 0 for good and
reach g for the first time (cf. Appendix A}; qz is the GF
for leaving g and returning to it for the first time without
reaching 0 in the process. All allowed paths are inside
[O,g]. Thus, summing over all possible departures from

which by using Eq. (C28}becomes:
I' 3

2 X

F(h, x,z)= —
tI, ,+, g t~+&, +, t& ~+, (C30)

g=0

The corresponding PDF P(h, x, n) is obtained by invert-
ing F(x,h, z). It yields the probability of performing an
x-type walk in n steps for a given h. In the definition of
P(x, h, n), there is no restriction on the number of steps.
Consider, now, all x-type paths, restricted to n L steps.
Within this set of paths, define Q(h, x;L) to be the PDF
of x for given h. To find Q(h, x;L) the quantity F(h, x, n)
has to be normalized to the number of paths in the re-
stricted set

L

g F(h, x, n )

Q(h, xL) =

g R(h, n)
n=0

(C31)

Since the total number of steps is not restricted to [ A, B]
but is assumed to be less than L, Q(h, x;L) is an upper
bound for the PDF of paths corresponding to case (iii).

By the general properties of generating functions [cf.
Eq. (3.1)] we have the probability of (perforining an x-
type walk)

Prob(x)= g P(h, x, n)=F(h, x, l) .
n=0

Since [Eq. (A5)]

1

2N
'

substituting in Eq. (C30) one obtains

(C32)

(C33)

X
1F(h, x, 1)=

h —x+1 o(g+h —x+1)(h —g+1)
(C34)

The sum may be replaced by an integral in the limit of
large h (which is the case here)

successive R-type walks: the first is in a segment of
length h i, the second is in a segment of length b, and the
third is in a segment of length h2, where h ],b, h 2 are re-
lated to h and x by Eq. (C24) and (C25). Summing over
all such paths we have

X

F(h, x,z)= g R(g+h —x,z)R(h x, z—)R(h —g, z)
g=0

(C29)

oo

R(g, z)= g q"t =
tz . (C27)

F(h, x, l}= 1
ln . (C35)

h+1
(h —x+1)(h —x/2+1) h —x+1

Clearly

Clearly,
g P(h, x, n)~ g F(h, x, n)=F(h, x, l) . (C36)

Z
t +, (z) =—R (g, z) . (C28) n=0 n=0

Denote by F(h, x,z) the generating function correspond-
ing to an x-type walk. Since a walk is composed of three

Thus, F(h, x, 1) is an upper bound for the numerator in
Eq. (C31). Next, the denominator of Eq. (C31) is estimat-
ed. Using Eqs. (3.1), (C28), and (C33):



42 FIRST-PASSAGE-TIME DISTRIBUTION IN A RANDOM . ~ . 2063

g R(h, n)= g R(h, n) —g R(h, n)
n=0

where

oc 2 2

W(u)=tr g (
—1) +'p exp — u (C40)

=R (h, 1)—g R(h, n)
n=L

R(h, n) .h+1 (C37)

The sum on the r.h. s. of Eq. (C37) may be replaced by an
integral

In order to perform the last sum in Eq. (C37) we use Eq.
(C28) which yields

R(h, n)= J W dn .
h L h

R(h, n)=2th+, (n —1) .

By using Eq. (A6) we have

(C38)
In the problem at hand, there is an O(1) number y for
which h =y v'L, thus L =h /y . Substituting these
values in the above integral, one obtains

hi2
p + 1ta 2 harp

2(h +1), h +1
R (h, n) = —f,W(u)d u,

h &/y'
(C41)

X exp (n —1)ln cos 77@

(the factor of 2 comes from the symmetry in the sum:

p ~h —p). The range of values of interest is h =0 (v'L )

and n ~L and I. )&1. Clearly, due to the exponential
factor only terms for which p =O(1) contribute. The ex-
ponential factor can be approximated by for large h and
n:

exp (n —1)lncos 7TP

the integral being O(l). It follows from Eqs. (C37) and
(C41) that

1g R(h, n)= ——j,W(u)du=
h + I h iver' vh

(C42)

where v is an O(1) constant. Using the upper bound for
the numerator of Eq. (C31) given by Eq. (C36) and the es-
timate of the denominator appearing in Eq. (C31) given
by Eq. (C42), we find the following upper bound for
Q(h, x;L):

v p n=exp
h

1 —0 n

h4

h h+1
Q(x, h;L) &v

(h —x +1)(h —x/2+1) h —x +1ln

(C43)

Finally, we have asymptotically, for large h and n

R(h, n)= W
h3 h2

(C39)

Recalling that Q(h, x;L) is the upper bound for the PDF
for the paths corresponding to case (iii), it remains to find

a bound for the probable values of x. It follows from the
bound Eq. (C43) that for 0 & g & —,

'

L 1/2 —rI L 1/2 —ri

Prob(x &L' ' ~)& g Q(h x;L)&v
h —x+1 (h —x/2+1 h —x+1 (C44)

Since x is smaller than h =O(v'L ) and thus has, by Eq. (C44) vanishing probability to be O(v'L ), we conclude that
x =0 (v L ) with a probability that tends to 1 for large L. This completes the proof.
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