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The time-dependent solution of the periodically forced Fokker-Planck equation is determined,

following an iteration procedure. The mixing property of the system is verified. The enhancements

of the autocorrelation and the signal-to-noise ratio are distinguished and localized, in different noise

strength regions. The conditions for the validity of the adiabatic approximation and the way to sys-

tematically improve the adiabatic result are clarified.

I. INTRODUCTION

Macroscopic systems are subjected to a variety of sto-
chastic forces coming from some uncontrollable sources
as, for example, the random microscopic impacts of inter-
nal subsystems or the variability of external conditions.
Ordinarily, these effects are small when compared to the
macroscopic variables. Thus they usually provide only a
small perturbation to the deterministic motion. Howev-
er, in certain critical situations such small effects may
play a crucial role in determining the system's evolu-
tion. ' The so-called stochastic resonance (SR) is a
representative example of such phenomena. '

The early investigations of SR were initiated by the
discovery that the earth climate between the ice ages and
relatively warm periods changed dramatically while the
external forces acting on the climate system were very
weak. To explain this unusual behavior the model of a
system moving in a double-well potential in the presence
of both noise and external period input has been suggest-
ed. ' ' It was found that in the presence of small noise
the bistable system may, indeed, produce a periodic out-
put much stronger than the input. This SR is expected to
arise when the frequency of the external force, 0, is about
the mean hopping rate between the two potential
wells. ' ' Recently, the study of the SR has been extend-
ed to other systems and focused on the analysis of the
signal-to-noise ratio (SNR). It has been shown that in a
certain parameter region the SNR may increase with in-
creased noise. However, the peak of the SNR has no re-
lation to the resonance between the frequency of the sig-
nal and the hopping rate. This led Fox' to the con-
clusion that the SR is by no means a resonance between
the modulation frequency and Kramers*s rate. Fox sug-
gests using a more appropriate term, "noise-induced
signal-to-noise ratio enhancement (SNRE)," instead of
the term SR. Recently, two interesting experiments have
been performed to illustrate the SR and the SNRE, one

has been most extensively used in predicting theoretically
the SR and the SNRE. Here C(x) is the drift term in the
absence of forcing, D the diffusion coefficient, eh (x) the
forcing amplitude, and 0, , 0 the forcing frequency and ini-
tial phase, respectively. For simplicity, we will consider
only antisymmetric drift which vanishes at +c,

C( —x) = —C(x }, C(+c)=0

and take h (x) to be constant,

h (x)=., 1 .

(1.2a)

(1.2b)

It will be shown that the results obtained for this special
FPE can be directly applied to the general periodically
forced FPE by slightly modifying the formalism. Owing
to the nonstationary nature of the system introduced by
the time-dependent forcing icos(At+8), no explicit
solution of (1.1) is available.

Recently, Jung and Hanggi' transformed (1.1) to a
two-dimensional FPE

BW(x, g, t)
Bt

a [C(x)+icos(y+0)] W(x, &p, t)

W(x, y, t)
a

Oculo

a2
+D W(x, g, t),

Bx
(1.3)

involving a Schmitt trigger circuit and the other a bi-
directional ring laser. ' '

The periodically forced Fokker-Planck equation (FPE)
in a bistable potential

aP(x, t) [C(x)+eh (x)cos(Qt +0)]P(x,t)
dt Bx

a2
+D P(x, t)
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where y is the phase of the forcing. They found that Eq.
(1.3) has purely imaginary eigenvalues, indicating the
nonmixing nature of the dynamics. As Presilla, Mar-
chesoni, and Gammaitoni reported, ' because of this non-
mixing property, at asymptotically large times the solu-
tion of (1.1) retains information from the initial state.
Now in dealing with this nonmixing property, one in-
vokes various average procedures with respect to the
phase. ' ' Effectively therefore, one treats a randomly
perturbed FPE, ' and this makes a systematic analysis
much more involved. In the present paper, we take a
substantially different attitude. We verify that the FPE
(1.1) enjoys the mixing property, even though (1.3) may
lack it. Thus, in the presence of a small periodic forcing
the initial preparation should be forgotten exponentially
just as it is in the unforced FPE. The only difference be-
tween the persistent states in both cases (i.e., the states
realized as t ~ ~ for any initial preparations) is that it is
periodic for the former while stationary for the latter.
With this conclusion, we can apply the theory of eigen-
function expansion, or equivalently, the Floquet theory,
to Eq. (1.1), and get systematic results in terms of the per-
turbation expansion. The perturbation approach is per-
formed in such a way that one may predict characteristic
features of the exact solution such as the mixing property
of the system from the formal solution. Furthermore, the
lowest order of the perturbation can be obtained in a con-
siderably simpler way than before, ' ' and more accurate
results are easily accessible by proceeding to higher or-
ders in the perturbation.

In Sec. II we discuss the mixing property of (1.1) and
review the previous studies of this problem. The per-
sistent solution of (1.1) is obtained in terms of the pertur-
bation theory in Sec. III. Section IV describes the tran-
sient process by applying the Floquet theory, whereas
Sec. V deals with the initial-value problem, and the mech-
anism ensuring that the initial condition is forgotten for
long times. In Sec. VI the theoretical results are illustrat-
ed and checked on an exactly solvable model, the periodi-
cally forced FPE with linear drift. In Sec. VII the SR
and the SNRE are examined in the light of the linear-
response theory of the periodically forced FPE. It is
found that both SR and SNRE exist, but appear in
different regimes of the noise strength. In the last section
a comparison with recent investigations of the problem is
made along with some remarks on the relevance of the re-
sults.

II. MIXiNG PROPERTY OF THE PERIODICALLY
FORCED FPE

In Refs. 17 and 21 Jung and Hanggi conclude that the
presence of purely imaginary eigenvalues in (1.3) indi-
cates the nonmixing property of the solution. Further-
more, Presilla, Marchesoni, and Gammaitoni' found
that as t~~ the asymptotic solution I' (x, t) depends
on both the phase of the forcing 0 and the initial condi-
tion P(x, O).

One of the objects of this paper is to show the mixing
property of the solution of the original FPE (1.1). We
emphasize that the two Eqs. (1.3) and (1.1) are not com-

pletely identical in their ergodic properties. In fact, the
solution of (1.1) is related to the solution of (1.3) by the
integral relation,

P(x, t)= I W(x, p, t)dry, (2.1)
0

as a result of which some properties of (1.3) have been
lost. Thus one cannot definitely conclude nonmixing of
(1.1} directly from the properties of (1.3). For instance,
Jung and Hanggi showed that the x-independent left
eigenfunctions exp( in—y) correspond to purely imagi-
nary eigenvalues of (1.3). Thus the initial preparation be-

longing to the subspace of these eigenfunctions will be
remembered. However, no such x-independent eigen-
functions with purely imaginary eigenvalues exist for
(1.1). Naturally, for Eq. (1.1) there exists a subspace con-
taining the asymptotic part of the solution, which is both
x dependent and t dependent. Nevertheless, as we will
see in Secs. V and VI, different initial preparations give
identical contributions to the dynamics in this subspace.

The mixing property of (1.1) can also be expected on
the basis of the following simple intuitive argument.
Without noise, a periodically forced monostable dissipa-
tive deterministic system must approach a periodic solu-
tion depending only on the control parameters and the
external force. Thus any initial preparation of the system
must be forgotten in the course of time. If this system is
subjected to a small noise, a periodically varied probabili-
ty distribution sharply centered around the deterministic
path will be built up, and no initial information can be
expected to survive for large times. In the case of mul-
tiwell potential, there are two regimes of the evolution if
the noise is small. In the short-time regime the system
approaches quickly the metastable state, while perform-
ing periodic motions around the stable points. In this
stage the evolution "forgets" the concrete position in
each potential well while still remembering how much
probability was initially assigned to each well. In the
long-time regime the probability balance between the
various potential wells is established, and subsequently,
the initial condition is completely forgotten. The per-
sistent solution realized at t ~ oc is nonstationary, but in-
cludes no information on the initial preparation.

All the above intuitive arguments on the mixing
feature of (1.1) will be verified more quantitatively in the
following sections. Furthermore„we fix 0 in the calcula-
tion procedure, and perform an average over 0 only after
the solution for fixed 6I has been specified. The general
proof of the mixing property of FPE's, including (1.1) as
a special case, can be seen in Chap. 6 of Ref. 3.

III. PERSISTENT PROBABILITY DISTRIBUTION

As e is small the periodic forcing can be regarded as a
perturbation. The solutions of the unperturbed FPE
BP (x, t)

at

a B2
[C(x}P(x,r)]+D P(x, t) (3.1)

c)x Bx

constitute then a good starting point for analyzing (1.1).
Actually, the complete knowledge of the solution of (3.1)
is still lacking. Nevertheless, (3.1) is much better under-
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stood than (1.1), and hereafter we assume that the evolu-
tion described by (3.1) is known. Specifically, we assume
that we have determined the complete set of the eigenval-
ues A,„and the corresponding eigenfunctions u„(x),
n =0, 1,2, . . . , of the Fokker-Planck operator L,

(0~ =uo(x)=1 . (3.14)

The following identities are obvious due to the normaliza-
tion condition and the physical requirement:

Lu„(x)= —
A, „u„(x) . (3.2)

An approach extensively used in dealing with (3.1) is to
make a transformation

uo x dx= 00 =1,
u„xdx= On =0, n 0 (3.15)

P(x, t) =N'"e 'I"'"'C (x, t), (3.3)
lim [u„(x)]=0, n =0, 1,2, . . . .

~~+oc

where

V(x)= f C(x)dx, N = f" e " dx
0 oc

(3.4)

and

P(x)=Ne (3.5)

is the stationary solution of (3.1). It is well known that
4(x, t) satisfies the Schrodinger equation

Now the essential task in solving (1.1) is to find the
probability distribution P (x, t), starting from an arbitrary
preparation, say, 5(x —xo). All physically interesting
and observable quantities such as the autocorrelation
function ( x(t+ r) x(t)) or its power spectrum can be
worked out without difficulty based on P(x, t) In th. is
section we focus on the long-time behavior of the system,
i.e., we consider the solution

aC(x, t)
at

(3.6) lim P(x, t)=P„(x,t),
f~cc

(3.16)

in which the effective Hamiltonian H is a known Hermi-
tian operator. Solving the eigenvalue equations

H@„(x) = —
A,„4„(x) (3.7)

we may define a complete set of orthonormal eigenvec-
tors

which must be periodic with period 2m IA Let us .write
P „(x,t) in the form of a Fourier series

P„(x,t)=fo(x)+ g [f (x)cos(mAt+m8)
m =1

f 4„(x)4 (x)dx =5„ (3.8) +k (x)sin(mQt+m8)], (3.17)

It is obvious that A, „defined in (3.7) are identical to those
defined in (3.2), and that 4„(x)are related to u„(x) by

u (x)=N' e '"' 4 (x) (3.9)

In the following sections we prefer to use u„(x) rather
than C&„(x) as basis. The advantage of this will soon be
clear. Let us formally write u„(x) as the right eigenvec-
tors f =gf„ (3.18a)

with f„(x)and k„(x) being real. At this stage, we do not
know whether f„(x)and k„(x) include the information of
the initial state, although we will show later that this is
not the case. f„(x) and k„(x) can be further expressed in
terms of the basis of (3.10) as

~n ) =u„(x), n =0, 1,2, . . . . (3.10)

The left eigenvectors are defined as

(m~n )f u' (x)u„(x)dx =5 (3.11)

From (3.3), (3.8), (3.10), and (3.11), (n~ can be expressed
as

(n~=u'(x)=N ' e '"' e ( ) (3.12)

One should notice that due to the non-Hermitian proper-
ty of the Fokker-Planck operator L, the left eigenvectors
are not identical to the right eigenvectors. An eigenvalue
and eigenvector of particular importance are

This yields

P„(x,t)= g Q„(t)~n )
n=0

y Q„.(t)~n),
n=O m =0

with

Q., o fn,o—
(3.18b)

Q„(t ) =f„cos(m Qt +m 8)+k„sin( m Qt +m 8),

and

0 (P ( ) N 1/2 v(x)/2D

~0) =u„(x)=P(x)=Ne— (3.13) where f„and k„are x- and t-independent real num-
bers. Inserting (3.18) into (1.1) and identifying on both
sides the terms corresponding to a given rn and n, we
have
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0= —k„f„c+(s/2) g f, , n v), m =0
0x

(3.19a)

oc—Qf„,sin(Qt +0}+Qk„,cos(Qt +0)= —
(/.„[f„)cos(Qt +8)+k„)sin(Qt +0)]+a g f o n v cos(Qt +0)

oo a+(E/2) g f, s n v ccs(il(+8)+k, s n
)
vs((n (is+8), m =(

Bx

—mQf„sin(mQt +m8)+mQk„cos(mQt +m8)
= —

/(, „[f„cos(mQt+m8)+k„sin(mQt+m0))

(3.19b)

00 a+(El 2) g f„,n v +f„+, n v cos(mQt+m8)
Bx

+(E/2) g k„, n v +k„v, n v) sin(m(l(+m8), m v ( .
Bx

(3.19c)

Several interesting features are already worthwhile re-
marking.

(1) From the structure of (3.19) it is obvious that the
leading order of f„and k„ is eq.

(2) After the leading order, the next to the leading or-
der and the following orders of f„and k„aree,e +, . . . . Therefore Q„(t) can be written as

expressing the fact that the system should approach the
stationary solution of (3.1) as the periodic force vanishes.
Inserting (3.23) into (3.19b) we arrive at two independent
sets of coupled linear algebraic equations

(3.24)

g (t} &mg(m)(t)+&m+2Q(m+2)(t)+

where

g(2q) —f (2q)
n, O n, O

g„' +2 '(t) =f„' +' 'cos(m Qt +m 0)

(3.20)

which can be easily solved as

f„)=R„(g„,cos(a„)),(1)

(3.25)

+k„' + q'sin(mQt+m8), m ~1 .

(3) We have the identities

with

R„= n m, g„=[/(,„+(mQ) ]
a

n =0 (3.21)
and

for all n. This has some interesting consequences. On the
one hand, it indicates that the coefficient Qoo=foo is
not changed by the perturbation e cos(Qt + 8),

Q() II' =0, q =1,2, . . . .

On the other hand, all the time-dependent terms in (3.18)
do not contain the eigenvector ~0), namely,

cos(a„)= /).„g„, sin(a„}= —m Qg„

leading to

Q„",'(t) =R„og„)cos(Qt +0+a„,) . (3.26)

Q() (t)=f() =ko =0, m 1 . (3.22)

Both aspects are consistent with the requirement that the
normalization condition should be presented for all times.

Equations (3.19) can be solved order by order. In each
order, the solution is exact and explicit. For instance, to
the e order, we have [cf. (3.19a) and (3.19b)] Q„(o=(1/2) gR„,R, „og;ogc )s(o;a).) (3.27)

Inserting (3.25) into (3.19a) and (3.19c) we obtain the
solution Q„'o and Q( z(t) to the second order. For the
former we have

f(0) —f
f„'() =0, nAO

7

(3.23a}

(3.23b)
For the latter we again get two independent sets of cou-
pled algebraic equations



2034 HU GANG, G. NICOLIS, AND C. NICOLIS 42

g„f('2+20k„'2'=(1/2) QR„,R, 0g, ,cos(a, (),

—2Qf„'2+A, „k„'2=(1/2) g R„,R, 0g, (sin(a, , ),
(3.28)

Q„' 2 (t) =(1/2) g R„,R, ~, ,g„2

X cos(2IIt +26+a,
&
+a„2) . (3.29)

leading to
Up to e order we can now specify the persistent proba-
bility distribution as

P„(x,t)= 0}+g eR„g0„,c os(IIt+6+ a„, )~n )

+(e /2) g QR„,R, 0g„0g, (cos(a; ()+JR„;R;0g;,g„2cos(2Qt +29+a, , +a„2) ~n ) .
n

(3.30)

The same procedure can be performed order by order to higher-order terms. %e can actually specify the solution of
a general term in terms of the lower ones as

Q(m +2q)(t) ( I /2)m +2k —(

k=0

m +2k —
1

(R, , g;, )Xcos mQt+m6+
tn +2k —1

i+ 1 '~v+1AI
yr ——0

~ (2q —2k)
~I ),0 )

(3.31)

where the operator T indicates the summation of all the terms for j,, to take any integer values under the conditions

~m +2k J1=1 Jm+2k =~

J~ 1, J,, +1 Jt, —+1, v=0, 1,2, . . .

and Q' g'' is given by the lower-order terms as

( /I4vr) g f R,g 0Q,'(" ' (t)cos(At+9)d6 .
0

(3.32)

The operator acting on Q'0q ' plays a role similar to a propagator in the field theory. From (3.31) all the terms in

(3.20) can be reconstructed successively from the zeroth-order ones

Q(0) —
1 Q(0) ()

7 7

(3.33)

For instance, a direct calculation of (3.31) for E ~e' produces (3.30). The solution of the third order can also be writ-
ten as

Q„'3'(t) =
—,
' g g R„,R, JR~ (8„3g;2g (cos(3Qt +39+a„3+a,2+a (),

J

Q„"('( t )
=

—,
' g g R„,R, ~ R~ 0g„(g; 2g~ (cos( IIt +9+a„(+a, 2+a ( )

j
+ —,

' g gR„;R;,R 0g„(g, 0g, ,cos(At+6+a„, )cos(a, , ) .
I J

(3.34)

In short, Eq. (3.31) provides a technically simple way
to calculate the persistent solution. Et also makes it possi-
ble to draw some general conclusions without specifying
the exact solution.

(1) In each order we get an exact solution. The itera-
tion form is particularly convenient for the analytic in-

vestigation. %ith the help of the computer by utilizing
the symbolic manipulation it is easy to calculate the prob-
ability distribution to higher orders.

(2) In (3.31) and (3.32), the frequency of the external
force 0 and the eigenvalues l„appear in only two sets of

coeScients, g„and o.„.The entire persistent proba-
bility distribution has been well organized to summations
of products of three kinds of entities, the matrix elements
R„„the renormalization factors g„,and the phase shifta„.This regular organization turns out to be very con-
venient for analytic works as well as computer simula-
tions.

(3) The persistent solution is unique. The reason is that
both the normalization constant (Q00 = 1) and the solu-
tion of (3.31) and (3.32) are unique.

(4) The persistent solution does not contain informa-
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tion of the initial state since this information is included
neither in the normalization constant Qo 0 =1 nor in the
iteration relations (3.31). This conclusion is different
from the results by Presilla, Marchesoni, and Gammai-
toni. '

IV. TRANSIENT PROCESS, FLOQUET THEORY

To investigate the transient process towards the per-
sistent solution, one should specify the exponentially
damping terms. We assume that the probability distribu-
tion at the transient process takes the form of

P (x, t) = g exp( A~ t)—P (A, ', x, t),
q

(4.1)

=Z, g e'Qr'(I, ,',x, t)

l

=Z, ge'g g Q„' (A,,', t)~n),
n m=0

z =z(')+~z(])+~~z'~]+ (3)z(3j+
q q q

~
q q

(4.2a)

(4.2b)

where Z, q =1,2, . . . , appear to be arbitrary precon-
stants of quasieigenfunctions (note Zo= 1). For the ini-

tial condition P (x,O) =5(x —xo), we obviously have

Q,",'=1, QI',I=O, neq
Z' '=N ' exp[ —V(xo)/(2D)]4 (xo) .

(4.3)

For the qth subdynamics, we may get the solutions
Q„(kq, t) in terms of iteration as in Eq. (3.31) except that
the eigenvalues A, „should be replaced by
Specifically, one needs only to change g„„, and a„ for
Q„(t) to g„(A,' ) and a„„,(A,

'
) for Q„(A', t), respectiv. ely,

as

g„(k' )=[(I,„—A.
'

) +(mes) ]

where /(,
'

is a discrete quasieigenvalue of Eq. (1.1) which
can be continuously reduced to X as we adjust e continu-
ously to zero. The evolution of the various quasieigen-
functions are, apparently, independent of each other.
Thus for each k' the subdynamics P(A, q, x, t) can be
determined inside its own subspace.

Assuming a particular A.', and expanding P (A, ', x, t) in

terms of e,
~
n ), and the various harmonics, we have

P(l', x, t)=Z, g Q„(k', t)~n )

(4.5)

which is an implicit function of A,
' . This function can be

made explicit by expanding A,
' on e,

~ =~ [o)+&-'Z""+ (4.6)
q q

where the solutions of the first two orders read

&q =(e /2) Q Rq „R„g o(k )g )(g )
n-"-q

Xcos[a„,(A, )] .

(4.7a)

(4.7b)

The general form in qth subdynamics is similar to that
of the persistent solution, i.e., the zeroth subdynamics.
However, two major differences which are of conception-
al importance should be emphasized. First, we have ex-
actly one zero quasieigenvalue

ko=ko=0

because (0 (8/Bx)~n ) =0. Thus the zero eigenvalue of
(3.1) is not affected by the periodic perturbation. On the
contrary, all others are modified by the signal. Further-
more, unlike the persistent solution which is completely
solved in its own subspace independently of the initial
condition and the dynamics in other subspaces, for the
qth (q&0) subdynamics there remains an unknown con-
stant Zq (Zo=l) which cannot be fixed in the qth sub-

space though all other coefficients in Eq. (4.2) can be
specified independently in this subspace. Therefore all
the information of the initial state and the couplings be-
tween various subspaces are contained in the constants
Z~ (q@0) which will be determined in Sec. V.

1s

V. INITIAL-VALUE PROBLEM, MIXING

Let us suppose that the initial probability distribution

genvalue A,
~

which deviates from k due to the periodic
forcing. The solution of A,

' can be found by inserting
(4.2) into (3.19a) and multiplying both sides of the equa-
tion by (q~,

A.
—iL' =(1/4~) g e' g I Q„",(/. q, t)Rq „

nWq

X icos(Ot +0)d0,

(k„—A,
'

)
cos a„(A,' ) =

tl t71 q [(g gg )2+( )2]j/2

teal CO
sin a„(A.' ) =-

[(g g~ )2+( )2)1/2

(4.4a) P(x, O) =6(x —xo) . (5.1)

Under the evolution (1.1), Eq. (5.1) yields a probability
distribution P(x, t;xo, O) at time t For a general ini.tial
preparation P(x, 0), the solution can be formally written
as

The iteration is performed in such a way that P(x, t)= fP(x, t;x , o)P0( ,xo) 0dx. o (5.2)

Q (A.
' )=Q' '(A. ' )=1, (4.4b)

which is similar to the coefficient Qo 0 for the persistent
solution. Notice, however, that we have at this stage an
unknown prefactor Z in (4.2). Now let us specify the ei-

Thus the problem is completely solved if P (x, t;xo, 0) can
be specified. ln the sequel, we consider only the initial
state (5.1) and simply write P (x, t) instead of
P (x, t;x0, 0).
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Expanding P(x, t) and 5(x, —xo) in the basis ~n ), we

have

P(x, t)= g b„(t)in),
n=0

with

and

bo(t) =ho(0) =1

b„(0)=X '~ exp[ —V(xo)/(2D)]4„(xo) .

(5.3)

(5.4)

(5.5)

According to the analysis of Secs. III and IV, we can fur-
ther express b„(t) as

b„(t)=Q„(t)+ g Z, exp( —
A,,'t)Q„(A,,', t),

q=1
(5.6)

where Q„(t) and Q„(A.', t) have been explicitly given in

Eqs. (3.18),(3.31) and (4.2),(4.5),(3.31), respectively, and
Z remains to be determined. Taking t =0, we have from
(5.6) a set of coupled linear algebraic equations

Q„(0)+ g Zq Q„(A,,', 0)=b„(0), n = 1,2, . . . .
q=l

(5.7)

[Note that for n =0 we have the identities
b (ot)=Q&(t)=1, Qo(l~, t)=0, qAO, which are indepen-
dent of the particular initial preparation. ] In principle,
Z, qWO, can be found by solving (5.7).

Truncating (5.7) to a finite, possibly, very large value
M, the equations for the modes retained read

M

Q„(0)+ Q Z Q„(A,',0)=b„(0), n =1,2, . . .
q=0

Thus Q„(A,', t) can be calculated in each subspace, in-

dependently of the dynamics of other subspaces [see
(3.31) and (4.5)]. The constants Z~ can be found by solv-

ing a set of coupled equations which includes the initial
conditions as well as the results of all other subspaces.
However, once Z are determined initially they will
remain constant at all times, and the evolutions in vari-
ous subspaces are independent of each other for t )0.
The situation for the persistent solution (the dynamics in
the subspace q =0 corresponding to A, '=A, =O) is essen-
tially difFerent from all the other subdynamics. The ini-
tial condition does not enter this subspace because the
identity Zo=1 is valid whatever the initial state. For
small e, each —k', q )0, must be negative. The initial
condition should be forgotten exponentially. The period-
ically forced FPE (1.1}is therefore mixing. By taking the
basis (3.10) the particular features of the persistent solu-
tion can be explicitly manifested by (0~(a/ax) ~n ) =0. It
is an important advantage to use this basis.

All the analyses of Secs. III—V can be extended to a
more general FPE (1.1) with an arbitrary perturbation
h(x). It suffices to replace R„=(n ~(a/ax) m ) by
(n~(a/ax)h(x) m ). Hence, in the following we only
need to consider the simplest case h (x)=1.

VI. AN EXACTLY SOLVABLE MODEL:
PERIODICALLY FORCED FPE WITH LINEAR DRIFT

To test our theory we consider in this section an exact-
ly solvable model, the periodically forced FPE with linear
drift

aP(x t) a
[ —Ax +e cos(Qt +8) ]P (x, t)

at ax

which admit solutions

Z=S i(B—Q), (5.9)

2

+D a P(x, t) . (6.1)

bi(0)

b2(0} Q2(0)

QM(o)

Z2
8= Q=

ZM

and S is a known matrix with elements

S,, =Q, (A,,', 0) .

where Z, B, and Q are M-dimensional vectors

Z, Q (0)

(5.10)

(5.1 1)

The moment equations of (6.1} may be easily written
down as

d(x(t)) = —A(x(t))+cocos(At +8),
dt

d(x(t)') = —2X(x (t) ) +2@(x(t) )cos(Qt +8)+2D,
dt

d(x(t)') = —3X( (tx) )+3m(x(t) )cos(At+8)3 2

dt

+6(x (t) )tD,

(6.2)

Z"'=b (0)
q q

Zq R
q ogq 1cos{I9 aq 1 )

(5.12)

m WO, q

R g, (A, )cos[8+a, (A, )]b (0) .

(5.13)

An alternative way of solving (5.7) is to expand Z in
terms of e. Inserting Eqs. (3.31) and (4.2) into (5.7), we
can identify Z' ', Z"', . . . order by order. For instance,
in the orders e and e' we obtain

(x (t) ) = C exp( —At)+ eg cos(Qt +8+a),
g ( g2+ II2 )

—1/2

cosa =kg, sina = —Qg,

(6.3)

«x(t)")
dt

nA (x (t—) ) + n e(x (t)" ' )cos(At +8)

+n(n —1)/x(t)" ) .

The first moment equation is exactly the deterministic
equation of evolution which can be solved explicitly as
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where the constant C is fixed by the initial condition and
will eventually be forgotten exponentially. The evolution
of the higher moments can likewise be exactly solved in
terms of the control parameters and the lower moments.
Again, as t ~ oo, all the initial information will be entire-
ly forgotten due to the dissipation —nA, . This justifies
our conclusions in Secs. II and V.

Now let the initial state be a Gaussian distribution.
Then solution of (6.1) keeps the Gaussian property for all

times

(6.5a)

(6.5c)

Inserting (6.4) into (6.1) and identifying on both sides the
terms of equal powers [x —y(t)], [x —y(t)]', and
[x —y (t}],we arrive at the three equations

dy(t)
2A—.y( t)+4D,

dt

dy (t)
dt

—= —Ay(t)+ecos(At +9),
du (t)

dt
= A.

—2Du (t) ly(t),

P(x, t)=u(t)exp[ —[x —y(t)] ly(t)I . (6.4)
which can be solved successively. The final solution of
(6.1) reads

P(x, t)=[2trD(1 —Ce ")/A. ]
'

exp[A [x —xoe "—
g cos(At+0+a)] /[2D(1 —Ce ')]], (6.6)

where the constants C and xo have to be determined by the initial condition (which is, obviously, forgotten exponential-
ly as t~ oo ), and g and a are given in Eq. (6.3). If the initial probability distribution is a 5 function centered at xo, Eq.
(6.6) reduces to

P(x, t)=[2~D(1 —e ")/A] ' expIA[x xoe —' —g cos(At+8+a)] l[2D(1 —e ')]] . (6.7)

As t ~ oo, the persistent solution reads

P (x, t) = (2~DIE)

XexpI —A[x —g cos(At +0+a)]'/2D )

u„(x)=d "uo(x)/dx",

1, n =m+1
n — m 0 otherwise .

(6.10)

(6.8)

k'„=k„=nk, n =0, 1,2, . . . , (6.9)

which, in accordance with our earlier consideration, does
not contain any information on the initial state.

We now apply the theory of Secs. III and IV to the
linear drift case. The formulas in Secs. III and IV are
considerably simplified by the identities

P „(x,t ) =Qo+ g eQ
'" (It )

~
n ) .

n=1
(6.1 1)

Inserting (6.9) and (6.10) into (3.26), (3.27), (3.29), and
(3.34), we have

[Note that the identities (6.10) are not valid if we take the
basis (3.7).] Owing to (6.9) and (6.10) we may simplify
(3.18b) to

Qo=1, Q"'(t)=g cos(At+8+a),
Q' I(t) = i g [cos(2At + 20+ 2a )+ 1]= [g cos( At + 8+ a) ] l2,

Q ( t ) = —,', g cos ( 3 At +38+3a ) + —,
' gg, , [cos( At +8+2a+ a3, ) + 2 cos( At +8+a, , ) ]

=[g cos(At +0+a)]'/6 .

(6.12)

A tedious, though elementary calculation yields

Q "'(t)=[g cos(At+0+a)]"/n! (6.13)
and the solution of the persistent probability distribution
can be formally written as

P„(x,t) = g ( I/ !)[ngceos(At +0+a)]"in )
n=0

P(e, x, t) =P[e=O, x —eg cos(At+0+a), t] . (6.15}

The same procedure can be performed to manifest the
transient process and get the similar result

g (1/n!) eg cos(At +0+a)
n=0 Bx

=exp eg cos(At +0+a) ~0)
Bx

=uo[x —eg cos(A, t+0+a)] .

l0)

(6.14)

[To obtain (6.15) we use additional equalities A,
' =I, for

all integer q. ] Thus, for the exactly solvable linear drift
model, our general formulas reduce to the exact solution.
For the FPE with nonlinear drift, no such simple and ex-
plicit solution exists. However, the iteration approach
(3.31),(3.32) still applies and can be used to produce an
approximate solution to any desired degree of accuracy.
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VII. STOCHASTIC RESONANCE

In the previous sections, we introduced a systematic
approach in dealing with the periodically forced FPE. In
this section we examine the use of this formalism for un-
derstanding the phenomena SR and SNRE. For this pur-

P(x, t) =P„(x,t)+Pd(x, t),
where the exponentially damping part reads

(7.1)

pose, we need only consider the linear response of the sys-
tem to the signal. Keeping thus the e and e' orders in
the probability distribution we write

Pd(x, t)= g exp( —k t) b (0)—eR Qg )cos(8+a &)
—e g Rq gz, (A, )cos[8+az &()(, )]b (0) ~q)

q =1 m ~O, q

and the persistent solution is

+e g R„g„,(A, )cos[Qt +8+a„,(7(, )]b (0)~n )
nWO

(7.2)

P„(x,t)=i0)+ g eR„Dcos(At+8+a„, )l(A,„+f1 )' in ) .
n =1

(7.3)

Based on Eqs. (7.1)—(7.3) one may easily calculate the average (x (t) ) „, and the autocorrelation function
(x (t + r)x (t) ), „(A'AcF) for long times,

(x (t) ) „= lim (x (t) )

eg„, (O~x~n ) n 0 cos(Qt +8+a„,),
n=1 BX

le cF= ( x ( t + r )x ( t ) ) 0

2'
d8 lim fxyP(x, r+t;y, t)P(y, t;x0, 0)dx dy .

(7.4)

(7.5)

dX = —)(.x + e cos( Q,t +8 )
dt

(7.6)

The integral (7.5) can be easily specified by inserting (7.2)
and (7.3) into (7.5). A comparison of (7.4) with the forced
deterministic equation

Q«D, D «b, V = V(0) —V(c), (7.8)

jected to a dissipation coelcient k„, and forced by
periodic signals with an amplitude renormalized by a fac-
tor (O~x~n )(n~(3/Bx~O), n =1,3, 5, . . . .

In the case of

is interesting. Equation (7.6) has an exact solution

x (t) „=eg cos(Qt + 8+a), (7.7)

where c represents the center of a potential basin [cf.
(1.2a)] we have

with g and a being given by Eq. (6.3). Hence, for the
linear-response theory, Eq. (1.1) can be regarded as an
infinite number of independent overdamped particles sub-

Q, A, 1((k;, i =2, 3, . . . (7.9)

Therefore one needs to keep only a few relevant terms in
(7.2) and (7.3),

P (tl=xl )+ 0(1 e„0 cos(At+8+a ) (A +(1 )' ll)a
X p

(7.10)

Pe(xt) exp( ) tt) ( b,)
—t=e0() 0 c—os(8+a, , ) ().'t+((')' ll),C}

X
(7.11)

leading to

(x(t)) =e(( 0 (Olxl()cos((it+8+at, ) ()t+0')'",a
(7.12)

a
~AcF 2 6 1 0

X
((0)xl)))'cos(fix) (t.'t+0 )+((Olxll)'exp( —t.te) 1

—
—,
'e' 1 0)
1 (L,+0 )
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Notice that the two inequalities in (7.8) have to be ~alid for guaranteeing (7.10) and (7.11), and consequently, (7.12) and
(7.13) as well. In particular, for a given external frequency, both too large and too small D's may break the validity of
(7.11)—(7.13).

We next calculate the Fourier transform of the ACF (7.13), i.e., the power spectrum of the system, as

S =S,+S„,
2

(7.14a)

S, =(m/2)e' () 0 ((Olxl)))' ().', +(l')(5(m —(l)+5(ro+fl)),c}

C3X

2

(7.14b)

S„=2[/(,, /(/(. , +co )](&Oixi 1 ) ) 1 —(I/2)e 1 0a
(A, , +II ) (7.14c)

The SNR at co =0, (JVsNR) reads (Refs. 15 and 16)

a
/)/~NR —(n'/4)e ( 0)BX

(7.15)

To produce explicitly the expressions for the Ã„c„and ÃsNa we still need to specify the elements & 1~(B/Bx)~0) and

&0~x~ 1). The left eigenvectors &0 and & l~ read (Ref. 3)

&0~=1,

&1~ =u ',"(x)+u ', "(x),
with

(7.16a)

(7.16b)

1, x&0
(x)=

1 (()

—(A, , /D) f exp[ —V(x)/D]dx f exp[ V(x)/D]dx, x )0
X

(/(, , /D) f exp[ —V(x)/D]dx f exp[ V(x)/D]dx, x (0
X X

(7.16c)

respectively. Multiplying the stationary solution of (1.1)
to &0~ and &1~, we get ~0) and ~1). Therefore we obtain

(7.17)

0
R) 0= 0 1 =R)+R2,

Bx
and

JV~c„=—,'e A. ,c cos(Qr)/[D (7(, , +0')]
+c exp( —A. ,r)t 1 —) e c A2/[D~($2+Q2)]j

(7.23)

with ~sNa —- (7T/4)e'c /(, , /D (7.24)

d V(x)
8X

Inserting (7.17)—(7.19) into (7.13) and (7.15) and noting

/(, , =[V"(0)V"(c)]' exp( b, V) lrr, —

R )
=

I [2vrD/V"(0)]' /c IR2,

[2~D /V" (0)]' "-/c «I,
we obtain

(7.21)

(7.22)

—&0)
1 1

g
0

2E = —[2V"(c)/(n D—) ]' exp[ bV /D], (7.19)—

R~= f u ',
' (x) uo(x)dx = —cA, , /D,a

00 (3X

where

which are exactly Eqs. (3.12) and (5.9) in Ref. 15 if one
specifies /(, , for the model Eq. (5.1) of this reference. (In
Ref. 15, a„o;0, and q are identified with R2, A, and e of
the present paper, respectively. ) Consequently, the re-
sults of the adiabatic approximation are completely
recovered by taking both limits (7.8) and (7.22). An in-
teresting point is that one can never recover the adiabatic
approximation if the vector & 1

~
is replaced by the leading

term u I '(x), i.e., if the element R, o is replaced by R,
only.

From the above calculations several conclusions can be
drawn.

(1) If we fix D and change the frequency of the external
force 0„, the maximum amplitude of the output is at
0=0. One finds, obviously, a zero-frequency "reso-
nance. " The Kramers rate plays the role of fraction rath-
er than the internal frequency. This point has been clear-
ly manifested in Eqs. (7.3), (7.4}, (7.6), and (7.7}.

(2) If we keep 0((1 and increase the strength of the
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noise, we find a peak of the ACF of the output at iL, =Q,
i.e., at the "resonance" between the external frequency
and the Kramers rate, which plays the role of the "inter-
nal frequency. " However, the resonance comes from the
prefactor

2

1
~ 0 A2+A2

Bx

convicts between these different approximations. For in-
stance, in Ref. 15, 8, has been neglected by the adiabatic

approximation while in Ref. 18, R2 has been neglected by
replacing ( l~ by u ', '(x) [see (3.12) in Ref. 18]. This is
the reason why the result of the adiabatic approximation
cannot be recovered by Ref. 18 under the condition avail-
able for the adiabatic approximation. One may expect
that the results of Refs. 15 and 18 can be valid in distinct
parameter regimes indicated by the inequality (7.22).

where the numerator is crucial for the enhancement of
the ACF [see Eqs. (7.18)—(7.20)]. Thus, as emphasized in

the early works, the mechanism of the SR is essentially
different from the usual resonance.

(3) Increasing D further, one may find an enhancement
of JVsNR at D = b, V. This enhancement has been analyzed
theoretically in Refs. 15 and 16 and observed experimen-
tally in Refs. 19 and 20. This evidence led Fox to suggest
the use of the term SNRE instead of the original term SR
(Ref. 16). Here we stress that as 0 «1 both the SR and
the SNRE exist. They arise in different D regions, and
they are actually different concepts. The SR represents
the enhancement of JV~cF, and appears as the hopping
rate is approximately equal to the external frequency. '

The SNRE represents the enhancement of the signal-to-
noise ratio, and arises as the diffusion strength D is ap-
proximately equal to the potential barrier 6 V. However,
it is obvious that the conditions of Eqs. (7.8) are not
satisfied now, and the SNRE cannot be guaranteed, be-
cause it arises at D =AV. One should thus, at least, ex-
plain why the rest of the terms of (7.1)—(7.3) are still
negligible for large D.

(4) From Eqs. (7.13) and (7.23), we can verify that the
signal may take the "energy" of the noise. There is an
energy shift and a kind of energy balance between the
noise and the signal as stated in Ref. 15.

(5) To date, the most successful theory in dealing with
the SR and the SNRE is the adiabatic theory (Refs. 12
and 15). However, it is still not quite clear which terms
have been neglected by the adiabatic approximation, and
how one can systematically improve the approximation.
Equations (7.1)—(7.3) provide an exact result of the
linear-response theory for the problem. They show that
the adiabatic approximation simply amounts to replacing
(7.1)—(7.3) by (7.15) wherein (1~(B/Bx)~0) is given by R2
only. In particular, it means neglecting the terms in
(7.1)—(7.3) apart from those in (7.10) and (7.11) as re-
quired by the conditions (7.8). Second, it means neglect-
ing R, in the element (1~(B/Bx)~0) as required by the
condition (7.22). The former limit has been more or less
known while our results present, for the first time, an ex-
planation of the latter condition. In fact, there are some

VIII. REMARKS AND COMPARISONS

In this paper a systematic way to solve the periodically
forced one-dimensional FPE was presented based on the
separation of the entire dynamics into various indepen-
dent subspaces (or quasieigenspaces in the Floquet
theory). In each subspace the evolution of the system has
been given in terms of an iterative relation by the pertur-
bation approach. In the lowest order a rather compact
linear-resonance result (7.1)—(7.3) is provided. More ac-
curate solutions can be obtained by performing the calcu-
lation to higher orders. This iteration procedure is easier
than the one attending the solution of the two-
dimensional FPE. ' ' '

The systematic analysis allows one to clarify certain
ambiguities prevailing in the literature. First, we have
succeeded in showing that (1.1) is mixing. A numerical
verification of the mixing property of (1.1) is reported in a
forthcoming paper in which we justify that the system
asymptotically approaches the same nonstationary solu-
tion at large t when the initial preparations are different.
This conclusion remains true for both x-independent and
x-dependent h (x).

Under the conditions (7.8) and (7.22) we recover the re-
sult of the adiabatic approximation. ' However, an
essentially new point is that the early concept of the SR
referring to the enhancement of JVAcF and the recent con-

cept of the SNRE referring to the enhancement of the ra-
tio of the signal power spectrum to that of noise represent
different aspects of the system and arise in distinct re-

gions, and then they should thus not be confused with
each other. This remark complements the comment by
Fox '

The exact linear-response solution (7.1)—(7.3) allows
one to understand the status of the adiabatic approxirna-
tion. Comparing (7.1)—(7.3) with (7.13), (7.15), (7.23), and
(7.24) one can clearly see which terms have been neglect-
ed by the adiabatic approximation, and how to systemati-
cally improve the approximation by taking back various
relevant missing terms. For instance, we expect that the
following probability distribution:

P (x t) 1)+(0( c( 0=c (t)t+0o+t)(3to+t 0t) (1)+c 3 0)cot(Bt+0+ot t) (3)+0 ) 13) (31)a 2 2 1/2 a
X X
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with ( I ~(t)/t)x) ~0) being given by the full terms R, +82
and k3 and (3 (t)/Bx) ~0) being given in the leading order
of D, may give much better results which may be valid
from D =0 to relatively large D. Such higher-order con-
tributions involving l3 and (3~(t)/t)x)~0) will be ana-

lyzed in future work.
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