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The quasistationary distribution and the transition probabilities for systems driven by weak noise

are analyzed to logarithmic accuracy. The problem is reduced to the boundary-value problem for

the set of ordinary differential equations. The form of the equations is determined by the shape of
the power spectrum of noise. They are solved in the limiting cases of small and large times charac-

terizing noise correlations, and also for a high-frequency narrow-band noise. The dependences of
the logarithm of the distribution on the parameters and the coordinate of the system are quite

specific in the latter case. The logarithms of the transition probability and of the quasistationary

distribution in the point separating the ranges of attraction to different stable states differ from each

other.

I. INTRODUCTION

Many physical systems can be described as dynamical
systems driven by external random forces that result, say,
from coupling to surroundings. Features of fluctuations
in a system depend substantially on the character of a
force. The latter is often modelled by white Gaussian
noise, i.e., it is assumed to be 5-correlated in time and to
have a frequency-independent power spectrum, respec-
tively. A much more realistic model of a random force is
colored Gaussian noise; the correlation time of such noise
is finite and the power spectrum 4(co) has a pronounced
dependence on frequency. The latter model holds, in par-
ticular, for the systems coupled to a bath; random forces
result here from thermal fluctuations, thus they are
Gaussian and have finite correlation time. In recent
years a number of papers dealing with systems subjected
to colored noise have appeared (see Refs. I —5 and refer-
ences therein).

The important characteristic of a noise-driven system
is its stationary distribution over the phase space (the
probability density). When noise is sufficiently weak, this
distribution has maxima in the stable equilibrium posi-
tions of the system and for Gaussian noise is Gaussian
near the maxima, where the equations of motion can be
linearized. Far from the stable states it is substantially
non-Gaussian, generally speaking. It is formed here by
large fluctuations, i.e., by large "outbursts" of noise. In
systems with two or more stable states, large fluctuations
can give rise also to transitions between the states. For
weak external noise the transition probabilities are ex-
ponentially small; they are much smaller than the re-
ciprocal relaxation time of the system t, ' and the re-
ciprocal noise-correlation time t, '.

A convenient approach to the analysis of large fluctua-
tions in systems driven by Gaussian noise is based on
Feynman*s idea of the direct interrelation between the
probability densities of the paths (the realizations in time)
of the dynamical variables of the system and of the paths

of the noise f (t). This interrelation arises from the fact
that each path f (t) results in the respective path of the
dynamical variables. As a consequence, the probability
density of reaching a given point in the phase space of the
system at a given instant is determined by the probability
density of that path f (t) which brings the system to this
point at this instant [by the integral of the probability
density functional for the noise over proper f (t), cf. Sec.
II]. For a point lying far froi.i the stable states the proba-
bility densities for all proper f (t) are very small and
difFer substantially for different f(t) The pr.obability
density of reaching such a point is determined then, with
an accuracy to the preexponential factor, by the probabil-
ity density of the most probable suitable path f (t), i.e.,
by the optiinal fiuctuation (optimal outburst) of the noise.
In Ref. 6 the outlined approach was developed and expli-
cit expressions for the transition probabilities were ob-
tained for systems driven by white noise; the possibility of
generalization to the case of an arbitrary Gaussian noise
was stressed (see also Ref. 8).

In the present paper we consider the stationary (quasi-
stationary) distribution far from the stable states and the
fluctuational transitions, and analyze their features due to
the nonmonotonic power spectrum of the driving noise.
Aiming at simplicity we assume the system to be de-
scribed by one dynamical variable x that satisfies the
equation

x = —U'(x)+ f (t) [x—:dx ldt, U'(x)—:dU(x)ldx],

where f (t) is weak zero-mean Gaussian noise with the
frequency-dependent power spectrum

e(~)= f dtexp(i~t)P(t), P(t)=(f(t)f(O) I . (2)

The quantity 4(co) is a noise characteristic that is often
determined experimentally, so it is important to express
the characteristics of fluctuations in a noise-driven sys-
tem in terms of 4(co).
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In Sec. II the quasistationary distribution of the system
subjected to colored noise is analyzed to logarithmic ac-
curacy. The problem is reduced to the boundary-value
problem for the set of ordinary differential equations
which is solved in limiting cases. The transition probabil-
ities are shown in Sec. III to be determined by the same
equations, but the boundary conditions are quite difFerent
here. In Sec. IV the equations are solved for the case of a
narrow-band high-frequency noise and the features of the
probability distribution and the transition are revealed.
Section V contains concluding remarks. In the Appendix
an alternative formulation of the problems in question is
given for the case when 4 '(co) is a polynomial in co .

II. GENERAL EXPRESSION
FOR THE QUASISTATIONARY DISTRIBUTION

We shall suppose that the potential of the system U(x)
has two minima as shown in Fig. 1 (the generalization to
the case of several minima is straightforward). If the ran-
dom force f (t) is weak, the system placed initially, e.g. ,
at x &x, [x, is the local maximum of U(x)] with an
overwhelming probability will approach the left
minimum of the potential x, (the stable state 1). This
occurs within a characteristic relaxation time t„, which
equals 1/U"(x, ) for sufficiently simple potentials. Then
the system will fluctuate about x& due to noise. The
characteristic correlation time of these fluctuations is ob-
viously -max(t„, t, ), where t, is the correlation time of
noise. Within the time —max(t„, t, ) the system "forgets"
its initial state and the quasistationary distribution p, (x)
is worked out in the range of attraction to x, , i.e., in the
range x &x, (and sometimes out of this range; see Sec.
IV). This distribution varies over the time W, &, where

W,J is the probability of the noise-induced switching from
the ith stable state to the jth one.

Weakness of noise means that the fluctuational mean-

u (x)

square-root displacement of the system is small as com-
pared with the characteristic distances ~x» —x, ~

and
that the transition probabilities

W, (&t, ', t, ', i,j=1,2. (3)

These criteria are fulfilled provided the characteristic
noise intensity D, equaling the maximum value of the
power spectrum of noise is small,

D =4,„(co), D « 1 . (4)

D is assumed the smallest parameter of the theory.
When (3) is fulfilled the quasistationary distribution

p, (x) can be expressed easily in terms of the probability
density w(xb, x„tt, —t, ) of the transition of the system
from the point x, occupied at the instant t, to the point
xb at the instant tb. It follows from the above arguments
that in the range

t„,t, «t «W, ,
'

the value of w (x,x„t) for x and x, lying within the range
of attraction and not too far from one and the same
stable state i is independent of t and the initial coordinate
x, and just gives the quasistationary probability distribu-
tion,

p, (x) =w(x, x„t),
(x, —x, )( —I)'))(Dt„)'i ix; —x, ~

.

[According to Eqs. (1), (2), and (4) D' determines the
fluctuational "spreading" of the coordinate x. If the ini-
tial position x, is too close to x, the system can go to the
states 1 and 2 with the probabilities of the same order of
magnitude, so this case is excluded when expressing the
distribution in terms of w (x,x„t)].

The quantity w{x„,x„tt, —t, ) can be written in the
form of a path integral,

w(x~, x„t„t,)=j— 2)f (t)P[f (t)]5(x (t~) xt,)—
0 Q

X J2)f (t)'P[f (t)]

X) X

I

X

The first integral here is calculated supposing the system
to be located in the point x, at the instant t, . Equation
(7) expresses the obvious fact that w(x&, x„tt, t, ) is the-
integral over all realizations of the force f(t) which
transfer the system from x, to xb over the time tb

—t, .
The weighting factor P[f (t)] gives the probability of a
realization.

By making use of the expressions given in Ref. 7 one
can show the probability density functional P[f (t)] for
the zero-mean Gaussian noise with the power spectrum
{2) to be of the form

P[f (t)]=exp — Jdt f (t)F i f(t)——1 d
2D dt

FIG. 1. The double-well potential. The points x l, x„and x,.
are the positions of the stable states 1,2 and of the unstable sta-
tionary state s, respectively.

F(a))= D4/(co) . (8)

In obtaining (8) it was taken into account that
4(co) =4{—co) for a stationary random process [for such
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a process (f(t)f (t') ) depends only on t —t'], and 4(cu)
and its derivatives were assumed smooth [in essence, it
was supposed that 4 '(co) could be expanded in a series
in co converging for finite co]. The operator F( —id/dt)
is then self-adjoint within the class of sufficiently smooth
functions f (t) which vanish for t ~+~ and for which
the integral in Eq. (8) exists. Only smooth f (t) are of
physical interest, because noise generated by real physical
sources does not have singularities. Since the power
spectrum i1i(co) is positive for all co, the argument of the
exponential in Eq. (8) is negative for all f (t) (cf. the Ap-
pendix).

We note, in particular, that for the widely investigated
model' where the noise correlator decays exponentially
in time,

$(t)= exp( —{t~/t, ), 4(co) =D I(1+a) t, ),D

C

(9)

the operator F( id ldt—) is obviously of the form of the
Hamiltonian of a quantum oscillator.

The paths f (t) contributing to (7) are determined by
the equation of motion (1) with the proper boundary con-
ditions, thus they are independent of the noise intensity
D. Therefore in the limit of small D the functional
P[f (t)] is exponentially small for such f (t) As a. conse-
quence, the distribution p, (x)=m(x, x„t) is exponential-
ly small as well (for ~x

—x, ~
exceeding greatly the root-

mean-square displacement ~D' ). To find p;(x) to log-
arithmic accuracy in D it suffices to find P[f (t)] for the
most probable proper path f (t). The expression for p, (x)
is then of the form

p; (x ) = const X exp[ —R, (x ) /D], (10)

+ f dt A(t)[x+ U'(x) —f (t)],

x+ U'(x) —f (t) =0,
with the boundary conditions

where R, (x) is given by the solution of the variational
problem

R, (x ) =minA, [f;x, t ],

The set of variational equations describing the extreme
paths x ( t),f ( t ) follows from (11) to be of the form

F i —f—(t) —A(t)=0 for t &t,. d
dt

A(t) —U" (x)A, (t) =0 for t & t, (13)

x(t)+ U'(x) —j(t)=0 for t & t .

Note that the highest-order derivative in F ( id Idt)f (—t)
should not be continuous at t = t.

Equations (13) with the boundary conditions (12) make
up the boundary-value problem, which can be solved nu-
merically for arbitrary potential of the system U(x) and
power spectrum of noise 4(co). A simple procedure can
be proposed when F(co) ~4 '(co) is a polynomial in co

(of a degree N). Since the function U'(x) is linear in
x —x, near the equilibrium position x„ the set (13) is
linear here as a whole and it is possible to seek the solu-
tion for f (t), A{t),x (t) x, at t~ —oo —in this case in the
form of exp(at) with positive Rea. The values of a can
be obtained from the secular equation

point also].
The boundary conditions (12) for t ~ —~ correspond

to the above physical picture: the system stays for a long
time in the point x, with f (t)=0 (with an accuracy to
small terms ~ D' ) prior to the optimal fluctuation driv-
ing the system to x starts. When calculating the distribu-
tion p, (x ), the motion of the system after it has reached
the given x is out of interest, cf. (6), so f (t) dies out for
t ) t. We note that this decay inAuences the behavior of
f (t) for t & t via the continuity conditions, i.e., the finite-
ness of the noise correlation time gives rise to certain
"postaction" [in the case of white noise f (t) becomes
zero abruptly, f (t) =0 for t ) t ]

Since F(co) is obviously, from Eqs. (4) and (8), indepen-
dent of the noise intensity D, the function R, (x) (11) is in-

dependent of D as well. The dependence of p;(x) on D
(10) is thus of the activation type, and R;(x) may be
called the "activation energy" of reaching the point x
from the stable state i.

Analysis of the variational equations

x(t)=x, x(t)~x, for t~ —~,
f(t)~0 for t~+~ .

(12)
ao= U"(x, ),
F( —ia„)=0, Rea„)0 (n =1,2, . . . , N) .

(14a)

The functional A, [f;x, t ] should be minimized with
respect to both f(t) and x(t) independently. The first
term in %,[f;x,t] determines the probability density (8)
for a given realization f (t). The second term reflects the
interrelation (1) between x (t) and f (t), which is taken
into account by using the method of undetermined
coefficients; l(t) is just such a coefficient. The instant t in
(11) at which the system reaches the given point x is arbi-
trary, R, (x ) is independent of t This is a con.sequence of
quasistationarity [cf. Eq. (6) where the distribution in a
given point is independent of the moment of reaching this

The resulting solution for f (t), A, (t),x(t) contains N+1
coefficients. They can be determined from the condition
that x(t)=x and from N relations between
f(t), df Idt, . . . , d 'f Idt ' for t =t The relation. s
follow from the continuity of these functions and from
the fact that the solution of Eq. (13) for t & t is of the
form

f (t) = g I A„exp[a„(t —t )]+B„exp[—a,*, (t —t )]],

t & t (Rea„&0) . (14b)
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Indeed, since f (t) should vanish as r ~ ~, all 3„ in (14b)
should equal zero, and this just gives E relations between

f (r) and its derivatives for t =t
T. he numerical realiza-

tion of this procedure will be demonstrated elsewhere.
In some limiting cases Eqs. (13) can be solved analyti-

cally. We shall consider first the case when the noise
correlation time t, is small as compared with the relaxa-
tion time t„—1/U" (x; ) [there may be several times
characterizing the noise correlator P(t)=(f(t)f(0)),
say, the reciprocal decrement and the period of oscilla-
tions of P(t), see Sec. IV; all of them are assumed small
now]. To zeroth order in t, /t„ the optimal path is given

by the expressions

f (t)=2U'(x), k(t)=2F(0)U'(x),

x = U'(x)[x =—x (t)], t & t, x (t ) =x .
(15)

The dependence (15) of x on t is obviously just opposite to
that for the system in the absence of noise, when
x = —U'(x).

At first glance the corrections to (15) should be
-t, /t„, since F( id/dt—) in (13) is a series in t, d /dt
However, there is a correction -t, /t„which comes from
the continuity of f (t) at the moment t To find. it we use
the relation

f (t) = Jdt'P(—t —t')A(r')
D

(16a)

which follows from Eq. (13) with allowance for (2),(8), if
one sets

A, (t) =0 for t & t (16b)

[note that $(t)/D is independent of the noise intensity].
The function P(t) is localized within the domain
~t~

& t, &&t„. Therefore for t (t (t t &&t, ), wher—e A(t) is

comparatively smooth, k/k-t„', Eq. (16a) results in

f(t)=A(t)/F(0) in agreement with (15). The discon-
tinuity of iL(t) at t =t obvious from Eqs. (15), (16b) gives
rise to a "fast" addition fif to f (t),

f (t)=2U'(x (t))—5f (~t t
~

) for t t &0, ——

correlation of noise either compresses (localizes) the dis-
tribution p, (x) by increasing R;(x) far from the equilibri-
um position x, for t, )0, or widens the distribution for
t, &0.

In the opposite case of large correlation time of noise,
t, ))t„, the system follows f (t) "adiabatically" (cf. Ref.
4). To zeroth order in t„/t, we can neglect dx/dt in the
latest equation in (13) [for U"(x) & 0] and replace
P(t t') by—$(0) in (16a). Then

R(x)= (U' )2, t, »t„
2 (0)

(19)

where
~ U,'„~ is the maximum value of

~

U'~ in the interval
(x„x). It should be noted, that in the case when U"
changes sign in this interval there arise nonanalytic
[-(t,/t, ) '] corrections to (19).

III. TRANSITION PROBABILITIES

To logarithmic accuracy the probability W; of the
transition from the ith stable state to the jth one is deter-
mined by the optimal fluctuation of noise which drives
the system from x, to x . The transition takes place pro-
vided the system stays at x when the fluctuation has
finished, i.e. , f (t) and its derivatives have become zero
(with an accuracy to terms ~D' '-). The transition
occurs also, if f (t) and its derivatives become zero for
x (t) lying anywhere in the range of attraction to the state
j, including the boundary point x, [for
x (t) x, ~

& (D—t„)' ~x,
—x, the probability of the transi-

tion to x, is ——,'].
It is just the point x, where the extreme path of the

system described by Eq. (13) should finish in the problem
of the transition probability. Indeed, in this point U'=0,
so there occurs here the slowing down of the motion of
the system for f (t)=0. The conditions of approaching
x, by the system and of vanishing of f (t) and its deriva-
tives are fulfilled self-consistently as t ~ ~, since
U"(x, ) (0 and thus k{t)~0 for x ~x„ t ~ oo. There-
fore the expression for the transition probability is of the
form

f(t)=5f(t t) for r —F&0, —

6f (t) =2F(0)U'(x ) J dt, P(t + t, )/D .

(17) W„=const Xexp( —R„/D),

R„=min. R, [f;x„t~ ~ ] .
(20)

R, (x ) =2F (0)[U(x )
—U(x, )]+F(0)[U'(x )] t, ,

r, =2F(0)J dr tp(r)/D,
0

(18)

The first term in R, (x) (18) is the well-known result for
white-noise-driven systems. The second term gives the
first-order correction due to noise correlations. For a
particular case of noise with the correlation function of
the form (9) t, =t, and Eq. (18) goes over into the result
of Ref. 3 obtained by a substantially different way. We
note that in the general case t, may be positive or nega-
tive depending on the character of P(t). Therefore weak

Substituting (15), (17) into (11) and replacing U'(x) in Eq.
(15) for x by U'(x) —fif ( ~t t

~
) one obtains —the following

expression for the effective activation energy of reaching
a given point X:

An alternative proof of Eq. (20) for the important case
when F(co} is a polynomial in co, so that x (t), f (t), and
the derivatives of f (t) can be considered as the com-
ponents of a Markov process, is given in the Appendix.

The activation dependence of the transition probabili-
ties on the intensity of Gaussian noise was obtained ear-
lier in Refs. 2, 6, and 8. The above path-integral method,
which is the generalization of the method, " differs from
that in Ref. 2 {which is based on the path-integral formu-
lation as well). At the same time the main terms in the
functional determining the extreme paths can be ob-
tained from A, (11) by eliminating f (r) with the aid of
Eq. (16a) and by replacing A, ( t ) by —i A(t ). The,
boundary-value problem (12), (13), and (20) was not for-
mulated in Ref. 2. We stress that as it follows from Eqs.
(11), (12), and (20) R„&R, (x, ) in the general case, i.e.,
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the transition probability is not given to logarithmic ac-
curacy by the occupation of the saddle point, it is ex-
ponentially smaller for colored noise. The example is
given in Sec. IV.

It follows from Eqs. (10)—(13), (15), (19), and (20) that
in the limiting cases t, /t„«1 and t, /t, &)1 the activa-
tion energy of the transition R,, =R;(x, ). For small t, /t„
the corrections to R,, of the first order in t, /t„, obviously
from (18), vanish. To the second order in t, /t„

The correlator P(t) of the noise under consideration
has two characteristic times, I ' and coo '. So, fluctua-
tions in a system driven by such a noise depend on inter-
play of three characteristic times, i.e., on three dimen-
sionless parameters: I /coo, 1 t„, and coot„. For slow re-
laxation of the system the probability distribution p, (x)
and the transition probability W;, are given by Eqs. (10),
(18), (20), and (21) with

R,, =R;(x, }=2F(0)[U(x, )
—U(x, )]

+F"(0)J dx U'(x}[U"(x)]

F"(co)=, ~F"(0)/F(0)~ «ri .
d F(co)

dco

(21)

r, = —(~,' —4r') /2r~,',

F"(0)/F(0) = —4(co —2I )/co",

F(0)=~tD/4rD (I t„))1, co t„))1).

(26)

For noise with the correlator of the form (9) Eq. (21)
gives the known result (cf. Refs. 2 and 3):
F"(0)/F(0)=2t, here. In the general case the sign of
F"(0) is arbitrary, so the correlation of noise can cause
increase or decrease of the activation energy of the transi-
tion R,, We note that the signs of the corrections to R;,
and to R;(x) (xAx, ) can differ from each other [cf. Eq.
(26) below].

IV. LARGE FLUCTUATIONS
CAUSED BY A NARROW-BAND NOISE

In many physical systems the power spectrum of the
external noise 4(co) contains a relatively narrow peak
with a half-width I small compared with the position of
the maximum coo,

I «coo . (22)

Incoherent light filtered by a narrow-band color filter is
an example of the respective noise. Another well-known
example is thermal noise of any resonant system.

We shall model the power spectrum of a narrow-band
noise by the expression

4(co)=4rD/[(co —co ) +4I a) ] . (23)

This expression gives the power spectrum of the white-
noise-driven harmonic oscillator which obeys the follow-

ing equation of motion:

f+2I f+roof =((t),

I « t„«coo . (27)

This case is specific for colored noise with two substan-
tially different characteristic times. It turns out, in par-
ticular, that due to the resonant character of noise, fluc-
tuations with frequencies co=coo)) t, influence the sys-
tem strongly here.

When (27) is fulfille we can seek the solution of Eq.
(13) in the form of a superposition of fast oscillating and
smooth terms,

The dependence of the main terms in the arguments
R;(x)/D and R„/D of the exponentials determining
p;(x) and W„on noise parameters in the case (26) is given
by coo/4I D according to (18) and (21) [i.e., by 4 '(0),
that is quite natural in view of the system being most sen-
sitive evidently to fluctuations with frequencies co t„
for broad smooth 4(cu)]. The signs of the leading-order
corrections to R, (x) and R„are given by those of t, and
F"(0), respectively. They depend on the ratio coo/r and
are obviously, from (26), opposite for 2I & coo & 4I

The explicit form of the coefficient D/P(0) in the ex-
pression (19) for R, (x) in the case of fast relaxation,
I t„«1, coot„«1, is evident from Eqs. (25a) and (25b)
(cf. Ref. 9).

The most interesting and nontrivial limiting case is
that of the narrow-band noise (22) and intermediate re-
laxation time t„,

(24)
(g(ig(r )) =4rDS(r —r ) .

Here I has the meaning of the friction coefficient of the
oscillator, while coo is the eigenfrequency of the latter.
For an oscillator in thermal equilibrium with a bath the
characteristic noise intensity

x(t) x,. (t)

k(t) = A, , (t) +
f, (t)

x+(t) x (t)

A, ~(t) e '+ A, (t) e
1C9 E0

D =coo/(0) (25a)

equals temperature in energy units. The effective noise
intensity D introduced in (4) is proportional to D,

D =
2 2

for c o 2PD

r(~,' —r'}
(25b)

D = for ~o&2I4I D

COO

(28)

The complex amplitudes x+, k+,f+, as well as the main
terms in x, , A, ,f, , are supposed to vary slowly in

time, i.e., their variation over the time -coo is assumed
small [there are also terms in x, A. ,f which oscillate at fre-
quencies 2coo, 3coo, . . . , but they are —(coot„ )

' «1 and
thus can be neglected]. The equations for the ainplitudes
x+, A. + follow from (13) to be algebraic,
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x+(t) =+(i~a) 'f+(t),
A. ~(t)=+(i~0) 'U+A, , (t),

a'U,
U+. = U+(x, ,x+,x ) = (29)

U, —:U, (x, ,x+,x )

f —I f = —r'A, (30)

In obtaining (29) and (30) we have taken into account
only resonant terms and neglected x+, I,+ and f+, I f+
as compared with coax+ NOR+ and aij'+, respectively
The terms U+ are obviously the components of U"(x) os-
cillating as exp( idiot), while U, is the smoothly vary-

ing part of the potential U(x).
The smooth parts of x, A, ,f obey the equations

= —U,
' +f,

f,~=(4I /aio}A,

Usm
U,'—:U,

' (x, ,x+,x )=
xsm

(31)

U,
" = U,

"
. (x, ,x+,x )=

2
Us

2
Xsm

The complex amplitudes f+ obviously, from (30), vary
over the time -I ')&t, . This concerns also x+ accord-
ing to (29). The force component f, is seen from (31) to
contain the very small factor I /cop and turns out to be
small (see below), so it may be neglected in a number of
cases, and Eq. (31) for x, becomes then an algebraic
equation

U,
' (x, , x+,x )=0 (U," )0) . (32)

This equation corresponds to the smooth part of the
coordinate x, following adiabatically the slowly varying
amplitude of the fast oscillations for I &&t„'. In
essence, fast oscillations of x (t) with slowly varying am-
plitude change the effective potential for smooth motion
U, , and the smooth component of x occupies the
minimum of this potential. The motion here is analogous
to some extent to that of a particle in a fast oscillating po-
tential considered by Kapitza. ' In our case, however,
the fast oscillating part of the coordinate is not small. In
addition, we have "double" adiabaticity: oscillations are
much faster while their amplitude is much slower than
the relaxation rate of x,

A. "Activation energy" R;{x) for a narrow-band noise

The activation energy R;(x ) of reaching a given point
x is determined from the boundary condition (12), which
takes the following form in the variables (28):

dg U(x, +x+e'~+x e ' ),2' 0

while those for f+ are the second-order differential equa-
tions,

x, (0)+2x+(0)=x

R;(x ) =(2coo/r)x+ (0), (35)

where x+(0) is related to x via Eqs. (32) and (33).
The dependence of R;(x ) on the parameters of noise is

given by the coefficient coo/I in (35). We note that the
ratio R, (x )/D =2coox+ (0)/D, which gives the argument
of the exponential in the expression for the distribution

p, (x ) (10), is independent of the half-width I of the peak
in the power spectrum 4(ai) for a fixed noise-intensity
parameter D (e.g. , for a fixed temperature in the case of
thermal noise).

The dependence of R, on x for smooth single-well po-
tentials is simple, but rather specific. For example, for a
parabolic potential

U(x) =
—,'a~x (36a)

we have from Eqs. (32), (33), and (35)

R (x)=(~,'/2r)x-' with x, (O) =O, x, (O) =-,'x. (36b)

The curvature a2 of the potential (36a) does not enter
R (x ) at all, so the result (36b) differs qualitatively from
that for white-noise-driven systems [in the case (36a) Eqs.
(13) are linear and can be solved exactly with the result

[x+(0)=x (0)=x+(0), t=0] . (33)

Without loss of generality we have supposed here that X
is reached at t =0; x (0) can be made equal to x+(0) by
shifting the time origin in (28) by At —1/coo.

Equations (32) and (33) express x+(0),x, (0) in terms
of x. To find f (t), k(t), and x (t) as a whole we note that
for t &0 the function A, (,t) obviously from (31) and (32)
increases with the increment U,

" &0, while for t )0 one
can set X,. (t)=0 [cf. Eq. (16b)]. Equation (16a) can be
used then, and allowing for discontinuity of A,, (t) and
for the interrelation (30) between f+ and X+ we arrive at
the expression

f+(t)= ,'I J—dt'exp(—I tt t'~]A+(t—')

+ A,, (0)exp( —r~t~ } .
2cop

Since ~A+(t)~ ~ ~A,, (t)~ increase rapidly compared with

f+(t) for t & 0, the integral here can readily be evaluated
to give

iI U+ (0)
f+ ( t) =+ A., (0) 1 — exp( —I

~

t
~ )

U, (0)

[U'+(0)= U" (0)], (34)

where U+(0), U,
" (0) are the values of U+, U,

" for t =0,
i.e., for the values of x, ,x+ given by (32) and (33). Since

f+(0)=+icebox+(0), Eqs. (32) and (34) express I,, (0)
[and hence A, (t),f (t),x (t) allowing for (28),(29)] in terms
of x. Note that A, (0)-aio/r, so f, —I /coo«1 and
the neglect of f, in Eq. (31}for x, is reasonable.

Equations (28), (29), and (34) result in the following ex-
pression for the activation energy R;(X) (11):
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coinciding with (36b) in the limit (27)]. We note that Eq.
(36b) holds also for an arbitrary symmetric anharmonic
potential U(x)=g„a2„x ", if U"(x) &0 for all x.

For bistable potentials the dependence of R; on x turns
out to be more complicated. We shall illustrate it by tak-
ing the simple model potential

0.5—

x (Oj

~ 0 ~ ~ ~

U(x)= —
—,
'x + —,'x (37)

as an example. The stable states and the saddle point are
given here by

x1 — 1, x2 1& xs (38)
~ ~ ~ ~~~

The solution of Eqs. (32) and (33) is of the form

x+ (0)= —,', [2x+(10—6x )' ],
x,. (0)= —,'[3x+(10—6x )' ] for x+(0) & —,',
x+(0)= —,'x, x, (0)=0 for x+(0) & —,

' .

(39a)

(39b)

The inequalities here follow from the condition U,
" )0.

The dependence of x+ (0) on x given by (39a) is plotted in
Fig. 2.

Equations (35) and (39a) give R, (x ) for not-too-large
deviations lx —x;l. The upper sign in (39a) refers to
R, (x), while the lower one refers to R2(x). Obviously,
R, (x ) =R2( —x ). If the system occupies initially, e.g. ,
the state 1, then for sufficiently small lx —

x& l
«1 we

have x+(0)-X—x, , x, (0)—x, —(x —x, ), and
R, (X ) ~ (x —x, ), cf. Figs. 2 and 3. Note that
x, (0)—x, & 0, i.e., the center of vibrations of x (t) shifts
towards x =0 irrespective of the sign of X —x, . This
shift makes it impossible for the system to reach the
range of sufficiently large x, —x [x & —

( —', )' ] when

moving along the branch (39a),

-0.5—

FIG. 2. The dependence (39a) of x+(0) on x for the double-
well potential (37) [ —,

' lx+(0)l is the amplitude of vibrations of
the system when the latter reaches a point x]. Solid and dashed
lines refer to the initial states 1 (xl = —1) and 2 (x2=1). The
dotted lines show the ranges where the interrelation (39a) be-
tween x+ (0) and x is physically meaningless.

x )0 by the system does not imply the transition to the
state 2, since for not-too-large x the center x, of the vi-

brations of x (t) lies for all t in the range of attraction to
x, [i.e., x, (t) &0], so the system returns to the initial
state 1 as f (t) dies out after x, (t)+2x+(t) has reached
x. For the potential (37) the quasistationary distribution

p ~
(x ) given by (10), (35), and (39a) extends up to

x =&2/3 [where U,
" (0)=0 for the solution (39a)], the

value of R, (&2/3) coincides with the activation energy
of the transition from the state 1.

Bx, (0)
for x ~+xo, xo= &5/3 . (40a)

In the range lx
l
=xo the above theory is inapplicable

obviously. The relation U+ =BU,' /Bx+ combined with
the conditions x+(0)=x (0), U'+(0)= U" (0) and with
Eqs. (32) and (33) show that

U+ (0)

U, (0)—U+(0)
(40b)

Thus lBx, (0)/Bxl ~ when lU,
" (0)—U'+(0)l 0. In

this case A, , (0) is seen from Eqs. (29) and (34) to diverge
as well ~ Therefore the higher-order terms in
I /coo, (coot„ )

' should be taken into account when

l U, (0)—U~ (0)
l

is small.
For x lying below —xo the function R, (x ) is given by

the solution (39b). So, in the region x = —xo R, (X )

changes sharply [discontinuously to zeroth order in
I /ruo, (coot„ ) ], cf. Fig. 3. Similar "jumps" occur in

R, (x ) for other potentials where U,
" (0)—U+ (0) van-

ishes at some x.
One more feature of R

&
(x ) obvious from (35) and (39a)

lies in R &(x ) spreading on the domain of attraction to the
stable state 2, i.e., on the range x )0. Reaching a point

0.5—

FIG. 3. The "activation energy" R, (x ) of reaching a point x
from the stable state 1 (x, = —1) for the potential (37). In the
region of the "step" at x = —(5/3)' ' the corrections to Eqs.
(35) and (39a) for R, (x ) should be taken into account. R, (x ) is
shown dashed here.
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B. Activation energies of the transitions

Just as in the case considered above the motion along
the extreme path resulting in a transition between stable
states presents itself as a superposition (28) of a smooth
motion and fast oscillations. However, Eq. (32) does not
hold for the whole path, since lA, , (t)l increases for
U,

" &0, and thus the boundary condition (20) f (t)~0
[and hence A.(t)~0] as t ~ co is not fulfilled for the solu-
tion (32).

The pattern of the motion is as follows. Initially the
system is close to a stable state i and f (t), A.(t) are very
small [and lA, (t)l « lf (t) ]. The complex amplitudes
f+(t) increase with the increment I, and their increase is
followed adiabatically by the amplitudes x ())
=+(italo) 'f+(t) and by the smooth component of the
coordinate x, which is given by (32). At some instant
t ' (we set t' ' equal to zero) x+()) reach the values x+~
which are given by the equations

(41)

[we suppose that Eq. (41) has unique solution for x, ly-

ing between x, and x„and that x ' ' =x ~+0'].

In the region hlx+ l

= lx+ l

—lx'+
l

—I [x, differs
from its value given by (41) by —I' in this region] the
adiabaticity is broken and the term x, in (31) is substan-
tial. Within a time At —I '~ the value of lx l

reaches
its maximum and begins to decrease, while x, goes over
from the adiabatic branch (32) to that solution of Eq. (31)
for x, which is close to the unstable quasistationary
solution given by U,

' =0 with U,
" &0 (f, plays a rol.e

as the "stabilizing" factor for this solution). Along the
respective path x, approaches obviously the saddle
point x, as lx+ l~0 [note that U'(x, )=0, U"(x, ) &0],
while lA. , falls down with the decrement lU,

"
l. In its

maximum k,. l
~ cooI . The latter estimate follows

from the expression

We note that for this particular system the characteristic
scales for the motion in the critical region,
lx+ l

= x, ' = I/i 6, differ from those given above for
the general case, since U,

"'
is very small in this region.

Nevertheless the time scale is small as compared with
I ' and therefore Eq. (43) holds.

V. CONCLUSION

It follows from the above results that the system is
influenced effectively not only by fluctuations with fre-
quencies cu t„', but also by high-frequency fluctuations.
In the case of a broad smooth power spectrum of noise
4(co) the latter cause the corrections to the quasistation-
ary distribution and the transition probabilities. The
signs of these corrections depend on the shape of 4(co).
In the important case when 4(co) has the sharp peak at
frequency co0)&t„' the high-frequency fluctuations play
the dominant role. The logarithms of the quasistationary
distribution of the system, R, (x)/D,—and of the transi-
tion probability, —R„/D, are proportional here not to

'(0) [as for smooth 4(co)], but to I't„4 '(0)
'(0).

The dependences of R, (x) on the parameters of the sys-
tem and on the coordinate x are quite different in these
cases. In particular, R, (x) can vary extremely sharply
within a narrow range of x (can have "steps") for the
high-frequency noise. Qualitative features of the systems
driven by such noise are also the difference between
R, (x, ) and R„. and the spreading of the quasistationary
distribution for one stable state over a part of the range
of attraction to another stable state (these features are in-
terconnected with each other and can be manifested for
other types of colored noise as well; the point x, separates
the ranges of attraction to diff'erent states). Thus "color-
fulness" of driving noise enriches substantially the pat-
tern of fluctuations in a system. The character of fluctua-
tions depends strongly on the shape of the power spec-
trum of noise.

j+(r)= f dr'A. —()')exp( —I l) )'l), —(42)
APPENDIX

which gives the solution of Eq. (30) for the case under
consideration, if one takes into account the relations (29)
between X~(t),f+(t) and A., (t),x (t) and the fact that
the main contribution to (42) comes from the "critical"
region lt'l & I ' « I

Allowing for Eqs. (11), (20), (28), and (42) we have

If the normalized reciprocal power spectrum of noise
F(cu)=D/4(co) is a polynomial in co of degree N, the
colored noise f (t) is the component of a Markov process.
The full set of components is l f,f", . . . , f '

(f "'=d "f/dt"), and the s—tochastic differential equation
for the process is of the form

L ( id /d) )f () )
—=g( t), ( g(t )(()'

) ) =D 5( t —t '),
R„= ,' J dr[—f ())k (t) +f (t)A. +(t)]

L (co)=L, g ()~~+a„), L,=F'"(0) P la„l
(Al)

2 2
0 (0) 2 (43)

n =1

[F(—ia„)=0, Rea„&0] .

It follows from Eqs. (41) and (43) that for the noise under
consideration the activation energy of the transition R„
exceeds the activation energy of reaching the saddle point
R, (x, ). In particular, for the system with the potential of
the form (37)

Here g(t) is white Gaussian noise and ia„are th—e roots
of the polynomial F(co) with positive real parts; cf. (14a).
The correspondence off (t) as given by (Al) to our initial
colored noise is obvious, since the process described by
(A1) is Gaussian and its power spectrum is seen from
(Al) to equal D/lL (co)l, which coincides with (2) ac-
cording to (8).
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P[g(t)]=exp — f dt g (t)
1

2D
(A2)

and applying the arguments used in Sec. II [in particular,
substituting L ( id /dt) f—(t) instead of g(t) into the argu-
ment of the exponential (A2) for the extreme path] one
obtains, that to logarithmic accuracy the probability of
reaching a point (x,f, . . . , f' ") by the auxiliarv sys-
tem is given by exp[ —(1/D)R, '(x,f, . . . ,f ' ")],
where R is the solution of the following variational prob-
lem:

R,'(x,f, . . . , f' ")=min%,'[f;x,t],

Instead of the initial system (1) driven by colored noise

f (t) we can consider now the auxiliary multidimensional
system with the set of X + 1 dynamical variables
g(t) = jx (t),f (t), . . . , f' "(t)j, which is driven by
white noise ((t). In the absence of noise the system is de-
scribed by Eq. (1) and by the equation
L( i—d/dt)f (t)=0. If the potential U(x) in (1) is bi-
stable, the system has two stable and one unstable sta-
tionary states where f =f"'= . =f' "=0 and x
equals x&, x&, and x„respectively. The ranges of attrac-
tion to different stable states are separated by the separat-
ing hypersurface which contains the unstable stationary
point.

When white noise g(t) is applied, the motion of the
auxiliary system is a Markov process. Large fluctuations
for such a process in the limit of small noise intensity D
may be analyzed by the path-integral method (cf. Sec. II)
or by solving the respective Fokker-Planck equation or
the equation for the mean first passage time in the eikonal
approximation (see, e.g. , Refs. 3 and 11). The results
coincide with each other (cf. Refs. 8 and 12). Allowing
for the relationships (1),(A1) between f (t), x (t), and g(t),
and for the well-known form of the probability density
functional for the white noise j( t ),

This condition is satisfied automatically for the function
R; —=R;(x ) which is the solution of the variational prob-
lem

R, =min(A, '+A,"),
,' f—dt[L( idI—dt)f(t)]',

f(~)—.. . —f(N —1)(~)—0

(A5)

where

m=0 n=O k=O

xf (n+k) (A6)

with unfixed f ( t ), . . . ,f ' "(t ); the extreme path of
is given by the solution of the equation

L( idI—dt)f (t)=0, so R;=R for R given by (A3) and
(A4). Integrating the term

,' f—dt[L( id/d—t)f(t)]2

in %,'+%," by parts we see that the expression (A5) for
R, coincides with Eq. (11). It is obvious from (A3) and
(A5), in particular, that R )0, R; )0.

The probability W; of the transition between stable
states of the (%+I)-dimensional auxiliary Markov sys-
tem is given to logarithmic accuracy by the probability of
reaching the separating hypersurface (cf. also Ref. 13).
As soon as the system reaches this hypersurface the driv-
ing large fluctuation of g(t) is switched off [g(t) should
not be continuous in contrast with f (t)] and the system
goes then to another stable state "by itself" with a proba-
bility —

—,'.
To find 8', we should minimize R with respect to the

position of the final point (x,f, . . . , f ") on the
separating hypersurface. According to (A3) the variation
of R when this point is shifted is of the form

N —1 N N —m —1

5R,' =)(.5X+ g 5f ' g g l„l„+ +,( —1 )"

%,'[f;x,t]= ,
' f d—t[L( id Idt)f (t)]'—

+ dt's t x+U'x — t

x( —ca)=x, , f( —ce)= . =f' ''( —ce)=0,
x(t)=x f(t)=f f' ' (t)=f'

(A3)

l„=, (d "L (eo)/dto" ]
(
—i)"
n~

(A7)

We shall consider 5R,' for the relationship between the
components of the shift 5x, 5f, . . . , 5f' " which cor-
responds to the small shift of the system in the absence of
noise,

To compare (A3) with Eq. (11) we note that, if we are
interested in the distribution over X only, the multidimen-
sional probability distribution should be integrated over

f, . . . ,f' ". To logarithmic accuracy the result is
given by the extremum of R,

' with respect to
f, . . . ,f' ", i.e., by R,

' for f, . . . , f' "such that

5X 5J' 5f(N —2)

—U'(X)+f f(1) f(N —1)

5f (N —1)

N —
1

g (l„/lN)f'"'
(A8)

BR,
'

Bf
aR, '

gf (N —1)
=0. (A4)

n=0

Taking into account the relationship

H=0,
N N N N —m

g l„f("'(t) + g g g (
—1)"l„l„+ f'"+"'(t)f' '(t) —k(t)[U'(x) —f(t)]

2 n=0 n=Om=1 k=O

(A9)
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[H is obviously, from Eqs. (13), the integral of motion,
and H =0 due to the boundary conditions (12) and (A3)],
we obtain from (A6) and (A8)

(A10)

When the point (x,f, . . . ,f '
) lies on the separating

hypersurface, the ratio (A8) is positive for the system
shifting towards the saddle point (x„0, . . . , 0) [all paths
starting on this hypersurface go to the saddle point for
g(t)=0]. Therefore the activation energy R decreases
according to (A10) as the end point of the extreme path
(x,f, . . . , f' ") shifts towards the saddle point, and
thus the transition probability is determined by the path

which ends in the saddle point. So, we arrive at the ex-
pression (20) for W,,

%'e note in conclusion that the function
R,'(x, f, . . . , f' ") can be considered as the mechani-
cal action of an (%+1)-dimensional system with the
coordinates x,f, . . . ,f ~ ". The function H (A9) may
be shown in a standard way' to be the energy of this sys-
tem. The system is obviously, from (A3), conservative, so
H is the integral of motion. The condition H =0 reAects
the independence of R,

' on time. Since the function
R (x,f, . . . , f' ") can have several local minima for a
given x, the derivative of the activation energy of reach-
ing a point x, R, (x)=minR, '(x,f, . . . ,f' "), can be
discontinuous (this happens for those x where the lowest
minima of R,

' are of the same depth).
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