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Polymer chain in disordered media
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We study the magnitude of the energy fluctuations of a long polymer chain with excluded-volume
interactions placed in a media with a weak random potential. It is shown that there always exists a
critical length N* of a polymer segment or a critical length scale L at which the fluctuations of the
interaction energy between the polymer segment and the medium are of the order of kT. At larger
scales the problem reduces to that of the minimum energy path in a strong random potential. Using
an analogy with the directed polymer problem, we suggest that the size of a polymer coil is of order
L *(N/N*)' ' in three dimensions. In the two-dimensional case, the size of the polymer coil is con-
trolled by excluded-volume effects: 8 -N' . The magnitudes of the energy barriers between the
different, neighboring configurations are (N/N*)' 'kT and (N/N*)' kT for the cases d=3 and 2,
respectively. Those energy barriers cause the trapping of a long polymer chain. The coil-to-globe
transition in disordered media is also discussed.

INTRODUCTION

There are two different classes of processes that deal
with disorder. They are usually called annealed and
quenched disorder problems. The averaging over the
different realizations of disorder in the first problem can
be done simultaneously with a thermodynamical averag-
ing. The polymer chain in a complicated solvent, which
contains other chains or monomers, can be considered an
example of this type of problem. It is evident that if we
first average over all configurations of the inhomo-
geneities of the solution, this problem reduces to the
problem of a chain in a homogeneous medium. But the
effective parameters of the excluded-volume interaction
can be rather exotic in this case. In quenched disorder
problems, the quantities of physical interest must be cal-
culated first (or measured) for a particular configuration
of disorder, only after which the average over the disor-
der can be taken.

We shall be interested here in a problem of
configurational statistics of a polymer chain in a medium
with a fixed disorder. It can be a problem of polymer
chain adsorbed on a rough surface (two-dimensional
case), or a problem of a chain in a three-dimensional
disordered matrix, such as a gel or a porous medium.
This problem was studied using different techniques in-
cluding computer simulation, the replica method, and the
Flory approach (see the recent papers' and references
herein). The results of these investigations for the size of
the polymer chain and its statistics are often controver-
sial. The aim of this paper is to point out pecularities of
the averaging procedure as one possible source of this
controversy. The excluded-volume effects are also very
important in this problem.

If the system is large enough, the thermodynamical
average over all possible polymer configurations also in-
cludes the summation over all possible positions of a po-
lymer in a disordered medium, i.e., over different disorder

realizations. Thus, formally, it is equivalent to the prob-
lem of a polymer chain with annealed disorder. What we
shall show in this paper is that there are serious limita-
tions for this reduction. The reason is that the interac-
tion energy of a chain and a medium differs from site to
site. The magnitude of this difference grows with the in-
crease of the length X of a polymer as a power of N.
Thus, for long enough polymers, these fluctuations can
exceed kT. In this case, the main contribution to the par-
tition function of a chain is given by the rare regions of
the disordered media, where the interaction energy is
minimal. The volume needed to obtain true "averaged"
statistics of a chain grows exponentially with N. The
time needed to obtain the "averaged" statistics should
also be exponentially large. It could happen that for any
reliable observation time, the typical configuration of a
long polymer chain will differ from the configuration of a
polymer in an averaged environment.

These effects cannot be calculated in the framework of
a model of a polymer in an infinitely large system. Thus
we shall start with a problem which cannot be deliberate-
ly reduced to an annealed disorder case. It is a problem
of a polymer in a restricted volume of a disordered medi-
um. This restriction can be realized in different ways: by
box limitations (fixing the position of the center of mass
of the chain) or by fixing the ends of the chain.

WEAK DISORDER

For the sake of simplicity, we shall consider the prob-
lem of a chain with a fixed position of one end placed in a
medium with high (c —1) concentration of weak impuri-
ties of two different kinds with the interaction energy m

(m ((1 in kT units). At first we shall neglect the exclud-
ed volume effects by considering the chain as a Gaussian
one.

The large-scale structure of the polymer can be
represented as a chain of subunits (blobs) of size r, each
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where (=InL, e=4 —d.
These are the same as the equations first obtained by

Nikomarov and Obukhov for the similar problem of the
statistics of a probe polymer chain surrounded by other
chains. The solution of Eq. (2) is
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For B,' '&0, there always exists a critical length scale

containing r monomers. Each blob occupies a volume of
order r". The difference between the number of attrac-
tive and repulsive impurities in this volume is of the or-
der r", and this provides the coarse-grained random po-
tential for each monomer inside this blob. The total
number of monomers in a blob is r, so that the interac-
tion energy of the medium and a blob fluctuates as
(+wr ~

) from one blob to another. At length scales
r —w ' "', the fluctuations of the interaction energy is
of order of unity (of order kT).

This qualitative consideration can be carried out more
accurately including the excluded volume efFects by the
use of replica formalism. The trick is to introduce n

identical polymer chains in the same random medium
and to average over the disorder configurations. Then for
an n-chain Hamiltonian, translationally invariant, the
renormalization-group procedures can be applied. Final-
ly, n should be put equal to zero. Omitting the technical
details, we will briefly describe the results of the above
consideration. There are two independent charges in the
theory. One is the effective second virial coefficient B„.
It is shifted slightly with respect to its homogeneous
value 8 (Refs. 2, 3, and 5):

B'"—B'"—cw'
I1

Another charge B;, describes the specific effect of
disorder —the interaction between the polymer chains
with different replica indices ij (iWj). This attractive in-
teraction B; &0 has a very simple physical explanation.
If one polymer chain is attracted to certain places in a
random medium and repulsed from other ones, the same
happens with another chain placed in the same medium.
In terms of the translationally invariant n-chain Hamil-
tonian, this mutual correlation in configurations of
difFerent polymers can be described as their attraction to
each other.

The renormalization-group equations for B;, and B,
are

L*=e ' at which 8,' ' diverges. If ~B,
'

l~ )8,', ', the
singularity in B„occurs at g, =1/168,', ', if ~8,', '~ &8,', ',

at $, =8,', '/8(8, ') . The divergence of 8, m"eans that

at the scale I *=e ', the magnitude of the energy fluctua-
tions becomes to be of the order of one. At this scale, the
chains cannot any longer be considered as free ones.
Above, we only considered the divergences caused by the
first denominator in the right-hand side of Eq. (3b). If
B,'; '&B ', this singularity can be forestalled by a singu-
larity in B„[second denominator in the right-hand side of
Eq. (3b)]. It manifests the collapse of the polymer chain
due to the attractive monomer-monomer interaction. In
any realistic polymer model, this collapse would be re-
stricted by high-order excluded-volume interactions, i.e.,
by repulsive three-body interactions. Nevertheless, the
singularity in B„means that the renormalization can be
done only up to the scale g-1/32~8;, ~. Actually, it
should be stopped when B„becomes of the order of uni. -

ty; thus B„at this scale is equal to

B(0)

v
(8 Io))1/2 (4)

In this case, B, is less than unity. It means that the re-
normalized interaction of a polymer and a medium at this
scale is weak. Later we shall come back to the case
B;; &0.

STRONG DISORDER:
LARGE-SCALE CONSIDERATION

The large-scale problem can be formulated now as a
problem of placing a chain in a medium with a strong dis-
order. The size of new "monomers" is L*: the same as
the scale of disorder fluctuations. Each monomer is a
subchain [see Fig. 1(a)] of N'=(L')' " elementary
monomers. Here, v is the exponent controlled by
excluded-volume effects: v= —,', or v=3/(d+2). The
amplitude of disorder fluctuations is of order kT.

In the absence of excluded-volume interactions, the
problem is rather simple. In this case we must find the
most attractive region in the neighborhood of the point
to which one end of a polymer chain is attached. The
main part of the chain will be hidden in this region; the
rest will connect it with a point of attachment. The de-
tailed analysis of the optimal configuration on the lattice
with a Gaussian distribution of the interaction potential
was made by Cates and Ball. ' Below, we shall proceed
from the fact that, for real polymers, the excluded-
volume effects should be taken into account. %'e shall as-
sume that at a critical length L*, the magnitude of the
repulsive two-body interaction is large enough to prevent
the two monomers from occupying the same place simul-
taneously. Thus the problem is to find a minimum energy
configuration for a chain of fixed length N =N /N*,
where each site can be visited only once [see Fig. 1(b)].
The main quantities of interest are (a) the typical size of a
polymer chain and (b) the typical energy barrier between
two neighboring optimal configurations. We shall give
here self-consistent estimates for the two corresponding
exponents v and o., defined through R —N ' and E-N
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based on Flory-type arguments.
The first relation between these exponents can be ob-

tained if we assume that the free energy associated with
the entropy of the polymer coil R /X should be of the
order of the amplitude of the energy fluctuations Ã
This gives

a=2v —1 .

Now let us consider a small shift x (&R of a fixed end
of a polymer from its previous position. Only a small
part of the optimal configuration will be affected by this
shift, and the length of this part is of the order x (see Fig.
2). Since the main part of the polymer remains posi-
tioned in the same region as before, only the connection
with this region is changed. The difference in the interac-
tion energy of the two "tails" should be of the order of
x' . When x becomes comparable with R, we can ex-
pect the whole configuration to be switched to another

FIG. 2. Consider a small shift x &&R of a fixed end of a poly-
mer from its previous position. Only a small part of the optimal
configuration will be affected by this shift, and the length of this

part is of the order x. When x becomes comparable to R, we

can expect the whole configuration to be switched to another
one.

(a)

s

OA

(b)

FIG. 1. (a} At length scale L*, the energy fluctuations be-

corne of order kT. This means that some regions of the medium

(A) become more preferable for the chain, whereas the others
(8) do not. (b} The large-scale problem can be formulated now
as a problem of placing a chain in a medium with strong disor-
der.

one. Thus R ' should be of the order of the energy fluc-
tuations N . This is the second relation between the ex-
ponents v/2=a, and we get v= —,

' and a =
—,
' (for any spa-

tial dimension). Similar arguments were used to predict
the exponents in the problem of a directed polymer in a
random potential. ' It is clear that both problems are
closely related, but in our problem we have additional
restrictions connected with the absence of self-
intersections. In the case of a directed polymer problem,
these exponents are proven to be exact at d = 2 (exact
solution"' ) and probably in higher dimensions (numeri-
cal results, ' theoretical arguments"). But in the latter
case, the situation remains controversial because there
are d-dependent numerical results for the same exponents
in some modified stochastic growth models. '

We took into account the excluded-volume effects
when we assumed that at each step a new site was visited.
To be sure that those configurations, selected by the
above consideration, are as a rule non-self-intersecting,
we can estimate the magnitude of the Flory two-body in-
teraction term. It is N /R "or X " and must be com-
pared with R /N or N terms. For d =3, this term is
negligible, and the above consideration is correct. ' At
d =2, this interaction term becomes dominant. The ex-
ponent v is determined by comparing R /N and N /R
terms to be v= —,', and the exponent for energy Auctua-

tions is given by a= —,'. The relation Eq. (5) no longer
holds.

The above consideration was carried out for a chain
with a fixed position of one end. The results we obtained
for the size of a polymer chain at d =3 are rather unusu-
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al. The typical configuration is stretched with respect to
the configuration in a homogeneous medium, even if the
excluded-volume effects are taken into account. Now we
can understand why the averaging over all the
configurations of a free polymer chain in an infinite medi-
um gives a different result. It is because the partition
function of the latter problem can be written as a sum:

Z = g Z'(r),

where Z'(r) is the partition functions of the polymer with
an end fixed at the point r. In the strong-coupling prob-
lem, the logarithm of Z(r) is simply the interaction ener-

gy of a chain and a medium which fluctuates from site to
site with the amplitude much larger than kT. Thus site-
to-site fluctuations of Z ( r ) are exponentially large, and
the main contribution to the partition function Eq. (6)
comes from exponentially rare regions with the minimal
interaction energy. The polymer configurations in these
regions can be quite different from the typical ones.

If we have a long free polymer chain in a disordered
medium, we cannot actually speak about averaging over
all possible configurations, because even geometrically
closest optimal configurations are separated by the ener-

gy barriers with an amplitude of order (N/N') . An ex-
ponentially large time is needed for the chain to over-
come the barrier. And in order to obtain the "averaged"
statistics, the chain must pass through an exponentially
large number of such barriers.

This is very similar to the situation in spin glasses,
where the "true" ground state is unobtainable and
measurable quantities depend logarithmically on the ob-
servation time.

The dynamics of a polymer chain can be characterized
by four different regimes. If the chain is placed in a ran-
dom medium (with a weak disorder) at time t =0, we can
expect first a free relaxation of segments of a chain with
L-t' dependence of a scale of relaxation on time. '

At t -L„this regime will be superseded by logarithmic-
ally slow relaxation with an L-ln t dependence. It
means that there will be 1/f noise in all quantities
which characterize the polymer chain position. At
t -expc, (N/N*), we shall obtain another logarithmical
regime (also with 1/f noise) with transitions of the poly-
mer chain as a whole between different optimal
configurations. Here c i is some numerical constant.
And, asymptotically, at t )expcz(N/N*), where c~ is
another numerical constant, we shall obtain the large-
scale classical diffusion of a polymer chain. The average
size of a chain will be the same as in a homogeneous
medium (but with renormalized, excluded volume in-
teractions). This regime can be obtained only if the con-
centration of chains in a medium is small enough. It
must be less than one chain per volume, which is needed
to obtain the averaged behavior.

COIL-TO-GLOBE TRANSITION

Using the Flory approximation, we can write the free
energy of polymer chain in large-scale units as follows:

F=R /N+BN~/Rd+VN'/R —R (8=B„). (7)

The size of the globe near the transition point is

R-X4", d=3, (10a)

(lob)

A typical globular configuration is shown in Fig. 3. It
can be realized in many different ways using different
connections between the same occupied sites. The fluc-
tuations of the interaction energy of the globular chain
and the medium near the transition point are of order'

as-xyR "/2-X "-',

i.e., of the same order as above the transition point. If

FIG. 3. Typical globular configurations can be realized in

many different ways using different connections between the at-
tractive regions. If one end of a polymer chain is fixed at some
point, there is a "tail" which connects the globular main body
with this point. The length of the "tail" is of the same order of
magnitude as the size of the polymer above the transition point.

Here the third term on the right-hand side represents
the repulsive three-body interaction (we shall assume for
simplicity that V= 1). The fourth term represents the
stretching effect of the interaction of the chain and the
medium. In the globular state, the average size of the po-
lymer chain is determined by minimization of the sum of
the second and third terms in Eq. (7):

R -NIBI ' (B (0) .

The energy of particle-particle interactions is of order
—B S. The coil-to-globe transition occurs when this en-

ergy becomes of order N
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the position of one end of the polymer chain is fixed,
there will be a tail connecting it with the globular main
body. The elastic energy needed to stretch this tail
should be of the order of the interaction energy in Eq.
(11). It means that the length of the tail S is of the same
order of magnitude as the size of the polymer above the
transition point:

s-x'" (12)

At ~B~=1, the density correlation length of a globular
state becomes of order of one unity (in blob units). It
means that the globular state becomes compact, and
there are no "holes" between blobs as in Fig. 3. If the
density correlation length becomes less than blob size L *,
we return to the weak disorder problem [see Eq. (4)]. We
can now use the standard description of the globular state
in a homogeneous media for configurational statistics.
Nevertheless, the total interaction energy of a globule
and a media is of order co~B ~' N '~, and this results in

a trapping of long chains.
Pote added. Copies of two unpublished papers have

recently come to my attention. In Ref. 20, by Machta
and Kirkpatrick, the properties of the averaged partition
junction and its moments are investigated, and the equa-
tions similar to (2a) and (2b) are derived independently.
In Ref. 21, Honeycutt and Thirumalai develop a Flory-
Lifshitz theory for optimal cavities in a random media
which reduces disorder.
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