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A binary mixture subject to a large temperature gradient is studied. Solutions of the evolution

equations for the time-dependent fluctuation correlations are obtained using mode-coupling theory
subject to the assumption that the mixture is not close to a critical point. From these results predic-
tions for the light-scattering spectrum at the Rayleigh and Brillouin lines are made. The tempera-
ture gradient is shown to cause a large enhancement of the scattering amplitude at the Rayleigh
line, whereas the effect at the Brillouin line is found to be small.

I. INTRODUCTION

Nonequilibrium phenomena in fluids have been the
subject of much theoretical and experimental study. ' An
aspect of these studies is the scattering of light by non-
equilibrium fluids, which provides a sensitive technique
to investigate nonequilibrium processes. Predictions for
the light-scattering spectrum in one-component fluids in
a steady-state subject to a large temperature gradient
were made by Kirkpatrick et al. using both mode-
coupling and kinetic theory of fluids. Similar predictions
were made by Ronis and Procaccia using the theory of
fluctuating hydrodynamics. Detailed studies were subse-
quently made by Schmitz and Cohen.

The results of the predictions for one-component fluids
can be summarized as follows: At the Rayleigh line the
temperature gradient is predicted to enhance the equilib-
rium spectrum by an additional term proportional to
(V T/q ), where V T is the temperature gradient and q is

the wave number of the fluid fluctuations. Small gra-
dients leave the Rayleigh line unaffected. Experimental
investigations of the Rayleigh line confirming the theoret-
ical predictions were performed by Law et al. ' The
Brillouin lines are affected by both small and large tem-
perature gradients. For small gradients the peak ampli-
tudes predicted to become asymmetric by factors propor-
tional to (q VT)/q . For large gradients the effects are
more complicated. Experimental investigations of the
Brillouin lines' '" indicate agreement with the theoreti-
cal predictions but, due to complicating boundary effects,
are less definitive.

In this paper we apply mode-coupling theory to study
nonequilibrium effects in the light-scattering spectrum in
a binary mixture. The Rayleigh and Brillouin lines for
the mixture in a steady-state subject to a large, linear
temperature gradient are considered. Consistency of the
averaged evolution equations requires that the tempera-
ture gradient induce a concentration gradient (and vice
versa). Mode-coupling theory provides a powerful
method whereby a careful study of the nonequilibrium
effects in the fluid is possible, since it is possible to deter-

mine the relative strengths of the various expansion pa-
rameters at all stages of the calculation. This work ex-
tends the results of a previous paper' where the theory
of fluctuating hydrodynamics was used to study the Ray-
leigh line in the same system.

II. LIGHT-SCATTERING SPECTRUM
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In terms of the mode-coupling theory developed in later
sections, it is more convenient to expand e in terms of the
variables (s', c,p) (Refs. 13—15) where s' is the modified
entropy variable. Local fluctuations in s' are defined by

6s'(r, t) =As (r, t)— 5c(r, t)
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Here s is the entropy per unit mass, ar = —(t)p/t)T), /p
is the thermal expansion coefficient, and
Cp,. = T(c)s/BT), is the specific heat (per unit mass) at
constant pressure and concentration. Precise definitions
of the fluctuating variables are given in Sec. III.

The two expansions are almost equivalent since expan-

The light-scattering spectrum is computed from the
dynamic structure factor which is defined in terms of
fluctuations of the local dielectric constant E(r, t). Exper-
imentally, e is taken to be a function of the position r and
time t through the temperature T, pressure p, and con-
centration c. Fluctuations in e(r, t) are then computed
from the expansion' '
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sion (2.2) and the expansion in terms of s', c, and p are re-
lated by the equations'
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The dynamic structure factor S(k, co) is calculated
from the time-dependent correlation function

( 5e(r, , t, )5e(r2, t2 ) )

by the expression '
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(2.4)

where fik=A(kf —k, ) is the momentum transferred by
the fluid fluctuations to a photon with an incident wave
vector k, and final wave vector kf, and A'co=A(cof —

co, ) is
the energy transferred to the photon. V is the volume of
the fiuid, T is the duration of the experiment, and P(r) is
a form factor describing the portion of the fluid il-
luminated during the experiment. The subsequent sec-
tions are devoted to calculating the correlation function

(5e(r„t, )5e(rz, t, )) .

III. HYDRODYNAMIC EQUATIONS
FOR CORRELATION FUNCTIONS

N

p, (r, t) = g 5(r —r, (t)), j =1,2 (3.1)

the total momentum density

The natural variables describing microscopic fluid
motion are the conserved fluid densities, denoted by
a (r, t) The co. nserved quantities are the mass density of
each component,

system, P is the interparticle potential, and r, =r, —r .
The fluctuating quantities are defined by

5a (r, t)=a (r, t) (a (—r, t))~

and the correlation function by

M p(r„t), r2, t2)=—(5a (r, , t, )5a&(rz, tz))~,
where the average ( ) z is defined by

(f (r,x, t)) v—:f dx F~ (x )f (r,x~, t) .

(3.5)

(3.6)

(3.7)

Here F~ (x ) is the N-particle nonequilibrium, steady-
state distribution function; x' denotes the phase-space
variable describing the system; and dx denotes the cor-
responding phase-space element as well as the sum over
particles appropriate to a grand canonical ensemble for a
binary mixture. In a steady state (a (r, t))~ is time in-

dependent and

M &(r, , t, , r2, t2)=M, &(r„t, —tz, rz, O) . (3.8)

Following Kirkpatrick et al. ' we assume that the sys-
tem is sufficiently close to the local equilibrium steady
state that an expansion in terms of the gradients can be
made, namely,

g(r, t)= g p, (t)5(r —r, (t)), (3.2a) F (x'")=F (x )+F (x ) (3.9)

the momentum density of each component Here I'L {x ) denotes the local equilibrium distribution
function, given by

and the energy density

E(r, t)= g e, {t)5(r—r, (t)),

(3.2b)
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Here X =%1+%2 is the total number of particles in the

where r, and p; denote the position and momentum of
the ith particle. The energy of the ith particle is given by

and Fv (x ) denotes the higher-order corrections to
Ft (x ) in terms of an expansion powers of the spatial
derivatives of the hydrodynamical variables. The as-
sumption underlying this expansion is that the length
scale characterizing the variation of microscopic motion l
is much smaller than the correlation length L of the fluc-
tuating quantities. It can be shown that the expansion is
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in powers of l/L. The variables conjugate to the set

Ia )
= (p, g, E) are denoted by

Iy )
= I/3(p /m„—u /2), /3u, —P],

given by

5a(r, t)= g 5p, (r, t)+ 5g(r, t)
a(a) a(a)

where p is the chemical potential of the mixture com-
ponent a and u= ( g) /(p) is the average velocity. The
total density is given by

B(a)+
( )

5e(r, t) . (3.14)

p(r, t)=p, (r, t)+p~(r, t) . (3.12)

Consistent with the expansion in powers of 1/L, the con-
volution y e a appearing in (3.10) can be approximated
by y (r)a r, where

a r(x' )= fdr a (r, x' ) . (3.13a) c(r, t) =p, (r, t)/p(r, t), (3.15)

Since the concentration and total density are natural vari-
ables to use in mode-coupling theory, it is convenient to
replace p, and pz in the above expansion by p and c. The
concentration c is defined by

The local equilibrium distribution function FI is re-

placed by an equilibriumlike distribution function,

y (rja
A tt

and fluctuations in c are given by

(p&) (pi)
5c(r, t)= z5p, (r, t) —z5pz(r, t) . (3.16)

Fo(r, x' )=
d+ .ve a a /

(3.13b)

and nonequilibrium averages ( ) v are replaced by aver-

ages weighted by Fo, denoted by ( ).
Fluctuations in the arbitrary quantity a(r, t) are now

Following the projection-operator techniques employed
by Kirkpatrick et al. or alternatively employing equa-
tions from fluctuating hydrodynamics, ' we obtain the
following evolution equations for the correlation func-
tions M (&=M,&(r, , r2, t):
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The repeated index convention is used to denote summa-
tion. Throughout the paper we employ the convention
that greek letter indices denote the conserved densities

t p, c,g, E I and roman letter indices, commencing with the
letter i, Ii,j, . . . I denote vector components. Further,

Bp
C

Bp
BT

p, c

(3.21c)

Here p, c, u, g, c, p, h, and p are the averaged density,
concentration, velocity, momentum density, energy den-
sity, pressure, enthalpy density, and chemical potential at
the point r. The transport coefficients, also functions of
position r, are the thermal conductivity A. , the kinematic
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viscosity v, the thermal diffusivity DT=k/pC „ the
mass diffusivity D, the thermal diffusion ratio kT, and the
barodiffusion ratio k .

Quantities of the form JR~„~& are defined by

The Fourier and Laplace transforms are applied to the
evolution equation (3.23) by first expressing H „(r,) in
terms of r and r, z and expanding H „(r,r, 2) in terms of
the gradients. The resulting equations can be written in
the form

JR( ]p=
ax
a

C, C

ax axI p+ Mp+
aF

p, F P, C

(3.22a)

zM &(r, q, z) —[H „(r,q) +H'„(r, q)] M»(r, q, z)

=M &(r, q) . (5.2)

Further,

pM„p=M p
—u;M p . (3.22b)

The evolution equations (3.17)—(3.20) can be written more
concisely in the form

a
&

M~&(r„rz, t) =H,„(r,)M»(r, , rz, t), (3.23)
at

where H „(r, ) is defined by Eqs. (3.17)—(3.20).

IV. STEADY-STATE EQUATIONS

The evolution equations (3.17)—(3.20) apply for arbi-
trary functional forms of the steady-state velocity, con-
centration, density, temperature, and pressure. However,
since the effect of a velocity gradient is substantially
smaller than that of a temperature gradient (or concen-
tration gradient) by a factor proportional to the speed of
sound, we consider steady-state conditions for which the
mean velocity

H
g

= lq;
I

Dkr Dk

DkT
H, , = —

q A +A2
Dk

DkT
H,, = —
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Dk

+D
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—iq, A „Hg —iq, A '„Hg ~q& A 2

(5.3)

The elements H,„(r,q) are the gradient-independent
terms and the elements H'„(r, q) contain first and higher
derivatives in T and c. M 13(r,q) denotes the equal-time
correlation function M &(r, q, t =0). The equal-time
correlation functions are discussed at length in Sec. VI.
For the binary mixture the nonzero elements of H „(r,q)
are

0=0 (4.1)

and the temperature varies linearly in one direction,
chosen here to be the x direction. The equations for
steady-state mean flow then require that H, = —iqA, ,

a

ar&„
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T ar lx
(4.2) kTZ k Z

H, — q k+ A4+A)
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(4.3) kTZ k Z

X =— T.a
T a"]x

(4.4)

The relevant expansion parameter is the inverse length
scale of the temperature gradient, defined by kTZ k IH„=—

q A+ A +A

where

V. GRADIENT EXPANSIONS

In equilibrium the correlation function M &(r, , r t)2is
a function of the relative coordinate r, 2=r2 —r, only.
However, due to the temperature and concentration gra-
dients, the system is not translationally invariant, and
M p is a function of both r, and r2. Due to the form of
the expression (2.4) for S(k, co), it is convenient to trans-
form to the center-of-mass coordinate r = ( r, + r2) /2 and
relative coordinate r&2 and then introduce the Fourier
transform with respect to r, 2 and the Laplace transform
with respect to t, where

ap
a

C, C
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ac,

p, C
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a
ac
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E.,p
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(5.4)

P, C

oo Zt lq I 1)M &(r, q, z)= Jdr» dt e "M &(r, r, z, t) .
0

(5.1)

Here c, is the speed of sound defined by c, =(ap/ap), ,
Note that the quantities I A, , . . . , A~] as well as the
transport coefticients and thermodynamic quantities ap-
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a
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pearing in the equations for H all depend on the position
I.

In this paper we consider large gradients, namely, gra-
dients sufficiently large that the time scale of the temper-
ature and concentration gradient 1/(c, X ) is of the order
of the decay time scale of the fluctuating densities
1/(I, q ). Although I, is the sound damping constant,
from its definition, Eq. (B4), we note that it can be used to
characterize the decay rate of all fluctuations. Since
I, /c, . = l and we require for large gradients that

c,X /I, q =X /lq =1,
it follows from the hydrodynamic conditions, namely,
l/L =lq «1, that X /q «1. Further, since I, /c, =l,
the ratio of the widths of the peaks in the scattering spec-
trum to the distance between the Rayleigh peak and Bril-
1ouin peaks, namely, I",q /c, q =lq «1. Hence under
these conditions the peaks remain well separated.

That the above requirements are realistic can be seen
by comparing the estimates with experimental values"'
of q, X, c„and I, obtained with one-component fluids.
Typical values are q =2000 cm ', X =0.5 cm
c, = 3 X 10 cm/s, and I, = 10 cm /s for which

c,X /I", q =1 and the relation X /q «1 is well
satisfied.

An examination of the structure H'„(r, q) from Eqs.
(3.17)—(3.20) reveals that H,'„(r,q) can be expanded as

H'„(r, q)=c,X [1+O(X /q)][1+0(lq)] .

According to the above discussion, we neglect terms of
O(X /q) relative to terms of O(X /q ). The solutions
M ti(r, q, z) [and M„&(r,q)] then obtained by iteration4'
have the form

M &(r, q, z)

=[O(X'/q )+O(X /q ) + ][1+0(lq)]
All the terms of the form (X /q )" are due to the leading
term c,X in H'„(r, q). Consequently, the dominant
terms in M &(r, q, z) are retained when only this leading
term in H'„(r, q) is kept. Solutions of M ti(r, q, z) and
M &(r, q) to all orders in (X /q ) are thus obtained by
solving Eqs. (5.2) [and later also (6.1) for the equal-time
correlation functions] with all the terms in H'„(r, q), ex-
cept those of O(X q ), neglected.

The nonzero elements of H'„(r, q) to 0 (X q ) are

a aw,
H,' = —

—,'6, 33+ —,'q;6,„
UrY orx Bq

VI. EQUAL-TIME CORRELATIONS

The equal-time correlation function elements M t3(r, q)
are separated into two parts,

M t3(r, q)= A„&(r,q)+D t3(r, q), (6.1)

where the elements A„t3(r, q) are independent of X and
D t3(r, q) contains terms to all orders in X /q2. The ele-
ments A„p(r, q) are calculated straightforwardly from
the definition

A,t3(r, q) =(5a (q), 5at3( —q)) (6.2)

where V is the volume of the system. The r dependence
in A, t3(r, q) is due to the position dependence of distribu-
tion function F„ in the averaging process. The explicit
values for 3 t3(r, q) are given in Appendix A.

The procedure to obtain the elements D,ti(r, q) is more
complicated. Following the method of Ernst et al. ' or
Kirkpatrick et al. ' where the exact Liouville time-
evolution operators are replaced by coarse-grained time-
evolution operators, we obtain the following equations
for D t3(r, q),
H „(r,q)D„&(r,q)+H&„(r, —q)D „(r,q)

Here

=(5a„(q)5a&( —q)I, ,r) y, , (r) . (6.3)
Br,

I,, ,~= drI, , r, t

and I, , (r, t ) is the projected fiux defined by

I, , (r, t) =(1 P)5J,,—;(r, t)

and J, , (r) is a current defined by

(6.4)

J,, , (r, t) .
Br,

The projection operator ' I' projects variables onto
space spanned by the conserved densities. Explicit ex-
pressions for the various fluxes are given in Appendix B.

Solutions for D, ti(r, q) are obtained by expanding Eq.
(6.3) in terms of the eigenvectors of K &. The eigenvec-
tors, eigenvalues, and modes are discussed in Appendix
B. For a binary mixture there are six modes, namely, two
sound modes traveling in opposite directions, denoted by
subscript o, o =+1, two viscous modes directed perpen-
dicular to the sound modes, denoted by g, , i =1,2, a con-
centration mode denoted by subscript c, and a heat (or
modified entropy) mode, denoted by the subscript H.

The elements of H and D in terms of the eigenvectors
are defined by

(6.5)

H, b:==-0, (q) H. Ob(q), (6.6)

and results from equilibrium thermodynamics of fluctua-
tions. ' In Eq. {6.2) the scalar product of arbitrary func-
tions f (q) and g (q) is defined by

(f (q), g(q) ) = (f (q)g (q) ) /I',
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D,„=0,(q).D 0„(—q), (6.7)

H, d (q) = —A., (q)5,d,
H, d(

—q) = —k, (
—q)5,d,

(6.8b)

for any mode d. However, the concentration and heat
eigenvectors do not diagonalize H . For these cases,

where 0, (q) and 0, (q) are the left and right eigenvectors
of H . 0 b(

—q) is the transposed matrix of 0b( —q) and
the dot product indicates matrix multiplication. Roman
letter subscripts a, b, . . . will be used to denote elements
of the set of modes I+a., c,r)„H). Equation (6.3) be-
comes

H, dDdb+Hbd( q)D—,d +H,'dDdb+Hbd( q)D—,d

=(5a, (q)5ab( —q)S„)/3X, (6.8a)

where the obvious arguments in q and r have been
neglected. The flux S is given in Appendix B. If a and b

denote either a sound or viscous mode,

which are O(X ). For the sake of simplifying this dis-
cussion, we replace the terms containing H in Eq. (6.8a)
by k, (q)+Lb( —q). (However, the argument is still valid
in general. ) Thus when a and b denote dissipative modes,
then the combination A,, (q)+)t, b(

—q) is O(q ) and con-
sequently the solution D,b contains all powers of X /q .
However, if either a or b, but not both, denotes a sound
mode then

),(q)+) b(
—q)=O(q)

and the solution for D,b in powers of O(X /q) is gen-
erated. However, we neglect these terms relative to
terms of O(X /q ). Thus all the elements coupling the
propagating modes to the dissipative modes, for example,
D 0, are neglected. For the sound-sound terms,

A.,(q)+lb( —q) =O(q')

only if a =o. and b = —o.. Hence the only sound-sound
term not neglected is D

The correlations

Hod ——Ho 61, +HOH6dH

HHd =HHH5dH+HH. 5d.
(6.8c)

(5a, (q)5ab( —q)S, )

are discussed in Appendix A. The only nonzero correla-
tions are

for any d. HHH, HH„H, H, and H,, are given in Appen-
dix B.

Equation (6.8a) is correct only if a, b, and d denote the
dissipative modes, namely, Ic,H, rt; ). For the sound
modes a correction term is needed. The correction term
is due to the fact that H' contains differential operators
[see Eq. (5.5)] which act on the spatially dependent vari-
ables in the eigenvectors when the expansion of Eq. (6.3}
is made. The form of the correction terms is discussed in

Appendix C. Correction terms that arise for the dissipa-
tive modes are shown in Appendix C to cancel exactly.

An expansion in terms of the modes is convenient
since, for the dissipative elements, the only nonzero ele-
ments of H' are

(5a„(q)5aH( —q)S r )={5aH(q)5a „(—q)S,r )

pCxr T
lq ilx

c
(6.11a)

{5a„(q)5a,( —q}S,&)=(5a, (q)5a„( —q)S„&)

2C
(6.11b)

—2vq D„„=O .
I

(6.12)

The resulting equations for dissipative-dissipative equal-
time correlations are:

(a) Viscous uiscous -correlation

HH„=~, ~~TX q," 5„,
H,'„=c,krTX q i', 5„/p .

(6.9a)

(6.9b)

(b) Viscous heat and uis-cous concentrati-on correlations

vq D& 0 +HHHD&1 g +HIJcDq c +~i iHH&1 D& &

We note that H' is not symmetric and H„H=H„, =O.
l t

Here q i" is the x component of q i", i = 1,2 where q i" are
unit vectors orthogonal to q and each other. q i" is con-
structed so that it does not change sign under reflection
of q, namely,

qI '=( —
q~

—q„q q, q, q„)(q +q, )

q
(2)—(0 y y )(~q 2 +~q 2

)
1/2

(6.10a)

(6.10b)

Since terms of 0 (X /q) are neglected relative to terms
of O(X /q ) it follows from Eqs. (6.8a)—(6.8c) that the
equations for D ., where o, o' denote sound modes,
decouple from the equations for D,b, where a, b denote
the dissipative modes. To verify this' we note that the
right-hand-side terms in (6.8a) are proportional to X .
Further we have retained only those elements of H'

=(5a„, (q)5aH( —q)S„&)/3X (6.13a)

= (5a „(q)5a, (
—q)S, r )PX (6.13b)

2HccDcc +HcII(DcH +Dye )+HH~ (Dg c +D
q ) =0

(6.14c)

(c) Heat concentration corr-elations

2HHHDHH+HH, (D,H+DH, )+H,'„(D„. H+DH„)=0,

(6.14a)

( HHH +Hc . )D&c +Hca DHH +H&c Dcc +H&
/

D
1/ c

(6.14b)
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The matrix elements H&H, H„, H,&, and HH, are given
in Appendix B. The equations for D, and Dz„are not

I (

included since, due to the symmetry of the correlations
(6.11a) and (6.11b), it follows that D„,=D,„and

( I

D„H =D~ . Consequently, DH, =D,H. The solutions
I I

for DH„and D,„are
( (

(6.16)

and

z~ =
—,'q I Dr+2)+[(Dr+2)) 4D—r&]'~~I . (6.17)

The solutions for D», D„,D,H, and DH, are

and

pa&Tq (v+2))
D~„=X q q,

"
pc, (vq +z+ )(vq +z )

krq (v+2)+Dr)
pc, (vq +z+ )(vq +z )

(6.15a)

(6.15b)

p(arTX q I„) [2) (Dr+2)+v)+DDrv]
PDDr(D+2))(vq +z+ )(vq~+z )

(krX q,', ) [(8+Dr)'(Dr+2)+v)+DDrv]
pPDD (D+2))(vq +z )(vq +z )

(6.18)

Here we have introduced the variables 8, z+, and z
defined by and

(6.19)

ark'(X q ~„)'[2)(X)+Dr )(Dr+Xl+v)+DDrv]
PDDz(D+2))(vq +z+ )(vq +z )

(6.20)

Note that, whereas the equal-time correlations which are coupled to the viscous mode D,„and DH„are O(X /q ),
( I

other dissipative-dissipative equal-time correlations are 0 (X /q ) .

To obtain the sound-sound correlations D, we require the corresponding elements of H' . The only nonzero ele-
ment is found to be

BcH' = . 2c q
4c rx qx

Bc, BA3

rx
(6.21)

With this result the equation for the dominant correlation D is obtained after a straightforward but long algebraic
calculation. The result is

,q +crq —oc,q, X —oc,q,
a 2 c,

D =2Pc;(5a (q)5a (
—q)S„r )/p,

P
(6.22)

where I, is given in Eq. (C4) and

(5a (q)5a (
—q)S,r)=q„

2P c,
(6.23)

a
Cs

Br

Bc BC,—k T
BC y- p

(6.24)

However, the spatial variation of the sound velocity is
not important since Brillouin scattering is best observed
when the wave vector of the incident light is perpendicu-

The form of Eq. (6.22) is identical to the equation for
D obtained in a one-component fluid except for
minor changes. This similarity is expected due to the fact
that the sound-sound correlation decouples from the
dissipative-dissipative correlations. Besides the
modification of I „the only difference is that for a binary
mixture c, depends on r through both T and c. Now the
gradient becomes

lar to the temperature gradient. For this scattering
geometry the spatial variation of the sound velocity can
be neglected. Consequently, only the modification in I,
need be accounted for. Since these modifications do not
affect functiona1 form of the solution, the solution ob-
tained for D in a one-component fluid is complete
and we will not repeat the calculation here.

VII. TIME-DEPENDENT CORRELATIONS

ZMab Hadldb Had~db ~ ab +Dab (7.1)

where, as discussed in Appendix C, corrections to this

Once the gradient-dependent equal-time correlations
have been found, the time-dependent correlations
M,b(r, q, z) are easily calculated. The equations for the
correlations in terms of the modes M,b(r, q, z), obtained
from Eq. (5.2) by expanding in terms of the eigenvectors
of H, are



2010 J. C. NIEU%'OUDT AND B. M. LAW 42

M„„=A„ /(z+vq ), (7.2)

equation are required for the sound-sound element I
Repeating the analysis of Sec. VI, we again neglect the

correlations coupling the propagating terms to the dissi-
pative terms. The solutions obtained for the elements
M„b(r, q, z), where b =rl, , H, and c, are

I

(kXTq(1))2q2

pp(io +z ~ )(co +z )(co +v q )

X[cu v+v(DT+2)) q ], (7.10)

krarT(X qi") q'
Re(b, M,H +AMH, )

=-
p(co +z+ )(co'+z2 )(co +v'q )

and

M„H=D„H/(z+vq ), (7.3) X[2co v+2vXl(Dr+A)q ] .

(7.11)

M„,=D„,/(z+vq ) . (7.4)

MHH = AHH(z H,, )/—6+ [z+q (Dr+2))]DHH

The correlations required for the light-scattering spec-
trum are MHH(r, q, z), M„(r,q, z), M,H(r, q, z), and

MH, (r, q, z). The solutions obtained for these terms are

q)i) ' is defined in Eq. (6.10a).
The dynamic structure factor is obtained by combining

the above results with original expressions (2.1) and (2.4).
The spatial integrals appearing in the equation (2.4) for
S(k, co) are done by assuming that the form factors P(r)
are sharply peaked functions at a point R. When this as-
sumption is made, the structure factor at the Rayleigh
line is

2
2+q(~ 'Hi D
z+vq

S(R,q, w) =2
aT p.

(par ) Re(b, MHH )

M„=A„(z HHH ) /b—,

+ [z+q (DT+$)]D„

q'(Dr+.8—v)
+

2
H

)
D ~ / 6

z+vq

(7.5)

(7.6)

+ Re(b,M„)BE

Bc
p, T

BE —
1+ (paT)BT Bc

p, c p, T

XRe(b,M,H+b, MH, ) (7.12)

and

MH, +M,H =( AHHH, ~+ A„HH, )/b,

+ [z+q (DT+2))](D,H+DH, )

where

+ q'~ 'H„D,
z+vq

q (Dr+2) —v)

z+vq

(7.7)

A=(z+z+)(z+z ) . (7.8)

X ( co v+ v2) q ), (7.9)

The spatial, wave-vector, and z dependence of the argu-
ments has been neglected for the sake of simplicity. Note
that in the absence of the temperature gradient the above
expressions reduce to the usual equilibrium expressions. "

If we set z =ice and substitute for D,b and H,'& from
Eqs. (6.9a) and (6.9b) and (6.18)—(6.20), we find, after
some manipulation, that the expressions for the real part
of the gradient-dependent correlations, denoted here by
AM, &, simplify substantially. They are

p(aTXTq(1))2q2
Re(b, MHH ) =

p(co +z+ )(co +z )(co +v q )

where the thermodynamic relations (2.3) have been used
to obtain the more conventional forms of the partial
derivatives in E. If we note that the heat-heat correlation
is simply related to temperature-fluctuation correlations
by

MHH =par( oT(cu, q)oT(co, —q) ),
the above equation results are identical to the results we
obtained previously' using the theory of fluctuating hy-
drodynamics, ' except that any arbitrary direction for q
is considered here.

For the Brillouin lines the predicted spectrum for the
binary fluid is trivially obtained from that of a one-
component fluid. Since the operator H ' and the
equal-time correlation D obtained here are identical
in form to those of a one-component fluid, the correlation
M is also identical. Again the only modification that
need be made is that the expression for I,. appropriate
for a mixture be used and that spatial gradients of
position-dependent variables be expanded to include both
the concentration and temperature gradients.

VIII. SUMMARY AND CONCLUSION

Predictions of the effect of a large temperature gradient
on fluctuation correlations and the dynamic structure
factor in a binary liquid are made. Our predictions are
based on the assumption that the macroscopic and micro-
scopic time scales of the fluid are well separated. Conse-
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quently, mixtures close to their critical points are exclud-
ed. This assumption is shown to be equivalent to assum-

ing that the Rayleigh and Brillouin peaks remain well

separated, which permits us to consider the effect of the
gradient at the Rayleigh and Brillouin lines separately.

The appropriate modes for a binary mixture are deter-
mined and the equal-time and time-dependent correla-
tions of the fluctuations of the modes, subject to the gra-
dient, are calculated. The resulting, lengthy expressions
for the equal-time correlations are given by Eqs.
(6.15)—(6.20) and by Eqs. (7.2)—(7.7) for the time-
dependent correlations. The prediction for the gradient-
dependent light-scat tering spectrum is given by Eq.
(7.12).

The effect of the temperature gradient at the Rayleigh
line is similar to that obtained in a one-component fluid
in that the change in the peak amplitude is proportional
to the square of the gradients; terms of linear order leave
the Rayleigh line unaffected. However, the dominant
contribution to the spectrum is due to the coupling of
concentration fluctuations where the coupling arises from
two equally contributing sources, namely, the direct cou-
pling of concentration modes and concentration coupling
mediated by viscous modes. The results obtained here
confirm our previous calculation for the Rayleigh line, '

which was made using the theory of fluctuating hydro-
dynamics.

Due to the contribution of concentration fluctuations,
the effect in a mixture at the Rayleigh 1ine is substantially
larger than that of a one-component fluid. In Fig. 1 the
dynamic structure factor for a mixture of benzene and
carbon tetrachloride at a mole fraction 0.5 and a mean
temperature of 300 K is shown. In the figure the equilib-
rium behavior, b T=O, is compared with the behavior at
a temperature gradient of AT=100 K/m for two values

of the wave number. The equilibrium data have been
normalized to unity at ~=0. The nonequilibrium
enhancement for frequencies in the range co=10—10 s
is primarily due to concentration-concentration coupling,
while the enhancement at higher frequencies, ~) 10 s
is due to heat-heat correlations. The structure factor at
q=2000 cm ' (denoted by circles) decreases more rapidly
than for q=3000 cm ' (triangles) because the charac-
teristic frequencies z+ and z, given by Eq. (6.17), scale
as q . Note that the nonequilibrium spectrum is
enhanced by a factor of the order of 10—10 for the fre-

quency range shown.
The predictions for the effect of the temperature gra-

dient at the Brillouin line when compared to the effects at
the Rayleigh line are negligible. Since the sound-sound
correlations essentially decouple from the concentration
and heat correlations even at large gradients, the Bril-
louin line is unaffected by the temperature gradient.
Consequently, the predicted form for the Brillouin spec-
trum for the mixture is identical to the spectrum predict-
ed in a one-component fluid.
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APPENDIX A

The equilibrium equal-time correlation functions re-
quired in this paper follow from Eq. (6.2). Further, we

use the result' that, in the long-wavelength limit q ~0,
100

10

(5a (q), 5a&( —q))=

where we define

a, (r)—= (a (r))„/V.

r)a (r)

Offal(r) y, , (r)
(A 1)

S(a ~) 01

With the above result the equal-time correlation func-
tions follow from the expression for I'0 given in Eq.
(3.13). The nonzero equilibrium correlations are

0.01 A„b =(6a„(q),5ab( —q)) =—,5„b, (A2a)

0.001

0 0001
10

r

0 2
' 'I
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m (s ')

' ' ' 'I
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'I

10 106

p TT
~Hb (~aH('q) ~ab( I))

C Hb
p, c

A„=(5a,(q), 6ab( —q)) = (r3c/re), T6,.b,
P

(A2b)

(A2c)

FIG. 1. The normalized structure factor for a 0.5-mole-
fraction mixture of benzene and carbon tetrachloride at mean
temperature T=300 K. The figure gives the behavior at equi-
librium, ~VT~ =0 and q=2000 cm ' (squares), and the none-
quilibrium behavior for a temperature gradient

~

V T~ = 100
K/cm and for wave vectors q=2000 cm ' (circles) and q= 3000
cm ' (triangles). The equilibrium structure factor has been nor-
malized to unity at co=0.

A, =(ha (q), 5a (
—q))= z6 ~

2Pc,
(A3)

The projected flux terms are calculated directly from the
definitions for the fiuxes, Eqs. (6.4) and (6.5), and the
definitions of the conserved densities. When the assump-
tion is made that the averaged flow u=0, the fluxes asso-
ciated with the density components p, are found to be



2012 J. C. NIEUWOUDT AND B. M. LAW 42

1, T

PT
(A4)

Here and throughout the rest of this appendix the sub-
script i will denote the ith component of a vector. The
subscript T denotes the total quantity, defined by Eq.
(3.13a). For example,

R
5g,

5a =(5p, 5c, 5g„,5g, 5g„5E) .
6g

5g,

(B1)

N

g, T=g, (k=O, t)= g p, ,
j=l

N

g, ,T=g, , (k=O, t)= g p, .

(A5)

H p8p= —
A, 0", OpHp = —X 8 (B2)

In this representation the eigenvalues k and the left and
right eigenvectors of H

&
are defined by

Note that

I,T=I,T+I;T=o .

The energy density Aux is given by

N N

I, ,T= g ejv;J+ g (v, ~+v;&)r~&
&

P —hTg

H, , = —k, = —O.c,q
—I,q /2,

where I, is the sound damping constant given by

(B3)

The orthogonality condition for the eigen vectors is
0 I9& =5 &. The eigenvalues and eigenvectors are calcu-
lated to be

(a) Sound

(A6)

where hT is the total enthalpy per unit mass, namely,
h T

= h T /pT, and the enthalpy per unit volume is given by
hT=cT+p. The velocity of the ith particle v =p /m .
The term required in Eq. (6.3) is I,TBy (r)/Br, . Using
Eq. (4.2) and standard thermodynamic identities for
binary mixtures, we find

and

I,. = —', v+ ~ +Dr(y —1)

+D 2 2 ~I T T+ p
a k k

ac pC, p

y =C„,/C, ,

(B4)

I, , T y„(r)=/3X S„,a

Br,

where the subscript x denotes the x component and

S„=I +kT I„",Bp
Bc

„Pr

with

(A7)

(A8)

«Sq
o c,gy

ac~ t/~

(B5}

and

Ix IF.,xT h 1S1,xT h 2S2, xT (A9)
1

8 (q)= (A, , A', , oc,q„oc,q, etc, q„A2),
2Cs

gk
x S l, xT C SxT (A10)

(5a„(q)5a„(—q)S T) =(5aH(q)5aH( —q)S, &)

=(5a, (q)5a, (
—q)S, T) =0,

Here h is the enthalpy per unit mass of mixture com-
ponent j. Using the above results we find for the mode-
mode-Aux correlations that

where o. =+1. The sound mode is given by

5a (q)—=9, 5a = (5p+oc, g g) .L

2Cs

(b) Viscous

0 2H „=—
A,„5, = —vq 5,

0

(B7)

(5a„(q)5aH( —q)S T)= —qi' paTT//3 c, ,

(5a„(q)5a, ( —q)S„&}=q i'kT//3 c, ,

(5a (q)5a, (
—q)S,T)=5 ~ opq„/2/3 c, .

(A11)
gR( ) (t)

iy

APPENDIX B: MODES OF THE EQUILIBRIUM
MATRIX H p

In matrix form the fluctuation variables are represent-
ed by

0

H„(q)=—(0,0,q ",, q ', q", ,0),
cs

(B8)

where qi" is defined by Eqs. (6.10a) and (6.10b). The
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viscous mode is given by APPENDIX C

L R (I)5a„(q)=—9„-5a"=—q,"g .

(c) Heat

9H(q) = A2, gsA„A3+pT
C~ Bc

p, T

gR
H

1

0
0
0
0

—A)/A2

and the heat mode is given by

PTA2
5aH =9H 5a = — 5s',

Cq

, 0,0, 0, —1

(89)

(810)

(811)

0 D+D.H=X (C 1)

X=(5a (q).5a (q)I, , ) y, (r)
a

(C2)

and 5a (q) is defined in Eq. (Bl). Here

5a (q) =5a (
—q)'

In this appendix the relation between Eqs. (5.2) and
(6.8a) is examined. We noted in the text that Eq. (6.8a),
which is obtained by expanding (5.2) in terms of the
eigenvectors, is not entirely correct. The required correc-
tions are due to differential operators in H' which act on
the spatially dependent variables appearing in the eigen-
vectors when the eigenvector expansion is made. To sim-

plify the algebra it is convenient to rewrite Eq. (6.3) in
matrix notation, as follows:

where 6s' is the modified entropy variable defined by Eq.
(2.2).

(d) Concentration

—c„/c, .

and H(q)=H( —q)'. The superscript t denotes the tran-
sposed matrix and the dot product denotes matrix multi-
plication. Further, the differential operators in H are
defined to act only on the terms preceding it. Due to the
orthogonality of the eigenvectors, we can write that

gR, gL g L, g R (C3)

gR
C

0

Aic,2

A2c,2
Ai

9, =(0, 1,0, 0, 0,0), (812) where the repeated index notation denotes summation. I
is a 6X6 unit matrix and 9,(q)=9, (

—q)'. Expanding
Eq. (Cl) in terms of the modes, we find

x,„=e,'x e'„=(e.'H ef e,'D) e',

where

+9, (D 9 d 9 d H 9 'b'), (C4)

C2—
X

and the concentration mode is

5a, =5c . (813)

where the difterential operators in H act to the right on
the terms within the parentheses, and differential opera-
tors in H act to the left on the terms within the
parentheses. When the eigenvectors outside the
parentheses are included, the equation becomes

xab HadDdc+DadHdc (ed D)kHadeb, k +DdbHad

Dk T ()P
HHH(q) = —q' Dr+

Bcp)c p

(814)

0 is not diagonalized by the heat and concentration
eigenvectors, but has elements

eLkH dlb(D e—,')k+H ibD„, (C5)

which diff'ers from Eq. (6.8a) by the last four correction
terms. It is important to emphasize the definitions of the
elements of H,

PaTDkT
HH, (q) =q C, Bc

p, T

(815)
Hb 0 HOb, (C6a)

H b=0 H-Ob=0„( —q)-H( —q}.0„(—q), (C6b)

DkT
H,H(q) =q

PaTT
' (B16) and

D gL D gR (C6c)

and

H,,(q)= —
q D . (B17)

No corrections are needed for those elements in H' that
do not contain differential operators. For example, no
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correction will apply to the element 0,' .
I

When 0,'b is calculated for the case where a and b
denote dissipative modes, it is found that H, b no longer
contains differential operators. Consequently, the last

four correction terms in (C5) cancel and we reobtain Eq.
(6.8a). However, if a and b denote sound modes, H'
which is given in Eq. (6.21), still contains differential
operators and the correction terms become important.
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