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Fluctuation-induced transitions in an isotropic spatially frustrated lattice model
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In this paper we discuss the effects of fluctuations on the phase diagram of an isotropic Ising mod-

el with ferromagnetic first-neighbor and antiferromagnetic second- and third-neighbor interactions.
We find that, in certain cases, there are substantial deviations from mean-field behavior. Thus the

phase transitions between the one-dimensional modulated phases and paramagnetic phase are found

to undergo fluctuation-induced first-order phase transitions. We also discuss that point of the phase
diagram which, within mean-field theory, was predicted to be an isotropic Lifshitz point. It is ar-

gued that the existence of such a point is unlikely, and some alternative scenarios are proposed.

I. INTRODUCTION

Considerable attention has been directed towards the
study of frustrated lattice Hamiltonians as models of al-

loys, magnetic ordering, and lyotropic systems. The
Hamiltonian we shall study was first introduced by Wi-
dom as a model of microemulsion, ' but it has since been
suggested that it may be appropriate for some magnetic
systems. The Hamiltonian has isotropic first-, second-,
and third-neighbor interactions on a simple-cubic lattice.

In those parts of the parameter space that are most
relevant to the study of microemulsions, the first-
neighbor interactions are ferromagnetic while the second-
and third-neighbor interactions are antiferromagnetic.
This competition between the interactions causes spatial
frustration. Thus, for certain parts of parameter space,
sometimes called multistate surfaces, the Harniltonian
has many degenerate states.

One immediate consequence of this is that, at finite
temperature, many ordered phases are predicted to grow
from the zero-temperature multiphase lines. At higher
temperatures one finds the ferromagnetic, disordered,
and one-dimensional ordered phases in close proximity in
the phase diagram. The latter are also sometimes called
periodic or lamellar phases because they consist of fer-
rornagnetically aligned layers of positive and negative
spins. It is also sometimes useful to think of these phases
as consisting of a stack of interfaces, each such interface
being defined by the set of all pairs of (+, -) bonds be-
tween a positive and negative layer of spins. Within
mean-field theory' the ferromagnetic phase and the disor-
dered phase are found to be separated by a second-order
transition. The boundary between the disordered phase
and the periodic phases is predicted to be second order
with the wavelength of the periodic phase varying along
the critical curve, eventually becoming infinite as the
ferromagnetic-paramagnetic phase boundary is ap-
proached.

These ferromagnetic, lamellar, and paramagnetic
phases are therefore predicted to meet at an isotropic

where 6„ is the usual second-order lattice-difference
operator and the a; are given in terms of the microscopic
couplings. The result of this transformation is
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The mean-field theory is given by those fields ( P„] that
minimize the Hubbard action A. Providing one is above
the lower critical dimension of the theory one can extract
an effective Landau-Ginzburg-Wilson (LGW} action from
(1.2} by determining those Fourier modes [P ) which at
quadratic order in P„, minimize the action. One then
constructs new effective fields from the critical and near-

by modes. It is possible to show' that, in the case of the
one-dimensional periodic order to disorder transition, the

Lifshitz point, L. ' While much of the topology of the
mean-field phase diagram is correct, we will show that,
for certain ranges of parameter values, the phase bound-

ary separating lamellar states from the paramagnet be-
comes Auctuation-induced first order, while the
ferromagnetic-disorder phase boundary remains Ising-
like. This curve of induced first-order transitions must

join the curve of Ising-like transitions, but simple argu-
ments indicate that the lower critical dimensionality of
an isotropic Lifshitz point should be dL =4. The nature
of this region of the phase diagram is, therefore, an open
question, though we shall propose a few different possibil-
ities.

We begin by applying the Hubbard transformation to
the Ising model Hamiltonian,

H= —,
' ger„L„o„, L„=a,b, „+a2b,„+a3,
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critical modes are Q, =(+Q„O,O), (0, +Q„O), (0,0, +Q, )

where, within mean-field theory, Q, is known in terms of
the coupling parameters appearing in the microscopic
Hamiltonian (1.1). We emphasize that at this stage Q, is

a parameter in the action and is therefore not determined
self-consistently from the ensuing renormalization-group
calculation. This is a limitation of the calculation we
shall describe.

We begin by considering the critical and the "nearby"
modes and define

a =24a, (cosg, —1) —12a2(1 —cosg, )+a3+P

(1.10a)

c =2a, ( 1+2 cosg, ),
(1.10b)
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where the prime means the sum runs over momenta
within a small sphere in the first Brillouin zone centered
around the critical mode. From the reality condition

we have

Assuming that the critical modes are well separated in
the first Brillouin zone, so that the modes within one
sphere do not overlap with those of another, the quartic
term of (1.8) can also be simplified. Thus, in terms of
fields defined in (1.3)—(1.5), the last term of Eq. (1.8) be-
comes

q q '+&2+~3+~4

it('q (r) = g' P g +ze' ' .
q

The LOW Hamiltonian is then constructed by expand-
ing the second term of Eq. (1.2) in powers of P„and keep-
ing only the terms up to quartic order in fields. Trans-
forming to Fourier space we see that the coefficient of
quadratic term is given by L' —p. W—e then define

E:L+P—
Within mean-field theory the phase transition from the

paramagnetic phase to a phase with wave vector Q,
occurs at K& =0. Thus, in the vicinity of this transition

C

we can expand in terms of small K to obtain

+ + +4
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where on the right-hand side the integration is over real
space down to some microscopic cutoff length.

In terms of the real fields [ yj, g~ I defined by

g, (r)=p, (r)+i/, (r), we can write the final effective
Hamiltonian density as

3
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where a, b, c,d are given in terms of the microscopic cou-
pling constants and the critical modes Q„

where the integration is over the first Brillouin zone.
Now, in the vicinity of the phase transition, K is posi-

tive with its minimum at Q, . We now seek to include in
the action only those Fourier components with wave-
lengths comparable to the critical modes, since these are
expected to dominate near the order-disorder transition.

We thus expand K about each of these modes retain-
ing terins only up to 0 (q4). We find

Note that, for the moment, we have dropped the 0 (q )

powers appearing in expansion (1.9) and normalized the
coefficient of the gradient to —,. Equation (1.12) is certain-

ly valid for small enough wavelengths of periodic phase,
since we are above the lower critical dimension and close
enough to the upper critical dimension for higher powers
of the fields to be irrelevant.

However, one should also note that the above con-
struction appears to fail when, as a function of the model
parameters, all of the critical modes converge to the fer-
romagnetic mode Q, =(0,0,0). Within the mean-field ap-
proxirnation this occurs upon approach to the Lifshitz
point. In the present case it is not clear how to construct
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the Landau-Ginzburg-Wilson action since one has no
well-resolved critical modes. This point in the phase dia-
gram is further complicated by the fact that naive dimen-
sional analysis gives upper and lower critical dimensions
to be d„=8,dl =4; these results follow upon considera-
tion of the infrared divergence of the four- and two-point
functions, respectively. If the latter result is correct, then
the method just described for constructing the effective
action is invalid in the vicinity of L since, in the absence
of long-ranged order, the dominant modes cannot be sim-

ple Fourier modes. We shall return to this matter in
more detail in Sec. III.

For the moment, we merely point out that the asser-
tion dL =4 is predicated on the continuum Hamiltonian
that is supposed to represent the order-disorder transition
in this region of the phase diagram. However, one does
expect the continuum form of the effective Hamiltonian
deduced by the methods just described to be valid if d & 4
and terms of quartic order in the wave vector are kept in

Eq. (1.9). This permits the critical modes to have Q, ~0
since this would correspond to coefficient b of (1.9) ap-
proaching zero. Thus it is possible, in principle, to ana-
lyze this action in an 8 —e expansion, indicating that L
may be driven first order.

This is certainly a possible scenario, though it is a little
dificult to interpret the results of this analysis since, if
dL =4, one would need to carry the expansion below the
lower critical dimension in order to access the physically
relevant case d=3. Even if the lower critical dimension
of the microscopic Hamiltonian is, in the region presently
being discussed, equal to 3, the continuum theory being
studied in 8 eexpa—nsion has di =4, so one would need

to argue that the leading terms in the 8 —e expansion will

be the same for both theories. It is not clear that this is

the case.
One of the other possible scenarios is that the disor-

dered phase may intrude between the periodic and fer-

romagnetic phases, rather like the situation in the two-

dimensional axial next-nearest-neighbor Ising (ANNNI)
model. Since one can show that long-ranged order exists
in the low-temperature limit, this does not seem to be
correct. Alternatively, it is also possible that in the pres-
ence of fluctuations, the wavelength of the periodic phase
does not become infinitely long as one proceeds along the
curve of fluctuation-induced first-order phase transitions.
With this ansatz it is possible to study the nature of the
transition in the region of the lamellar, ferromagnetic,
and disordered phases.

Now if Q, remains finite, none of the problems associ-

ated with an isotropic Lifshitz point arise and it is possi-
ble to apply the same methods described in Eqs.
(1.1)—(1.12) to construct an extended effective Hamiltoni-
an. Thus, in the region where the mean-field theory pre-
dicts the periodic, ferromagnetic, and disordered phases
to meet at a Lifshitz point, one can analyze the Hubbard
action to find seven critical modes, six representing
periodic ordering and one corresponding to a simple fer-
romagnetic ordering. We emphasize that this is a strong
ansatz which cannot be checked within the present calcu-
lation. Nevertheless, it is worth examining its predic-
tions.

Thus the new effective action is determined to be

3
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In Sec. II we consider the 4 —e analysis of these two
Hamiltonians. However, before we proceed it is worth
making the following observations.

In principle, terms of different symmetry will flow

differently under application of the renormalization
group, so the two quartic terms in Hamiltonian (1.12) and
the four quartic terms in Hamiltonian (1.13) should have

independent coupling parameters. Under certain cir-
cumstances it may be appropriate to use the bare cou-
plings given in (1.12) and (1.13) as initial conditions for
the flow. However, arguments that this is the case are
heuristic.

For example, it will transpire [see Eqs. (2.2) and (2.3))
that the ratio uz/u, =2 of the quartic couplings of (1.13)
is preserved under renormalization, so u2 =2u1 is a
separatrix in the flow space. It is not obvious that our
method of deriving the coarse-grained LGW Hamiltoni-
an can account for those renormalizations that will occur
on going from the microscopic [Eq. (1.2)] to coarse-
grained form (1.13). However, since the bare couplings
lie on one side of a separatrix line, it is assumed that this
renormalization from the microscopic form does not per-
mit the system to cross the separatrix. Under these cir-
cumstances it is presumed that the ratios of bare cou-
plings can be used as initial conditions for the
renormalization-group flow.

II. ORDER-DISORDER BOUNDARIES
%'ITHIN THE EPSILON EXPANSION

%'e begin by considering that Hamiltonian which de-
scribes the curve of phase transitions between the
paramagnetic and the modulated phases. For the rno-

ment we assume that we are far from that part of the
phase diagram which, within mean-field theory, was a
Lifshitz point.

The LGW Hamiltonian for this region of the phase di-

agram may be written
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The e expansion of this Hamiltonian has been previously
carried out by Mukamel and Krinsky (MK). In the limit

of large rescaling factor b, they obtain the following flow

equations:

Xp

u', =b'[u, —(40u, +4uz )K41nb], (2.2)

u ~ =b'[uz —(32u ~u2+12u2)K41nb] . (2.3)

TABLE I. Fixed points for the six-component model.

X,

1

56
1

44
1

40

X2

0
l

28
1

44

0

Following Mukamel and Krinsky we define
x& =(K4/e)u, , x2=(K4/e)u2. One can show that these
flow equations possess the four fixed points given in Table
I (see also Fig. 1).

Now the line x2=2xl is a separatrix, so that the flow
preserves the ratio of coupling constants x2/x, =2.
Thus, if one chooses the initial conditions to the left of
the separatrix, there will not be any accessible stable fixed
points, and we conclude that the transition is fluctuation
induced first order. On the other hand, if the initial con-
ditions place us to the left of the separatrix, we will ob-
tain a second-order transition with the exponents in the
universality class of the stable fixed point (MK). The
fixed point along the separatrix would then correspond to
a tricritical point.

As we argued at the end of Sec. I, one should be able to
use the bare ratio of coupling constants as initial condi-
tions for the renormalization-group flow. In this case we
find x2=4x, and this places us well into the region
where a fluctuation-induced first-order phase transition is
to be expected. This conclusion is consistent with earlier
Monte Carlo simulations. It is to be contrasted with the
situation for the ANNNI model where the periodic order
to paramagnet transition is in the X-Y universality class.
It is possible that magnetic materials will exhibit these
different behaviors depending on the degree of anisotropy
in the Hamiltonian.

The analysis carried out above is valid only for regions
of the phase diagram well away from the mean-field

Lifshitz point. If, in the presence of fluctuations, the
wavelength of the lamellar phase does not diverge, then it

is possible to analyze the Hubbard action in the vicinity

of the mean-field Lifshitz point in the manner just de-

scribed for lamellar ordering. It is found that there are
now seven dominant critical modes (0,0,0),
(+Q„O,O), (0, +Q„O), (0,0, +Q, ). The effective Hamil-

tonian density is then given by Eq. (1.13).

FIG. 1. Flow diagram for the six-component model. The
stable fixed point (MK) lies to the left of the separatrix x2 =2x,
(bold line). There are two fixed points along the separatrix. At
the origin one has the Gaussian fixed point, the other one is a
Heisenberg O(6) fixed point. The initial conditions for the flow
of Hamiltonian (1.12) are believed to lie to the right of the
separatrix.

Q2—
2 g (V,'m,'+m;m, '+2&;'V,')

l &J
3—u3qo X [(V, )'+(t;)']—u4to (2.4)

In the limit of large rescaling factor b, we obtain to first
order in e,

uI =b'[u, —(40u, +4u2+u3)K4lnb],

u2 =b'[u2 —(32u&u2+12uz+2u3)K4lnb],

(2 5)

(2.6)

u 3 =b'[u, —(16u
&
u3+12u3u4+8uzu3+8u 3 )K4lnb],

(2.7)

u ~
=b'[u ~

—
( 36u 4+ 6u 3 )K4lnb ] . (2.8)

In terms of the parameters x; =(K4/e)u„ the fixed points
are given in Table II.

All of the fixed-point Hamiltonians, implied by Table
II, except for the last one, lie in the direct-product group
of the earlier six-component Hamiltonian and the Ising
Hamiltonian. However, examination of the stability of
these fixed points indicates that they correspond to the
fixed points of the previous six-component Hamiltonian
with Ising-like crossover. The final fixed point lies in the
0 ( 7 ) universality class.

Note that most of these fixed points are on the now
three-dimensional separatrix x2 =2x l, and the rest are to

We rewrite the interaction part of the Hamiltonian in a
more convenient form

3 3

H;„,= —u, g [(p, ) +(g;) ]—2u, g gory,
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TABLE II. Fixed points for the seven-component model.

X,

0
1

40

0
1

40
1

56
1

44
1

56
1

44
1

60

X,

1

28
1

44
1

28
1

44
I

30

X,

1

30

X4

1

36
1

36

1

36
1

36
1

60

the right of the separatrix. This means that one must
choose initia1 conditions that lie on the separatrix or to
the right of it, if we are to access one of them. Of the
fixed points that are located on the separatrix, 0 (6) (with
Ising crossover), and 0(7) are the most stable. If one
chooses the initial conditions on the right-hand side of
the separatrix, then one will find an even more stable
fixed point corresponding to (MK) with Ising crossover.

The problem with this analysis is that the nature of the
ansatz leading to (2.4) does not permit one to fix these ini-
tial conditions, even heuristically. The most likely con-
clusion is that, as a function of the microscopic interac-
tions, one chooses those initial conditions on the separa-
trix that lead to the 0 (7) fixed point. One then finds the
following topology for the phase diagram. A curve of
Auctuation-induced phase transitions is terminated by the
0 (7) second-order transition and the order-disorder tran-
sition curve then continues as an Ising-like set of second-
order transitions. The 0(7) fixed point would, in this
case, also be a critical end point of a curve of convention-
al first-order phase transitions between the broken-
symmetry, ferromagnetic, and lamellar phases.

It is worth pointing out that extensive Monte Carlo
simulations have been carried out for some points along
this order-disorder boundary. It seems clear that at least
part of the ferromagnetic-paramagnetic boundary is of
the Ising universality class, while the lamellar-
pararnagnetic boundary is weakly first order. The simu-
lations in the region between these limits are incon-
clusive. In Sec. III we make some further comments
about this region.

Within mean-field theory this point is described by an
isotropic Lifshitz point. One model that we have con-
structed suggests that transitions near this point will be
in the 0 (7) universality class, but this requires that Q,
remains finite. If Q, vanishes, then an 8 —e expansion
may be carried out. However, an elementary argument
indicates that dL =4, so the results are dificult to inter-
pret. Given the inconclusiveness associated with this
analysis it seems worth discussing other alternatives for
this region of the phase diagram. The first point that
must be emphasized is that, unlike the situation for the
three-dimensional ANNNI model, the present lattice
model is isotropic, and the periodic phases arise as a
consequence of spontaneous symmetry breaking. One is
then led to question the influence of the lattice on the
lamellar phases. In the case where the layers are widely
separated it is possible that the layers roughen. There is
some evidence that, in the vicinity of the putative isotro-
pic Lifshitz point, loss of long-ranged lamellar order may
be associated with roughening. Thus a Fade approxima-
tion of a long low-temperature expansion of an isolated
interface has been used to calculate the interfacial height
fluctuations. In that region of the phase diagram
presently under discussion, the roughening curve is,
within numerical error, identical to the disordering tran-
sition of the lamellar phase as calculated by simulation.
If this transition were to be associated with interfacial
roughening, then one might, on the basis of our inforrna-
tion on the Laplacian roughening model, predict two
translationally disordered phases, one corresponding to
an orientationally broken symmetry. This possibility that
the model may possess a number of disordered phases is
intriguing. However, our analysis has been hampered by
the fact that the Kosterlitz-Thouless fixed point requires
a calculation up to the second order in the fugacity, while
the functional How for the interlayer potential is poorly
understood beyond linear order in the potential. ' '"
More details of this situation will be presented at a later
date. ' In any case, if the disordering takes place by
roughening, then the layers are already Auidlike and
another continuum Hamiltonian, appropriate for such a
situation, may be extracted from the Hubbard action.
Thus one no longer has single Fourier modes (density
wave excitations) being pinned to the lattice beneath the
paramagnetic-lame11ar phase transition. One then con-
jectures that the dominant excitations in the Hubbard ac-
tion are of form

III. CONCLUSIONS S(r) =y(r)cos[Q, z+9(r)], (3.1)

Assuming the forms of the LGW Hamiltonians given
by Eqs. (1.12) and (1.13), we have carried out a 4 —e ex-
pansion to determine the topology of the phase diagram
near the order-disorder boundaries for one-dimensiona1
periodic and ferromagnetic ordering. The conclusions
are that, for suSciently short wavelengths of periodic or-
der, the lamellar-disorder boundary is driven Auctuation-
induced first order since the stable (MK) fixed point is
inaccessible, while the ferromagnetic-disordered bound-
ary remains a curve of Ising-like transitions. The situa-
tion becomes very unclear for that region of the phase di-
agram where the period of lamellar ordering is very long.

where 0 is a slowly varying phase factor that permits the
layers to have transverse fluctuations and y(r) is a slowly
varying density variable. If the spatial variations in the
density variab1es are slow, then one can show that the
quadratic term in the effective Hamiltonian is

A= I y (r)[a, [V,O(r)] +(2a, Q, —a2)(V, 8)2
I'

—(ai —6aiQ, )(B,O) +2a&(B,V,O) ) (3.2)

where r and t are, respectively, three- and two-
dimensional vectors. The physical origin of these terms
is immediately evident. They are, respectively, a curva-
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ture term (an excess in energy resulting from bends of the
interfaces in the lamellar phase), a surface-tension term, a
simple bulk modulus compression term, and the addition-
al effective compression term. All terms except the final
one have been previously discussed in phenomenological
models of interacting layers, though the surface tension is
often considered irrelevant for lyotropic systems. Indeed,
using the bare values from microscopic Hamiltonian for
a, and a2 we find that in the vicinity of the phase-
transition line the term is vanishingly small. It is in-

teresting to note that, on independent grounds, we have
earlier identified this as the microemulsion region of the
lattice model. ' On the other hand, the final term of Eq.
(3.2) is of comparable magnitude to the first, and on the
basis of the underlying microscopic model cannot be
dropped. In fact, it can be viewed as an additional term
in the bulk compression energy resulting from the fact

that stretched interfaces have larger surface area. There
seems to be no justifiable reason for neglecting this term.

We can see that the detailed nature of this region of the
phase diagram is not yet clear. It seems likely that a
number of novel phenomena may be present.

ACKNOWLEDGMENTS

One of us (Y.L.) gratefully acknowledges support from
the Regents of the University of California. K.A.D.
gratefully acknowledges financial support from the
Dreyfus Foundation, AT&T, and the Sloan Foundation.
The authors had helpfu1 conversation and correspon-
dence with Professor M. E. Fisher and Dr. M. Barbosa.
We are grateful to Dr. Barbosa for sending us a copy of
her unpublished work. The authors wish to thank A.
Berera for a correction to Eq. (2.8).

'B. Widom, J. Chem. Phys. 84, 6943 (1986); K. A. Dawson, M.
D. Lipkin, and B. Widom, ibid. 88, 5149 (1988); K. A.
Dawson, Phys. Rev. A 36, 3383 (1987). An extensive review
article that discusses related issues is W. Selke, Phys. Rep.
170, 213 (1988).

P. J. Upton and J. M. Yeomans, Europhys. Lett. 5, 575 (1988);
P. J. Upton and J. M. Yeomans, Phys. Rev. B 40, 439 (1989).

A. Berera and K. A. Dawson, Phys. Rev. A 41, 627 (1990).
4K. A. Dawson, B. Walker, and A. Berera, Physica (to be pub-

lished); see also N. Jan and D. Stauffer, J. Phys. (Paris) 49,
623 (1988).

5Marcia C. Barbosa (unpublished).
6ln this paper [D. Mukamel and S. Krinsky, Phys. Rev. B 13,

5078 (1976)) the authors study a more general form than that
of Eq. (2.1), only four of their fixed points (a, b, e,f) are
relevant to our study. See also, S. Krinsky and D. Mukamel,
Phys. Rev. B 16, 2313 (1977).

7R. M. Hornreich, M. Luban, and S. Shtrikman, Phys. Rev.
Lett. 35, 1678 (1975); R.. M. Hornreich Phys. Rev. B 19, 5914
(1979); N. S. Tonchev and D. I. Uzunov, Physics A 134, 265
(1985).

B.Khang, A. Berera, and K. A. Dawson (unpublished) ~

D. Nelson, Phys. Rev. A 26, 269 (1982).
'oK. A. Dawson and Y. Levin (unpublished).
"B.Khang, Y. Levin, and K. A. Dawson (unpublished).


