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We investigate the origin of long-range spatial correlations in certain anisotropic translation-
invariant stationary nonequilibrium states of systems with conservative dynamics. We consider
both lattice-gas models with anisotropic but reflection-invariant stochastic dynamics and driven
diffusive systems described by a Ginzburg-Landau equation with an electric field E. Carrying out
perturbation expansions about an equilibrium state with short-range correlations we find that, in
general, the spatial correlations in the stationary state decay only via a power law; the spatial decay
thus reflects the well-known diffusive decay in time for systems with conservative dynamics. The
typical spatial decay of the pair correlation behaves like the electrostatic potential produced by a
quadrupole charge density at the origin. Exponential decay of spatial correlations, so familiar from
equilibrium, appears here as the exception; it occurs generically only when there are special con-
straints on the dynamics, such as detailed balance and possibly spatial symmetry. The paradigm for
this generic long-range behavior or self-organized criticality is found in the solutions of the linear
Langevin equation describing the behavior of fluctuations of a conserved macroscopic variable. The
fluctuating hydrodynamics underlying such a description is justified here rigorously for the macro-
scopic scaling limit of certain lattice-gas models.

I. INTRODUCTION

It is well known that in equilibrium systems described
by Gibbs measures, with an interaction energy H that is
exponentially (or more rapidly) decaying with distance,
the spatial correlations at high temperatures and/or low
densities also decay exponentially. This is, in fact, ex-
pected to be the typical equilibrium behavior for pure
phases at all temperatures and densities. Important ex-
ceptions are systems at critical points in their parameter
space and special models, such as the massless harmonic
crystal, where long-range correlations are caused by the
presence of a continuous symmetry. These cases are,
however, clearly non-"generic" in the class of equilibrium
systems.

The situation appears to be quite difterent for non-
equilibrium systems where long-range correlations seem
to be the rule, ' giving rise to what Bak et al. call self
organized criticality (SOC). In this paper we study the
origin of such long-range correlations in translation-
invariant stationary non-equilibrium systems. To do that
we need to say something about the dynamics with
respect to which the measure is stationary.

For closed physical systems there is a natural dynamics
associated with an interaction H, and a chief characteris-
tic of the Gibbs measure vH (when extended also to the
momentum variables) is that it is stationary with respect
to the time evolution induced by this dynamics. It is, in
fact, expected to be the only such stationary measure for
isolated macroscopic systems with realistic interactions

in the infinite volume (thermodynamic) limit. To obtain
such systems in a stationary nonequilibrium, i.e., non-
Gibbsian, state, they must be coupled to "external"
sources and sinks that maintain steady-state fluxes
through them. While such "open systems" have been ex-
tensively studied from various points of view, their mi-
croscopic structure, even when they are far away from
any (obvious) critical points, is still an open problem;
hence our interest in the study of model lattice systems
with simpler dynamics.

Historically, lattice systems, such as the Ising model,
were introduced to model equilibrium behavior of real
systems. They were therefore described by Gibbs mea-
sures vH, with suitable energy H, and their states were re-
ferred to as equilibrium states even though there is no
natural dynamics associated with this H. There are, on
the other hand, many artificial stochastic dynamics for
these lattice systems for which the Gibbs measure vH is
stationary, Glauber spin-flip and Kawasaki exchange dy-
namics satisfying detailed balance with respect to vH be-
ing the best known examples. Now while these dynamics
can be quite artificial (they were invented just to get vH as
the stationary measure), there are good reasons to believe
that with appropriately chosen dynamics, these lattice sys-
tems can also correctly model the nonequilibrium behav-
ior of corresponding physical systems. ' In particular,
we expect these models to correctly represent the long-
distance behavior of correlations in real systems with ap-
propriate external reservoirs designed to maintain such
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nonequilibrium stationary states. We wish to exploit this
and use the richness of stochastic models to study the be-
havior of correlations in lattice systems described by
measures v which are stationary with respect to appropri-
ate local-conservative dynamics, e.g., Kawasaki-type ex-
changes, whose rates depend only on neighboring sites,
but which apparently are not Gibbsian for any interac-
tion H. In addition to lattice gases, we shall also consider
continuum models with a conserved scalar-order parame-
ter evolving according to the Ginzburg-Landau equations
(model B of Ref. 6). Adding an external electric field E
to such a system produces a stationary state not de-
scribed by any Gibbs measure.

The present investigation originated in the observation
made in Ref. 1, using computer simulations on a driven
diffusive lattice gas on a square and simple cubic lattice.
It was found there that the pair correlation G(r) in the
stationary state was very anisotropic, and decayed with
distance like a power law

~
G(r)~ r-", for d =2 and 3.

This occurred even at very high "temperatures, " far
away from any observed or calculated critical point. In
fact, the simulations fitted rather well to the first term in
an approximate high-temperature expansion of the pair
correlation, which predicted the behavior of G(r) to be
like that of a quadrupole field on the lattice. Similar
long-range correlations are also implicitly present in the
field-theoretic treatment of these driven diffusive systems
(DDS) described by the Ginzburg-Landau equations with
an external field. '

The existence of long-range correlations in
nontranslation-invariant stationary nonequilibrium sys-
tems, in which macroscopic gradients are maintained by
boundary reservoirs, is predicted by fluctuating hydro-
dynamics (cf. Refs. 11—14 for a review). A rigorous
derivation of them, for a lattice-gas system evolving ac-
cording to a symmetric Kawasaki exchange dynamics at
infinite temperature, was given by Spohn. ' In this sys-
tem a stationary density gradient is induced by a chemi-
cal potential difference in particle reservoirs attached to
sides perpendicular to the x axis a distance L apart. The
system was infinite in the other d —1 lattice directions.
Spohn found rigorously that for distances r &L, the
correlations behave as the inverse Laplacian, i.e., they
have a power-law behavior r '" ', d )2, growing
linearly in d =1 and logarithmically in d =2, with a
strength proportional to (5/L), 5 is the difference in
chemical potential of the two reservoirs.

Fluctuating hydrodynamics is a phenomenological
theory which assumes that the system is locally in
thermal equilibrium, with a local temperature, density,
and velocity field obtained by solving the macroscopic
hydrodynamical equations subject to appropriate bound-
ary conditions. Deviations from these local fields are
then assumed to be governed by a linear stochastic partial
differential equation obtained from a linearization of the
hydrodynamical equations to which 5-correlated Gauss-
ian noise sources are added. The strength of these
sources is determined by treating the system locally as if
it were in global equilibrium (cf. Ref. 16). This prediction
of power-law behavior of the pair correlation was recent-
ly verified experimentally via light scattering from a fluid

whose walls were kept at different temperatures. ' '
The long-range correlations in fluctuating hydro-

dynamics arise from the spatial nonuniformity of the
macroscopic solution of the hydrodynamical equations
about which the linearization has been made. This ap-
pears to be a different mechanism from that which
operates in the spatially uniform driven diffuse systems,
studied in Ref. 8, where there is no local equilibrium
state. This suggests that the existence of such long-range
spatial correlations may be typical for systems whose dy-
namics satisfy a conservation law. Such systems are
known to have power-law decay of temporal correlations
even in equilibrium. This slow decay in time might then
be expected to induce similar slow decay in the spatial
correlations of the stationary states. In fact, since parti-
cles at sites a distance r apart are influenced at time t by
the same local fluctuations which happened at time t =r
in the past, and these fluctuations have long time tails
typically decaying like t ",we would expect to have a
(r )

" =r decay of the spatial correlations. The
equilibrium state would then be nontypical —there would
be some special relation, e.g. , detailed balance, which
makes these long-range correlations vanish in such sys-
tems except at special (critical) values of the parameters.
This picture fits in well with the general point of view of
SOC advanced by Bak et al.

We investigate this problem here by first considering
several microscopic model systems. The essential distinc-
tion between the behavior of correlations in systems with
conservative and nonconservative dynamics is discussed
in Sec. II. Conservative lattice-gas models with reflection
invariance and Ginzburg-Landau models with an exter-
nal field are investigated in Secs. III and IV, respectively.
For the first, the presence of anisotropy is found to give
power-law decay of correlations in a perturbation expan-
sion. In the latter case we also consider the three-point
correlations which show power-law decay also in one di-
mension. This may, however, be an artifact of the expan-
sion. ' In Sec. V we investigate fluctuating hydrodynam-
ics as the paradigm for the large-scale behavior of corre-
lations in macroscopic systems. We are not able to derive
this theory for the microscopic models mentioned above
except for an anisotropic model on the lattice when the
ratio of vertical rates to horizontal rates becomes large.
This is done in Sec. VI. Similar results hold for a very
nice simple lattice system in which there can be an arbi-
trary number of particles at each site (zero range pro-
cess '

), studied by van Beijeren.
In Sec. VII we consider the role of anisotropy in pro-

ducing the power-law decay of correlations. It has been
argued recently by Grinstein et al. ' that some anisotro-

py is essential for slow decay in systems in which both the
"deterministic" and "fluctuating" parts of the dynamics
are conservative. Their arguments are based essentially
on extending the behavior obtained in Sec. V from fluc-
tuating hydrodynamics to nonlinear systems using
renormalization-group ideas, and are consistent, in di-
mension greater than 1, with the results obtained here.
We formulate a precise conjecture about the "genericity"
of such behavior in Sec. VII A.

We put all technical details in the Appendixes.
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II. MICROSCOPIC MODELS

c (i,j;cJ ) =c (j,i; cr ) )0 (2.1)

be the rate of exchange of the spins at neighboring sites i
and j, ~i j~ =l. —We assume that the c(i,j;o.) depend
only on the configuration of spins within a finite range
and are translation invariant. The dynamics clearly con-
serves the magnetization. It satisfies detailed balance for
the Gibbs state vH if and only if

c (i j;o ) =c(i j;o'u) exp[ p[H(o'u) H(cr )]]—, —(2.2)

To understand the role of conservation laws in produc-
ing long-range correlations, let us consider first an Ising
system with a nonconservative (model-A-type) Glauber
spin-flip dynamics. It is then easy to show that if the flips
are "close to independent, " both temporal and spatial
correlations decay exponentially fast. For the "close to
independent" condition to hold, it is sufhcient but not
necessary that the flips satisfy detailed balance with
respect to an equilibrium state vH at high temperatures.
The exponential decay is a consequence of there being a
gap, when the dynamics is close to independent spin flips,
in the spectrum of the generator in the master equation.
This property will remain true also when the flip rates are
slightly perturbed, i.e., it is true in an open set in the
"space" of stochastic dynamics.

As an example, we may consider a system in contact
with two thermal reservoirs at different temperatures dis-
tributed throughout the bulk. This corresponds
mathematically to making the generator of the dynamics
a linear combination of two generators, each satisfying
detailed balance for the same H, but at different tempera-
tures, P, ' and P2 '. lf both )33! and i3z are small, then
there is still a gap in the spectrum of the time generator
of the evolution which implies the existence of a unique
stationary translation-invariant measure in which the
space-time correlations decay exponentially. Thus, on a
qualitative level, the violation of detailed balance in a
nonconservative dynamics has no effect on the general
behavior of the space-time correlations, at least when the
"interactions" are weak.

The situation can be quite different when there is no
spectral gap, e.g. , when the example mentioned above is
modified so that both generators are of the Kawasaki
type, in which nearest neighbor sites on a lattice ex-
change their spins at certain rates. Here, even for infinite
temperature, P=O, corresponding to exchange rates
which are independent of the configuration, there is no
gap in the spectrum, as exhibited by the fact that the time
correlations only decay with a power law. Thus there is
no a priori reason for expecting exponential decay of spa-
tial correlations in the stationary state, even when P, and

Pz are both small. In fact, we shall argue later that, in
this case, there will be only power-law decay, at least
when the rates are anisotropic.

To describe the Kawasaki dynamics more explicitly, let
!r= [o.(i) ]. & be a spin configuration on the diEZ
dimensional lattice Z", and

where o'j is the configuration cr with the spins at sites i
and j interchanged. This condition can in principle be
checked directly from the c(i,j;o ) by noting that (2.2)
implies that the rates for a sequence of cyclic transitions,
o. —+o. '~cr"~. . .cr, must be independent of the direc-
tion around the cycle. We are interested in the behavior
of the correlations in the stationary state of such conser-
vative dynamics when the detailed balance condition (2.2)
is not satisfied. Also of interest will be the two-time
correlations in this steady state.

Specifically, we will investigate two physically fairly
natural models. We believe our conclusions to be valid
for most systems with a conservation law.

(i) Models tuithout net current He.re the exchange rates
are assumed to be reflection invariant. That is, letting

[ e ],be unit vectors pointing in the ath direction,

c(O, e;a)=c(O, e;8 o), (2.3)

A particular class are the multiple-temperature models.
The jump rates in the uth direction, o.= 1, . . . , d, satisfy
the detailed balance condition (2.2) with inverse tempera-
ture )33 . The steady state will be anisotropic, although,
since the rates are reflection symmetric; no net current is
flowing.

(ii) Driuen dijfusiue systems This is .the model initially
studied in Ref. 8. The jumps are biased due to an exter-
nal driving field. If E denotes the driving force, then the
exchange rates satisfy a "local detailed balance" of the
form '
c(i j;o )=c(ij;o') exp[ —/3[U(o') —U(cr)]

E(i —j)[o.(—i) —o(j)]] . (2.5)

For periodic boundary conditions, the driving force
maintains a spatially uniform anisotropic steady state
with nonzero average current. The same is expected to
be true for the infinite system at high temperatures, i.e.,
we assume that there is a unique translation-invariant
stationary measure for fixed density and small P (see Ref.
16).

For both models we expand the steady-state correla-
tions around an exactly soluble case in which the spatial
correlations are short range. For model (i) the expansion
is around infinite temperature, where there are no spatial
correlations. Due to the particle-conservation law, how-
ever, the time correlations decay diffusively. To see this
more precisely, let ) o, ] be the spin configuration at time
t: we define the translation-invariant time-displaced trun-
cated spin-spin correlation function in the steady state by

G(i j, t —s}=(—cr, (i)o., (j ) ) —m', (2.6)

where m = (o., (i) ) is the magnetization, which is time
independent in the steady state. The spatial Fourier
transform or structure function is defined by

where 0 0. is the reflected configuration through a plane
perpendicular to the bond (O, e ):
9~0'(!)—:cr(!!,. . . , l~+ 1, . . . , lg )

for i =(i„.. . ,i, . . . , iz)EZ . (2.4)
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S (k, t) = g e'"'[(o, (j )o o(0) ) —m '],
J

(2.7)

where k is in the first Brillouin zone, k E [—m, m']". Then,
at infinite temperature [P=o in (2.2)], the structure func-
tion (2.7) is, for small k, of the form

III. REFLECTION-INUARIANT MODELS

The dynamics is described by giving the evolution of
the correlation functions. Let A be a finite set of sites,
o „=—g;~„o(i). Then, starting from some initial state

po, the correlations at time t satisfy the coupled set of
equations

S (k, t) = (1—m ) exp( Dk—t ), (2.8)

G(j, t) =t (2.9)

with D the bulk diffusion coefficient. ' This implies, for
fixed j and large t, the decay

—(o „),= g' (o „[o(i)cr(J) 1—]c(t,j;o ))r r

dt
(3.1)

where the sum g' is over nearest-neighbor sites i and j
such that i E 3, jE A.

Defining difference operators

For the driven system, model (ii), at P=0 (and the stan-
dard choice of rates), the steady state is independent of
E. ' However, the time-dependent structure function is
complicated and not known explicitly even to lowest or-
der in P. Thus we would need to expand in both P and E.
We avoid such an extra complication by considering a
continuum Ginzburg-Landau model with a field E.
There we can expand around a finite-temperature Gauss-
ian field in the strength of E (Sec. IV).

VJ(i)=f(i +e ) —f(i),
V*f(i)=f (i e) —f(i)—,

for a function f (i ), i E Z", and

d

b, = —V'V, b, = gb~,
a=1

the equation for the pair correlations takes the form

(3.2a)

(3.2b)

d——(o(0)o(i)),= —g IV'(c(i,i+e, o)V o(0)o(i)), ,'b, 5;0[V'(c—(j—j+e,o)V o(0)o(j)),]
2 dt a=1

(3.3)

Since we are interested in weakly interacting spins, it is convenient to see the inhuence of these interactions by writ-
ing the rates c(i,i+e;tr) as the sum of a constant which can be fixed to be unity and a "small" configuration-
dependent term,

c(i,i+e;o)=1+c (i;o) . (3.4)

Equation (3.3) can then be rewritten in the suggestive form

——(o(O)~(i) ), =a(o(O)o(i) ), —
p, (i),

1
(3.5)

where

d d d

p, (i)= g V,'(c,(i;o)V o(0)o(i)), + —,
' g b ,5[0V*(c (j;o)V o(0)o(j)),], o+b5, 0

—g 6 5, O(o(0)o(e )),
a=1 a=1

(3.6)

depends both on the pair and higher-order correlation
functions.

Equation (3.5) can also be written as an integral equa-
tion using the transition probability p, (i,j ) = e '(i,j ) for a
simple random walk on Z"; i.e., the probability that a ran-
dom walker starting at site i will be at j at time t:

e
—(t —g) /(t —s)

p, ,(,g)=
(t —s)

We then have

6[(o(0)o(i))ss—m ]—:AG(i, o)=p(i), (3.8)

while its Fourier transform, the steady-state structure
function, becomes

the spins at sites 0 at i are "connected" at time t via
space-time walks (i, t) ~(j,s)~(0, t).

In a translational-invariant stationary state ass, with

( o (i) )ss ——m, the truncated equal-time two-point func-

tion of (2.6) satisfies the equation

—,'(o(0)o(i)), =e '(cr(0)cr(i)) + f dse " 'p, (i) . S(k,O)=
2 g, (cosk —1)

(3.9)

(3.7)

This illustrates the remark made in the Introduction that
We can therefore think of p(i) as a "charge density" and
of G(i, o) as the corresponding "electrostatic potential. "
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Such an identification does not by itself give us much
rigorous information about the behavior of correlations
in the steady state. The charge density p(i), defined in

(3.6), is, after all, also unknown, and (3.8) can be thought
of as a member of some infinite hierarchy of such rela-
tions. The structures of (3.6) and (3.8) are, however, very
suggestive of what one should expect for the "generic"
behavior of the decay of the pair correlation in the sta-
tionary state. For a finite system in a periodic box A, the
total charge density g, ~~(i)=0 by (3.6), and the dipole
moment g; ~„ip(i)=0 by reflection invariance, which

a

follows from translation invariance. To conclude the
same for the infinite system, which would assure then
that S(k, O) remains bounded as k~0, requires assump-
tions about the decay of p(i) It .suffices that the second
moment of p(i) is bounded,

To evaluate the b 's is difFicult in general; we do it here
for a particular model up to first order in a high-
temperature expansion. This will also enable us to point
out where cancellations occur if detailed balance (2.2) is
assumed. Higher-order terms will be discussed in Appen-
dix A, and isotropic dynamics in Sec. VII.

A. Example: Multiple-temperature model

%'e assume the exchange rates to be given by

c(i,i+e, ;cr)=4& (P [H(o
'

) H(~—)]),
a=1, . . . , d, (3.12)

where the [4 ] are smooth strictly positive functions
with 4 (0)=1. The energy

& li l'Ip«)l & ~, (3.10) (3.13)

for the infinite system. This will be verified explicitly
later in perturbation theory and will be assumed to be
generic (c.f. our discussion in Sec. VII). It then follows
that, for small wave vector k,

b k'
S(k, O}= g li p(i)+

l

(3.11a)

with b, =(1/2d)g, p(i)(di' —
li '), lil —= g i,

Equation (3.11a) shows that the decay of the pair
correlations will have a quadrupole-type power-law be-
havior unless all the b are equal to zero, as would occur
if the "charge density" p(i) had the same symmetry as
the lattice. That is, generically, we have SOC with

d

(cr(0)o(i)) =50;+ g P G"'(i)+N, (3.14)

is even, and translation and reflection invariant with A, a
finite subset of Z"; J„=O if the diameter of A is larger
than R. If all P =P and 4 (z) =e '4 (

—z), then (3.12)
satisfies the condition of detailed balance, Eq. (2.2), for
the Gibbs measure vH with the Hamiltonian (3.13). We
study the stationary state of the dynamics governed by
(3.12) as a perturbation of the product state with zero
magnetization. The latter is, of course, invariant for the
dynamics with all f3 =0

For the moment, we are only interested in the first
order correction in the P 's to the stationary two-point
function. We write this, dropping the subscript "SS," as

d 2

(o(0)o(i ))„='g bss a

with appropriate constants [b l.

(3.11b)

a=l

where N represents higher-order terms in the P . Using
the stationarity condition (3.8), and substituting (3.12)
and (3.13), we obtain

d d d

g /3 bG"'(i)=bG'"(i)= —2 g P,4'(0)[bg(i)+J(e )5,6O, ]—g b, 60, G'"(e ):p(i), — (3.15)
a=1 a=1 a=1

where J(i)=
J~ii;~ if i @0 and is zero if i =0. Multispin interactions containing more than two sites do not contribute

to this order. As before, due to the reflection invariance of the conservative dynamics, the dipole moment (as well as
the total charge) is zero; i.e.,

g p(i) =0, (3.16)

gi p(i)=0, y=l, . . . , d . (3.17)

The decay properties of 6' "(i) as i ~ ~ will therefore be governed by the quadrupole moment.
For a charge density p(i), i EZ the quadrupole moment Q .(p), a, a' = 1, . . . , d is defined by

Q (p)—:g p(i)(li l
6 ~ di i' ), — (3.18)

where li l

= g li l
. For our case, (3.15) can be solved using Fourier transforms. We get

g (cosk —1)S"'(k) = —2 g P 4' (0)[(cosk —1)J(k}+J(e )(cosk —1)]—g (cosk —1)A z'M
a, y

(3.19)
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where A ' is the inverse of matrix A given by

cos(k )[cos(k ) —1]
A ~ =5 +2f dk (2')" (cos(k ) —1

(3.20)

[J(k)+J(e )][cos(k ) —1]
Mr= —4+P 4'(0) Jdk dcos(k~)

(2n. ) cos k —1
(3.21)

For small k, Eq. (3.19) reads

k
S"'(k)=const+ g Q

k
(3.22}

where

Q ~= —4+Pr4'(0) (1—d5 r)[J(0)+J(e )]

[J(k)+J(er }][cos(kr) —1]—2 g (1—d5 )A ~

'
J dk „cos(k, )

(2n )" cos k —1
a"

(3.23)

~ 2

G' '(i)= g Q, (3.24)

The equal-time structure function S(k,0)—:S(k), defined
in (2.7), will thus have the form

Taking the inverse Fourier transform, we obtain, for
/i/ ~ co,

where the charge is a function of lower-order multiple
spin correlation functions. For the general asymmetric
case, the two-point function has a power-law decay order
by order except in the case of detailed balance, where
each order is strictly local. We are, however, not able to
prove the convergence of the perturbation series.

S(k)=1—m + g Q, +X .
a=1

(3.25)
IV. DRIVEN DIFFUSIVE SYSTEM

The decay properties of the stationary two-point func-
tion are therefore extremely different, according to
whether the Q are all equal or not. Since g Q =0,
there are two possibilities.

(i) Not all Q are zero; then the two-point function
has the form of a quadrupole field and decays for large ~i

~

like a power law —
~i ~, at least to first order in P .

(ii) All Q =0; then the structure function is analytic
at the origin and the two-point function decays exponen-
tially.

The cancellations required in the second case occur if
all the coefficients 4'(0)P = —

—,'P are equal. We then
find the explicit solution

—P (r)+divj (r)=0,a
Bt

(4.1)

with the flux j, in the absence of an external driving field,
given by

As mentioned in Sec. II, there are serious difficulties
with obtaining explicitly even the lowest-order expansion
terms in /3 for DDS on a lattice in which there is at most
one particle per site. In this section we therefore consid-
er the case of a single conserved field P, P ER, in the con-
tinuum rEIR". The time evolution of P is described by
the stochastic partial differential equations (SPDE) (mod-
el 8 Ref. 6)

G"'(i)=PJ(i) . (3.26) j,(r)= —grad +y' J, (r) .
5H

(4.2)

This happens, of course, in one-dimensional systems, but
also —in any dimension —if the detailed balance condi-
tion is satisfied for the rates (3.1}. Then (3.26) gives the
first term in a high-temperature expansion for the equilib-
rium two-point correlations in the Gibbs measure v&
with Hamiltonian (3.13).

In the Appendixes we investigate this cancellation
mechanism also for higher orders in a perturbation ex-
pansion. Every order satisfies a relation of the type (3.19)

Here J, (r) is a 5-correlated random current with covari-
ance

(J, (r)J, (r'))=5 .5(t —t')5(r —r') . (4.3)

Clearly, P, (r) is locally conserved. Equations (4.1)—(4.3)
admits the one-parameter family of stationary equilibri-
um distributions
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—exp P—H(P ) h—f1r b(r )
1

Z
(4 4) L(b, p, 2))= f dt dry it2bit2+f A,

' —~b, +&2
Bt

with P=2/y. The chemical potential h regulates the
average value of P. In the following we will set h =0,
which implies (P) =0 when H is chosen to be symmetric
under P going to —tI). For the quadratic Hamiltonian

H(P)= ,
' f d—r(a~gradP~ +gP ), (4.5)

g, t~) 0, (4.1)—(4.3) is a Gaussian field theory with a struc-
ture function in the stationary state (4.4), h =0, of the
form

+ o.o(E grad/)P + TI—P
1 1

2A.

(4.9)

where 21 is an auxiliary external field and t)2 is the MSR
response field. Correlation functions can now be ex-
pressed as functional averages with weight e . In par-
ticular, the truncated correlation functions are given by

S(k, t)= exp[ k'—(~+k')~t~],1

(r+k )
(4.6)

where we assume for simplicity Pa= 1, and we define
r=gg and k=1/P. We are interested in a situation
where the system is driven by an external force E. We
have to add then to the current (4.2) the externally driven
current (c.f. Refs. 9 and 10)

(P, (r, ) P, (r„))T

6

521, (r, )
InZ(21 )

521, r„

where

Z ( 21 ) =f 5$ 5it2 exp [ L( P, P—, rt) ] .

(4.10)

(4. 1 1)

j,„(r,t ) =o (P)E, (4.7)

where 0. is the field-dependent conductivity. We expand
0(P) about /=0. The zeroth- and first-order terms can
be absorbed through a Galilean transformation. The
relevant contribution is found by putting cr(P)=oog .
Combining this with (4.1)—(4.4), the P field is governed by
the SPDE

To compute Z(2)) we follow a perturbative scheme
where the expansion parameter is E; see Appendix B.
Due to symmetry, the first-order term in the truncated
pair-correlation function vanishes. The structure func-
tion in the stationary nonequilibrium state S(k) can
therefore be written in the form

S(k)=S' '(k)+(croE) S' I(k)+IV,

where JV represents higher-order terms, and

—(2A, )' V' J, (r) .

(4.12a)

(4.8)
The second-order term has the form (see Appendix B)

For the equations of motion to be well defined, one has to
regularize at short distances. A physically reasonable
choice is to discretize and to put the P field on the lattice
Z". For our purposes it suSces and is computationally
simpler to merely cut off the large wave numbers; i.e., we
choose a maximum wavelength A and set the Fourier
transform of tt equal to zero for values of k ) A.

To study the behavior of the correlation functions from
(4.8), we follow Refs. 9 and 10 and use the Martin-
Siggia-Rose (MSR) formalism. ' We rewrite the model
in terms of a dynamic functional

S' '(k) = D(k )
k

(4.12b)

Here k~=kE/~E is the component of k parallel to the
field and D(x) is an analytic function around x equal
zero. S '(k) is always analytic in one dimension. In
higher dimensions we have to examine the behavior of
D(x) near the origin; i.e., if D(x)=x", n ) 1, when
x~0. In particular, we can compute explicitly D(x)
when 1/r is small enough. For r~ oo, we find in Appen-
dix B

1 1 9 dI ——1 x +3(—2d +1)I —x+(4+8d+3d )I —+1d 2 d
(2r)5/2 4(47r)d/2 4 2 2

1+0
7

(4.13)

where d is the space dimension, and

I(n)= f, du
A

exp( ——', uk')

(2u)"
(4.14)

It is easy to check from (4.13) that D (0)AO, implying a nonanalytic behavior of the structure function for dimensions
higher than 1. Thus, at least in second-order perturbation, we find a large distance decay of the steady-state correla-
tions identical to the one found for the two-temperature model in the last section, although the physics of the two mod-
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els are quite difficult.
We have also computed the three-point truncated correlation function to first order in E. It can be written as

(P(0)$(r&)P(r&))~= f f „e ' ' ' 'T(k, , ki),
(2m. )

"

where

1,(~k2+k2, ik I +2(kl, i +k2,
)~
)klk2 1T(k„k2)= i—

11(ki)ll(k )II(k +k ) k, il(k))+k II(k )+(k, +k2) II(ki+k )

(4.15)

(4.16)

and II(x)=x +7. In particular, we have computed the leading term of (4.15) when r~ oo. In this case, whenever r,
and r2 are different from zero, the behavior of T when the cutoff A goes to infinity is

d j2 2

(t(0)P(r, )$(r, ) r = (d +1).
4m (x, +x2 —x&x2)

(4.17)

Thus the truncated three-body correlation function
behaves as r ' +"when r ~ oo whenever the points x ]

and xz are not symmetric with respect to the origin; in
the symmetric case T is identically zero. Notice that this
power-law decay behavior occurs even in one dimension
where the two-body correlation has an exponential decay.
As noted in the Introduction, however, this may be an ar-
tifact of the expansion.

V. FLUCTUATING HYDRODYNAMICS

—g, +div( g, c+D grad/, +R ' J, )=0 .
a

(5.1)

Here c is the velocity of propagation for a density fluc-
tuation, and D is the diffusion matrix. R is a d Xd ma-
trix, which determines the strength of the fluctuation
current [the covariance of J, is given in (4.3)]. The quan-
tities c, D, and R are to be thought of as phenomenologi-
cal coefficients to be determined from the microscopic
model under consideration: c and D can be determined
through the response of the system to a small imposed
density deviation, while R is given by the static response
to a small uniform force.

The time-displaced structure function S(k, t) is now
simply the Fourier transform of the covariance of the
Gaussian stationary process of (5.1),

In this section we try to understand the slow decay of
correlations from the point of view of a macroscopic fluc-
tuation theory, in the spirit of fluctuating hydrodynam-
ics. ' We consider a density fiuctuation field g, (r) around
the uniform average density p. g, (r) is small because it is
a spatial average over a ce11 centered at r containing
many microscopic degrees of freedom. Its time evolution
will therefore be described by a linear SPDE. Since the
system is away from criticality, it is natural to assume
that g, (r) is a Gaussian field which is governed by the
linear Langevin equation [c.f. (4.1) and (4.2)]

S(k, t) = exp( kD ~t~+—ikct) .
kRk

2kDk

In particular, the static structure function is

S(k, 0)= kRk

(5.2)

(5.3)

R =2yD (5.4)

in (5.1) for some constant y, which is to be identified as
the equilibrium compressibility. In that case, S(k)=y
and S(r)=y5(r).

(ii) The system is isotropic. Then, even while the mi-
croscopic dynamics may not satisfy the condition of de-
tailed balance, the linearized dynamics (5.1) for the mac-
roscopic fiuctuations will satisfy (5.4) because D and R
become multiples of the unit matrix. This is consistent
with the results obtained from the microscopic models, as
we discuss in Sec. VII. In addition, since D and R de-
pend in a complicated way on the density and the micro-
scopic exchange rate, there could be isolated points in pa-
rameter space where accidentally the proportionality
(5.4) holds.

In principle, the fiuctuating hydrodynamics (5.1)
should be derived from a given microscopic model. In
particular, this would yield R and D in terms of the mi-
croscopic dynamics. Unfortunately, the rigorous version
of such a program is too difficult. More modestly, we an-
alyze in the next section a model where the mechanism to
derive fluctuating hydrodynamics is more explicit, be-
cause it relies on a scale separation between horizontal
and vertical jumps in a two-dimensional lattice gas.

which is, for small k, of the same form as that found for
the two microscopic models studied before. We can
therefore identify the coefficients R and D in these models
at least perturbatively. From (5.3) we learn that, in gen-
eral, we have to expect long-range correlations because of
the conservation law. There are two notable exceptions.

(i) The microscopic system satisfies detailed balance.
Then the macroscopic field satisfies the fluctuation dissi-
pation theorem, which implies that
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VI. AN EXACT MODEL:
FROM MICROSCOPICS TO MACROSCOPICS

In this section we derive the macroscopic equation of
fluctuating hydrodynamics, generalizing and making
rigorous a microscopic model of the type considered by
van Beijeren and Schulman and also investigated by
Krug et al. We do this by an appropriate space-time
rescaling of the type used by De Masi et al. We
should, however, add that the space rescaling is only par-
tial, keeping in this way the connection between the rni-

croscopic models of Sec. III and the fully macroscopic
equations of Sec. V. The detailed theorerns together with
their proofs will be presented elsewhere.

Consider a lattice gas on the square lattice. It is con-
venient to use the language of occupation variables
ri(i )

=
—,'[1+o (i)] with value 0 if the lattice site is empty,

1 if it is occupied. The rate at which a particle jumps to a
neighboring empty site, i.e., the rates at which the occu-
pations at i and j are exchanged, is denoted as before by
c (i,j;g). We choose them of the form (3.12)

e if i —j=+ez

c(i,j,g) = '4(P[H(rt") H(rl)]) —if i —j=+e,
0 otherwise .

(6.1)

—4K, g q(i)vi(j ) . (6.2)

The function 4 is strictly positive and bounded, but is ar-
bitrary otherwise. We thus have a two-temperature mod-
el as in (3.12) with K =J(e, ) in the notation of Sec. III,
but with fast exchanges in the vertical direction. The
physical ideas to study the system in the fast-rate limit
are well understood.

For e&0 the system has two well-defined time scales: (i)
a microscopic one in which there are no exchanges of
particles between vertical columns, and the system
reaches a stationary state within each column corre-
sponding to the infinite-temperature dynamics in the
vertical direction, and (ii) a macroscopic scale in which
the system has exchanges of particles between columns
with rates which are configuration dependent.

In order to get a sernimacroscopic equation we have to
rescale the vertical space coordinate by e '. This was
not done in Refs. 27 or 28, and in this way spatial varia-
tions of the density field were lost, in the limit e&0, and

E' is a small number; e
&

and ez are the horizontal and
vertical unit vectors, respectively, on Z, and the energy
H(g) is parametrized by a vertical (K~) and horizontal
(E

&
} coupling parameter:

H(rt)= —4K, g g(i)g(j)

where we write i =i,e, +i~ez =(i „i~ ) EZ' for a general
site, and po(i &,y ), i, EZ, y &E is a smooth function of y
with 0 ~ po(i, ,y ) ~ 1. If q'„ t )0 denotes the process,
then we can prove that in the limit elO, (rt', (i, ,iz) )' is
close to p, (i, , ei~) with p, (i, ,y), i, EZ, y EE, the solution
of the following nonlinear mixed diffusion equation:

—p, (i~,y)=, p, (i&,y) —Vt J&(p, (i&,y)),
Bt Qy~

(6.4)

where the last term in (6.4) is the discrete divergence [see
(3.2a)] of the current J, (p, (i, ,y )) between (i „y) and

(i, + l,y) which, itself, is a difference of the particle
transport per unit time from (i„y) to (i, + l,y) and back.
Explicit formulae for J, are given in Appendix C. The
initial condition for (6.4) is given by p&„and, under
sufficient smoothness in y of po (6.4) has a unique solu-
tion. It is a deterministic conservation equation for the
densities, obtained in much the same way as reaction-
diffusion equations. The fast environment-independent
exchanges in the vertical direction, combined with the
vertical space rescaling, produce the linear diffusion term.
The exchanges in the horizontal direction occurs on a
much slower time scale, and their influence on the change
in the density must be calculated in the so-called "local
equilibrium measure;" i.e., the distribution at time t
looks, over vertical distances -e ', like a product mea-
sure with constant instantaneous densities which vary
from column to column in the horizontal direction,
which is kept discrete. We refer to Ref. 29 for more de-
tails and the derivation of Eq. (6.4), which involves prov-
ing a law of large numbers.

To go beyond (6.4), we investigate the fiuctuations
about the deterministic evolution equation. Formally
(following the notation of Ref. 28), the limiting process
describing the density fluctuation field will be given, in
some generalized weak form, by a linear Langevin equa-
tion [compare with (5.1)]:

—v*,j,(g, (i, , )y)+ w(i, ,y, t), (6.5)

with linearized horizontal current j, and the "white
noise" given in (C4) —(C7). A special choice corresponds
to the constant solution p, (i ~,y )

—=p, O ~ p ~ 1, of Eq. (4.4).
For that choice, the currents ( J, ) in (6.4) vanish identi-
cally. The equal time correlations of the fluctuation field
are now most easily described by Fourier transforming
the formal stochastic differential equation (6.5) [see (C8)
and (C9)], and yield the static structure function

the system became effectively one dimensional. We take
initial data for the process (6.1) distributed according to a
product measure p', with densities

(6.3)

k~p(1 —p)+2R (p)(1 —cosk, )

S(k, , k~)=
kz+2[Rz3(p)+R, ~(p}(1+2cosk, )](1—cosk, )

(6.6)
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where R r(p) and R (p) are given in Appendix C. This
has to be compared with (4.9): while S(k) remains bound-
ed at k =0, it is not analytic whenever

F(p)=—R (p) —p(1 —p)[R»(p)+3R, 4(p)]%0 . (6.7)

In that case, we recover the phenomenon of power-law
decay of the static covariance, as predicted; i.e., for large
i &+y,

l] y
&g(0,0)g(i„y)) =F(p)

(
'2+ 2)2

(6.8)

Of course, (6.7) is not true, and F(p)=0 at p=0, for
which R (p) =4(0)p(1 —p), R23(p) =4(0), R,~(p) =0.

It remains to investigate condition (6.17) to find more
explicit situations under which this nonequilibrium e8'ect
occurs. F(p) is also a function of 4, A:— 4pK„a—nd8:——4pK2, and can be calculated starting from (6.6) [see
(C10)]. The following special cases can be considered: If
8 =0 [no vertical coupling in the Hamiltonian (6.2)],
then

F(p)=3p (1—p) [4(A)—4( —A)], (6.9)

which is never zero unless p =0 or p = 1, or
4( A ) =4( —A ), corresponding to an infinite-
temperature dynamics; if K, ~ 2K2 )0 (ferromagnetic
case with large enough horizontal coupling), then using
the extra (detailed balance} condition 4(z}=e '4&( —z),
it can be checked that all terms in (6.19) are strictly posi-
tive whenever p@0, 1, implying again power-law decay of
the static pair correlations. Of course, the same is true
for K] «2I(

~ & 0.

UII. SELF-ORGANIZED CRITICALITY
AND THE ROLE OF ANISOTROPY

We consider two types of models which are frequently
encountered in the discussion on self-organized criticali-
t

(i) Strictly conservative stochastic dynamics. These
have been the subject of this paper and we now summa-
rize the role played by the anisotropy in having long-
range correlations. If the dynamics is isotropic (invariant
under lattice rotations) and if the structure function in-
herits this symmetry, then the coe%cients b in Eq.
(3.11a) have to vanish. Therefore, anisotropy is a neces
sary condition to have long-range correlations of the form
discussed in this paper. It is, however, far from being a
su/Scient condition, since we can always take a detailed
balance dynamics corresponding to an equilibrium model
with anisotropic interactions. We also note, as pointed
out in Sec. V, that in one dimension, higher-order correla-
tions can have a power-law decay. We are thus led to the
following schematic picture: For given short-range ex-
change rates c (i,j;o ), the static two-point function could
decay exponentially. However, if we perturb to
c (i,j;o.)+fic(i,j;o ), then, excluding special directions in
the parameter space, we expect to have long-range corre-
lations of quadrupole type. In this sense, the slow decay
of correlations is generic for conservative dynamics.

(ii) Stochastic dynamics, where the density is conserved

"only on average:" for example, discrete "sandpile" mod-
els, deterministic dynamics with nonconserving noise.
To model spin-flip processes with this property we choose
fiip rates c (i; tr ) ~ 0, i EZ", of the form

(7.1)

Here f; (rJ) is the local function f (o ) translated to lattice
site i, and p 's are numbers. f and p 's have to be chosen
such that the fiip rates are positive. The form (7.1) of the
spin-Rip rates assures that the total magnetization is con-
served "on the average, " since the average magnetization
at time t satisfies

(7.2)

To be specific, let us only discuss the example of the voter
model, where /3, =1 and f, (cr)=cr(i) In . dimension
d =1,2 for the steady state of the voter model, all spins
are either up or down. However, for d ~ 3, there is a con-
tinuum of stationary states just as for strictly conserva-
tive dynamics. For a translational-invariant initial state,
the two-point function G (i, t) =

& cr(0)o(i) ),.satisfies

—G (i, t) = (1—cr, o)2b, G(i, t) .
a

(7.3)

In particular, for the steady-state covariance

bG(i)= 0, i%0, G(0)=1 .

For dimension d 3, this implies the slow decay

& o(0)cr(i) ) —
& cr(0)) =c ~il

just as in a critical Gaussian theory.

(7.4)

(7.5)
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APPENDIX A

The main goal of this appendix is to set up a formal
perturbation expansion around an infinite-temperature
dynamics for reflection-invariant microscopic models
without net current, and to establish power-law decay of
the two-point function for each order in this expansion.
In particular, we want to understand the cancellation
mechanism leading to an exponential decay in the excep-
tional case of a detailed balance dynamics.

We slightly modify the strategy. The exchange rates
are of the form
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c (i j;o ) = 1+ g y" g p„'"'(ij )o „,
n=1

where y is a small parameter. If y =0 (simple symmetric
exclusion process), then the correlations at time t are ex-
pressed in terms of the initial correlations via the duality
relation

defined recursively by

~~ (t)=f)~o
n —

1

y(n (t) y y f gA( (n —k) )y(k)( )d
j-=0 B

(A9)

n)0.
( )r=o @A(0)=A(( ) ) (A2)

" is the expectation with respect to the dual pro-
cess A (t) ( CZ ) started from A (0)= A, in which the la-
bels of nearest-neighbor sites i and j are exchanged after
random times distributed according to independent Pois-
son processes associated with each bond (i,j ) of the lat-
tice; i.e., for a local function f (B) on finite sets BCZ:

It is rather easy to see that the expansion {A8) converges
for small t, but we will assume that the same is true for
all t.

We say that a function p( A ) on the finite subsets
A C Z is a quadrupole if for all n = 1,2, . . . ,

p( A)=0,
A:(A~=n

(A3) g i p(A)=0, a=1, . . . , d,
A:lAl=niE A

(A10)

where 8'j is the set obtained from 8 by exchanging the
labels of sites (i,j ). Allowing y to be different from zero
brings in extra scattenng at certain points in space time;
i.e., at certain points, the free evolution A ~ A (t) is in-
terrupted, and A (t) is replaced by the set B with proba-
bilities derived from the coeScients pA'"('„B. The follow-
ing perturbation expansion is the formal expression of
this interpretation. A detailed mathematical analysis will
be presented elsewhere. '

Assume that we start the process from a Bernoulli (or
product) state with zero magnetization. The time-
evolved correlations satisfy an equation of the form

b = g g ~i„p( A) (oo, a=1, . . . , d .
ni&A

The potential V„=—Gp(A) generated by the quadrupole

p( A ) is the function

Gp( A )—:g G ( A, B)p(B)= f dt ( "(p( A (t) ) ) . (Al 1)
B 0

Formally, the operator 6 is minus the inverse of the gen-
erator (A3): if

p(A)= g (u„„—u„),
(, )

'"
then

Gp(A)= —u„. (A12)

—y ((0'„' T„(l[—1 —c(i,j,o )]&, ,
(l,j)

(A4) The appropriate change of variables allows us to let t 1 ()0

in each term of (A8):
where the sums are over all nearest-neighbor bonds
(i,j ). The first term on the right-hand side of (A4) cor-
responds to the simple exclusion process (y =0 in the dis-
cussion above). Let P (X~ Y:t ) be the probability that
A (t) = Y if A (0)=X for the dual process A (t). Then,
(A4) can be rewritten as

) y yny(n)
n=0

(A13)

where the potentials VA(n) are generated by quadrupoles
(n).

pA ~&e~

((r „),=5„0+g f P( A ~B;t r)u, (B),—
0

(A5)
y(n) G (n)

A = PA

defined iteratively by putting

(A14)

with

u, (B)= —g ( ((r g
—(r a )[1—c (ij,cr ) ] )

(t,j)
=yy &pre(ac&

n C

(A6)

n —
1

(n) ( n —1. ) (k)
p~ = g gp~a Va

k=0 B
(A15)

and V~0'—:8„0. Since, from the definitions (A7) and
(A15), there are q~")(i,j) such that

where the pac are defined for each pair of (finite) sets B
and C

p',"'= g [e'",'(i j)—v~" «j)] (A16)

Pac = g [P'"' {ij) Pace{' J)I'
(i,j)

(A7)

(o„),= g y"V„"'(t),
n =1

(A8)

with b the symmetric difference between two sets. We
plug in {A6) into (A5) and interate:

and since we have assumed that the system is reflection
invariant, the p'An) must satisfy the two first conditions of
(A10). Since the third condition of (A10), if violated, al-
ready implies certain long-range correlations in the sys-
tem, we just assume it here. In the case where A = [O, i ]
consists of just two sites, this assumption implies the
summability of the two-point function in analogy with
the discussion presented in (3.10) and (3.11). It can then
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be checked in the same way as was done for the first-
order term in the example of Sec. III, that the Fourier
transform of the potential V

I
o', I, i.e., the nth-order

equal-time structure function [see (2.5)] must have the
form

d
b(n)k 2

S'"'(k, 0)= (A17)

The solution is given by tke next-order potential
K„=V„'"'. From (AI8) we can see that if p„'" "'(i,j)=0
whenever diam( A 6 Ii,j ] ) & R, and V„'"'=0 whenever
diam' )kR, k =0, . . . , n —1, then V„'"'=0 whenever
diam' &nR, hence the strict locality of the expansion.
Moreover, (A18), if combined with (Al 1), is responsible
for the disappearance of the massless modes caused by
the operator G. A rather long but straightforward calcu-
lation shows that if we choose the rates according to
(2.2),

c (i j;0 ) =@(P[H(o") H(o )]), — (A19)

with iI)(z)=e '4'( —z), and H(o )= —Q„J„o„ is a lo-

for small k.
Therefore, in dimensions d & 1, the structure function is

in genera1 nonanalytic at the origin, as it wi11 depend on
how k~0. As a consequence, every order n &0 in the
expansion (A13) corresponds to a power-law decay of the
two-point function consistent at long distances with the
behavior of a quadrupole field whenever the coefficients
b'"' are not all equal. Obviously, this cannot happen in
the case where the dynamics has the symmetry of the lat-
tice, for example, in one dimension, but there is another
exception: %e a priori know from equilibrium theory
that if the dynamics satisfies the condition of detailed bal-
ance, then all the terms in the expansion (A13) must be
strictly local. This can also be understood from the for-
mulation above. Detailed balance requires that given the
potentials V~

' and the numbers p~" ', k =0, . . . , n —1,
there is a function K~ with K~ ~0 as the diameter of 3
tends to infinity, such that, for all bonds &i,j },

n —]

g g[p'„" „"(i8 p~"~a" (ii—)]Vs" =
)t:=0 B

(A18)

cal Hamiltonian, then, from (A15) and (A16),

1
tf

V)n )

A IA, . . . , AA„= A r =1
(A20)

and (A12)—with y =—))3—simplifies to the usual equilibri-
um high-temperature expansion and converges for small
enough /3.

APPENDIX 8

t)()r—) =K(P, ; r )+g, (r),
a

(B1)

where g is usually a stochastic white-noise field; i.e.,

(B2)

The Langevin equation (Bl) gives us the space-time be-
havior of a stochastic fluctuating field around its deter-
ministic path. Then it is natural to translate the problem
in terms of a path integral formalism where each possible
trajectory of the field is weighted in an adequate way
around its deterministic one. To carry out explicitly this
point of view, we define a stochastic generating functional

Zgy

Z&(q)= exp f dt dr i)(r)P, (r) (B3)

where P has to be solution of (Bl). From (B3) we can
compute any correlation function using the identity

5

5i), (r, )
&Zg(i)) }~„=, . (B4)

5

'9)„rn

and the truncated correlation functions following (4.10).
Assuming the noise has a Gaussian distribution of zero
average, it is possible to write Z(ri) = &Zc(i)) } in terms
of a functional integral as (4.11), where now

In this appendix we discuss in more detail the compu-
tation done in Sec. IV for the driven diffusive system case
following the Martin-Siggia-Rose (MSR) field-theory for-
malism. Our starting point is a general stochastic par-
tial differential equation (SPDE) or Langevin equation of
the form

L(g, it), ri q*)=f dt dr, f dr2&, (r))I (r„r2)g, (r2)+ — K(it)„r))
1 5
2 5,(r,

(B5)

where we introduced a new external field i)* coupled with the so-called MSR response field it) (see Ref. 25 for more de-
tails). It is straightforward then to get L for the DDS in Sec. IV only by identification of the equations (4.1) and (4.2)
with (Bl) and (B2) and putting i)*=0. To get insight from this field-theory formalism we need to achieve a perturbation
expansion for small electric fields, i.e., around the equilibrium state. We can then decompose the Lagrangian as
L =Lo+o+L, and rewrite the partition function Z in the form
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6 6
Z(g, g )= exp —00EL, Zo(7), q' ), (B6)

where

Z, (~, ~*)= f Sy6tP exp[ L—(P, P, g, g*)] .

Notice that the action of the electric field only appears in the operator in front of the unperturbed partition function
Zo. The perturbation scheme is naturally based on the expansion of the exponential operators for small E. For practi-
cal purposes, instead of working in real space, i.e., (t, r), it is convenient to do it in Fourier space (w, k), in which the ex-
pressions for L, and Zo are simply

and

L, (P, g)= —,
' f dw, dtvzdk, dk~ zd+z ik, ~~P(w„k& )P(wz, kz)P( —tU, w&,

——k, kz)—
)2d +2 (B8)

Zo(ri, ri')=N exp 'dmdk, [ ,'ri(w, k)—G&&(w, k)r)( —w, —k)+7)(w, k)G& &(w, k)ri*( —w, —k)]
1

(2m) +' (B9)

where N is a normalization factor, p, g, r) and g ", are the corresponding Fourier transforms of the fields p, 1(, g, and
q', and

2A, k
G& (w, k)=

~ 2+ g2[7 k 2+ ( k 2)2]2

G& &(w, k)= 1

in+A, [—rk +(k ) ]

(B10)

(Bl 1)

(B12)

are the free propagators of the model. It is now straightforward to get the expressions (4.12a) and (4.12b) for the struc-
ture function at zeroth and second order in E. In particular, D (k ) is explicitly given by

1 k (k —q) 1 2qllk q2

(2~) A(k)A(k —q) A(k)+A(q)+A(k —q) k~~A(k) A(q)

where A (x) =A,[rx + (x ) ]. Assuming r~ ~, it is possible to expand the expression of D in powers of 1 jr and solve
explicitly the integrals. The resulting expression for the leading term is given in (4.13). In particular, when k~0, we

get

A 2D(x)=—
' ]/2

(15 8~'~ u+3—u )+0
'6

(B13a)

for d =1,

A
[2—(1+3C)u —3u log, o(u )]+0

16+A, w

6

(B13b)

for d =2, and

A 2
1/2

24''~'
]/p 3 55 —8 lu2' u +

16
1+0

6

(B13c)

for d =3. Here u =3k A j2, and C is Catalan's constant.

APPENDIX C

We collect here the formulas used in Sec. VI. The particle current is given by

J&(p(,y ))(~
&

) =& (p, (~ &+2,y), p, (i, + l,y), p, (~ ~,y ),p, (~1
—l,y))

—&(p, (i& —l,y), p, (i&,y), p, (i&+ I,y), p, (i&+2,y)) .

R ( ) is the expected rate of a particle jumping to a nearest-neighbor site in the horizontal direction,

(C 1)
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R (p"',p' ', p' ',p ') = —{4{—4P[K, g(2, 2)ri(4, 2)+K, g(3, 2)g(1, 2)

+K2ri(2, 2)g(3, 3)+K2ri(3, 2)g(2, 3)+K2g(3, 2)ri(2, 1)

+K2g(2, 2)g(3, 1) K—
) g(3, 2)g(4, 2) —K) q(2, 2)g(1,2)

—Kzri(3, 2)g(3, 3)—Kzg(3, 2)q(3, 1)—Kzri(2, 2)ri(2, 3)

—K2g(2, 2)q(2, 1)])g(2,2}[l—g(3, 2)] }(„(4),
with { },)) (4) the average with respect to the product measure having densities

p ~ ~p

{q(k,l) } ()) (4) =—p', k =1,2, 3,4; 1=1,2, 3 .
p ~ rp

The linearized current and the "white noise" are

j, (g,(,y ))(i, )=R,4(p((i, +2,y), p, (i, + l,y), p, (i, ,y), p, (i, —l,y))[g((i, +2,y) g(—(i, —l,y)]

+R23(p, (i, +2,y), p, (i~+ l,y), p, (i),y ),p, (i, —l,y))[g, (i, + l,y) g,—(i, ,y )],

(c2)

(C3)

(C4)

a
kl = (k)

Bp

a
, (, R, k, 1=1,2, . . . , 4 .

Pp(!)
(C5)

The function R is defined in (6.6), and W(i, ,y, t) in (6.9) is a "white noise" with covariance

{W(i „y,t) W(i I,y', t') }=5(t t') 5— , , [p, (i„y )[1 p, (i „—y )]5(y —y')]')') t}yBy

+5(y —y')V,'V'*. , [a{p,(,r)}(i,}5,] (C6)

and

a(p((, r ) }(i,)—:R {p,(i, +2,y), p, (i, + l, y), p, (i, ,y ),p, (i, —l,y))

+R{p,(i, —l,y), p, (i, ,y), p, (i, + l,y),p, (i, +2,y)} .

The Fourier transform of (6.9) is

dg (k(»k2) —W(k»k»t) —keg, (k»k2) —2(((k»k2)IR»(p)+ [R,4(p} R»(p)]c os—k—
) R)4(p)cos2k) I,

where

{W(k„k, t) W(k', , k', t') }:—5(k —k')5(t —t')[k p(1 p)+2R (p)(1—cosk, )—],

(C7)

(C&)

(C9)

with k =(k „kz ) in the strip —~ & k) & n. ,
—0() & k~ & 0(), and we have used in (C8) and (C9) R (p)—:R (p, p, p, p), etc. as

short-hand notations.
The expression for (6.17) is

F(p)=p (1—p) {2[4(B)—4( B)][p +(1——p) ] +3[4(A)—4( —A)]I[p +(1—p) ] +2p (1—p) I

+ [84( A +8)—84( —A 8)+44&( A —8—) —44( —A +8)+24(28) —24( —28)]

Xp(1 —p)[p +(1—p) ]+[54(A +28)—54( —A —28)+4(A —28) —4( —A +28)]p (1—p) ) .

(C 10)
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