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Master equation for the logistic map
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A master equation is constructed that provides a stochastic description underlying the logistic
map. In an appropriate macroscopic limit, the underlying master map (equation) yields the logistic

map. It also describes intrinsic fluctuations associated with the logistic map. When the logistic

map parameters are chosen so that the map produces a chaotic trajectory, the variance of the asso-

ciated fluctuations diverges. This means that the distribution function determined by the master

map becomes very broad and that the logistic map no longer results from averaging with respect to
the master map distribution function. Numerical examples of this behavior and its interpretation
are discussed.

I. INTRODUCTION

There is a long tradition behind the description of mac-
roscopic dissipative processes by phenomenological equa-
tions, e.g. , hydrodynamics, electrical circuits, and mass
action chemical reactions. It is now widely appreciat-
ed' that a complete macroscopic description of these
processes must include intrinsic molecular fluctuations as
well as the deterministic macrovariables, both of which
reflect underlying microscopic dynamics. ' ' Indeed,
these fluctuations provide the basis for our understanding
of light scattering, electrical noise, and other noise mea-
surements for macroscopic systems. ' Recently, the
effect of dynamical chaos on these ideas was explored in
detailed and general ways. "

A general approach to the effect of chaos on macro-
variable Auctuations is provided by the master equation
idea. ' Given a macrovariable dynamics, a master
equation is constructed such that an appropriate macro-
scopic limit yields the macrovariable dynamics as well as
a description of the fluctuations. The construction pro-
cess involves the underlying physics. For chemical reac-
tions it is very well established how this construction
works, ' ' ' but for hydrodynamics it is not so
straightforward, so that, to date, there is no single master
equation for all Auid density regimes. ' '

The purpose of this paper is to exhibit the effect of
chaos on the description of intrinsic Auctuations in a very
simple setting, the logistic map. The fluctuations de-
scribed in this paper are intrinsic Auctuations and must
be carefully distinguished from externally introduced
fluctuations. A number of authors have explored the
consequences of introduced external fluctuations on the
behavior of the chaotic systems. See, for example, Refs.
21 —24. Below we will address the appropriateness of
these earlier studies in the context established here (and
in Ref. 11) that results from the interplay of chaos and in-
trinsic fluctuations on the description of chaotic dynam-
1cs.

In classical physics, chaos is characterized by sensitive
dependence of trajectories on initial conditions. This
idea is made quantitative by the Liapunov exponent. A

positive Liapunov exponent implies chaos. As was shown
elsewhere, " ' the value of the Liapunov exponent is
related to the Jacobi matrix for the macrovariable dy-
namics, and the Jacobi matrix also determines the time
evolution of the Auctuations. " The salient consequence
recently discovered" is that a positive Liapunov ex-
ponent (chaos) for the macrovariable dynamics implies a
divergence of the covariance matrix for the Auctuations.
Moreover, this circumstance implies that the macroscop-
ic limit procedure breaks down so that the macrovariable
equations no longer follow from the underlying master
equation. " Instead, the distribution function determined
by the master equation becomes very broad and the
dynamical description is only correctly given entirely at
the master equation level. Clearly, it is inappropriate to
introduce external Auctuations ' into macrovariable
equations that are no longer valid; instead, external fluc-
tuations will have to be introduced into the master equa-
tion level of description.

Because relatively few scientist are Auent in master
equation ideas, this paper has been written to present a
very simple example of the essential ideas and their
consequences. This objective is realized by constructing
a master map (equation) for the logistic map. We have
chosen the logistic-map paradigm because it is virtually
the simplest example possible and because of its funda-
mental and historical significance with respect to chaos.

In Sec. II, a master map for the logistic map is con-
structed. In Sec. III, the Liapunov exponent concept is
developed for both the logistic map and the master map.
In Sec. IV, the breakdown of the macroscopic limit is
presented, along with an account of the numerical evi-
dence. In Sec. V, concluding remarks are offered.

II. LOGISTIC MAP AND MASTER MAP

The logistic map is given by

x„+,=4Ax„(1—x„),
in which the x's are mapped from the unit interval onto
the unit interval and the tunable parameter A, is taken
from the unit interval as well. It is now well understood
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that for A. &0.25 the logistic map has a globally stable
fixed-point attractor at x =0; for 0.25&A, &0.75, x =0
becomes unstable and x = 1 —I/4A. becomes the globally
stable fixed-point attractor; and for 0.75 & A. , there are no
fixed-point attractors. Instead, a sequence of bifurcations
yielding 2 cycles ensues up to about X=0.89248. . . .
Beyond this value there are regions of chaos interspersed
with windows of all possible cycles not expressible as 2 .
At A. =1, the chaotic attractor covers the entire unit in-
terval.

For the sake of the presentation in this paper, we take
the perspective" that Eq. (1) is a macrovariable map.
This means that we are thinking of the x's as describing a
macroscopic amount of something (rescaled to the unit
interval). In fact, in the original context of population
biology, the x's represented populations of a species from
generation to generation. Therefore we expect intrinsic
fluctuations to be associated with the macrovariable x
that represent variations induced at the level of individu-
al organisms. We may achieve a more refined description
by introducing a master map (equation) that describes the
process at the more microscopic level of individuals and
yields the logistic map as its moment map in the macro-
scopic limit.

The master map is constructed as follows. We first
rewrite Eq. (1) on the real numbers between 0 and ¹

why this is not so, however. The first reason is that the
particular master map picked in Eq. (3) is quite arbitrary,
i.e., many master maps can be constructed that reduce to
the logistic map in the macroscopic limit (N~ ~), and
the one we have picked is the same as the noisy
Frobenius-Perron equation by accident. The expression
4A,q'(N —q')/N in Eq. (3) can be augmented by any func-
tion of q' of an order higher than N ' and there will ac-
crue no difference in the macroscopic limit. Had I
chosen such an expression at the outset, there would be
no cause for confusion with the noisy Frobenius-Perron
equation. The second reason is deeper. As is shown
below and elsewhere, " the consequence of chaos on the
macroscopic limit is to invalidate the logistic map as a
stable contracted description of the behavior of the un-

derlying master map. This consequence is caused by the
intrinsic noise, the variance of which becomes enormous.
The addition of external noise cannot be made at the level
of the logistic map in this situation, as it is in Ref. 22 and
23, but must be made at the master map level instead.

III. LIAPUNOV EXPONENTS

For the logistic map, the Liapunov exponent A may be
computed from the formula

y„+,=4k.y„(N —y„)/N . (2) 1
" dA= lim —g ln

n~oo n
(4)

This map takes real numbers from the interval 0 to N
onto the same interval. Clearly, in the limit N~~,
y„/N~x„. This limit is what we will call the macro-
scopic limit. Next, we introduce the probability distribu-
tion for the population in the nth generation W(q, n), in
which q only takes on integer values from 0 to N. The re-
striction of the argument of 8' to the integers introduces
an effective noise level of size 1/N. Of course, as N ~ ~,
this noise vanishes. The master map determines how the
probability distribution changes from generation to gen-
eration. With this simple example, we are attempting to
exhibit a more general phenomenon" that occurs in real
physical systems, e.g. , chemical reactions. For them, the
underlying physics determines the form of the master
equation, whereas in this simple example we are free to
choose any one of many possible constructions since we
are dealing with a paradigm and not with a real process.

Initially, we construct it in the following simple way:
N

W(q, n +1)=J dq'o~(q 4kq'(N q')/N —}W(q', n)—,
0

(3)

in which 5&( ) is not precisely a Dirac delta function, but
instead picks out the largest integer value q contained in
4k,q'(N —q')/N, and, therefore, has some dispersion of
order 1/N. A computer program realization of this rnap-
ping may be found in the Appendix.

In the literature, ' this equation is known as the
noisy Frobenius-Perron equation and has been intro-
duced in the context of adding external noise to the logis-
tic map. Consequently, it would appear as though the
two problems of intrinsic noise and external noise reduce
to an identical analysis. There are two important reasons

where f is given by

f =4Ay (N y)/N . —

The quantity df/dy, is the Jacobi matrix for a one-
dimensional map. For a map in r dimensions, the Jacobi
matrix is r Xr dimensional. If we represent the r vari-
ables of an r-dimensional map by z, then the Jacobi rna-
trix J determines how a small deviation from z will map:

hz( +n1) =J(n)bz(n) .

If we have some way of averaging over these deviations,
e.g. , there is an underlying master map probability distri-
bution, then the covariance of the fiuctuations (devia-
tions) defined by

C,, =(b,z, b,z, }

satisfies the mapping

C(n+1)=J(n)C(n)J (n),
in which J is the adjoint of J. We have shown how to
define a Liapunov exponent for this covariance equa-
tion" and have proven the identity that for the one-
dimensional case it has exactly twice the value deter-
mined from Eq. (4). This factor-of-2 relationship also
holds in r dimensions. "

The impact of this identity is that the covariance of the
fluctuations becomes very large when the Liapunov ex-
ponent is positive. For the present situation in which we
have a one-dimensional map, the covariance matrix sim-

ply degenerates into the variance for the fluctuation (de-
viation) for y„, i.e. , by„, which satisfies the degenerate
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version of Eq. (6):

Ay„+] = by„. (9)

If we now use the master map probability distribution to
determine the averaged variance, i.e., ( hy„by„), then we
see that dfldy„determines both the Liapunov exponent
for the logistic map [Eq. (4)] and the growth of the vari-
ance [Eq. (9)].

The dual role of the Jacobi matrix in these considera-
tions is crucial and occurs in a much broader class of sys-
tems than represented by the simple example in this pa-
per 1 1

IV. MASTER MAP —+LOGISTIC-MAP TRANSITION

It is this replacement that breaks down in the second
case, i.e., positive Liapunov exponent, for which the dis-
tribution is too broad,

4K(y„(N —y„) ) /N&4A. (y„)(N —(y„) )/N . (11)

The following remarks elaborate the content of the
preceding paragraph in much more detail. Because there
are so many special cases, some involving complicated
transient behavior, far too many figures would have been
required for this paper. The reader may reproduce those
cases of interest to him on a computer. Our remarks are
presented in the order of increasing complexity. In each
case, unless stated otherwise, all of the initial probability
is placed in bin no. 25, i.e., W(25, 1)= l.

(1) N= 100, A, =0.3. The logistic map output ap-
proaches the attractor at x =

—,'. The distribution func-

We will now describe the consequences of the preced-
ing results. The reader may wish to avail himself/herself
of the advantages of following our remarks with a com-
puter simulation. In this way the reader can see firsthand
the numerical evidence we ourselves have seen for the re-
marks that follow (see also the figures in Ref. 23). The
program in the Appendix will provide assistance.

Succinctly put, we find that when the Liapunov ex-
ponent is not positive, it is always possible to choose N
sufficiently large that the distribution function deter-
mined by the master map follows the logistic map's out-
put with a very sharp distribution. However, when the
Liapunov exponent for the logistic map is positive, no
matter how large an N is chosen, the distribution func-
tion determined by the master map becomes very broad
and after only a few iterations neither its mean nor its
maximum bear any relationship to the output of the
logistic map. In the first case, i.e., nonpositive Liapunov
exponent, averaging over the distribution function will
produce a mean value for y which is precisely equal to the
output of the logistic map in the macroscopic limit. This
is a consequence of averaging Eq. (2) and finding that the
right-hand side, the average of a nonlinear expression,
can be replaced with very high accuracy by the nonlinear
expression of the average

(y„,) =4&(y„(N —y„) ) /N =4&(y„&(N —(y„& )/N .

tion stays sharp and follows the logistic map output with
a precision of —,

' .
(2) N=400, A, =0.3. This is the same as case (1), except

the precision is now —,
' .

(3) N=100, X=0.8. The logistic map output ap-
proaches the two-cycle (0.513 045, 0.799 455). The distri-
bution function stays sharp and follows the logistic map
output with a precision of —, . This means that the distri-
bution function also describes a two-cycle.

(4) N=400 A. =0.8. This is the same as case (3), except
the precision is now —,

' .

(5) N=100, A. =0.865. The logistic map output ap-
proaches the four-cycle (0.413 233, 0.838 951, 0.467488,
0.861 343). The distribution function stays sharp and fol-
lows the logistic-map output with a precision of —, . This
means that the distribution function also describes a
four-cycle. The distribution is sharper around the two
larger cycle values than it is around the two smaller
values. If we reduce the bin subdivision parameter from
50 to 10, then the results are qualitatively the same al-

though somewhat less smooth.
(6) N=400, A, =0.865. This is the same as case (5), ex-

cept the precision is now —'.
(7) N=100, A, =0.886. The logistic-map output ap-

proaches the eight-cycle (0.3642, 0.8206, 0.5216, 0.8843,
0.3625, 0.8190, 0.5254, 0.8837). The approach to this
eight-cycle takes several hundred iterations before the
fourth digit of accuracy is obtained. This contrasts
markedly with the preceding examples. The —,

' precision
of the master map produces a distribution function that
cannot follow this eight-cycle. Instead, the distribution
settles down on a four-cycle associated with the values
(0.36, 0.82, 0.52, 0.88). While the distribution is still
quite sharp around the two larger values, it is rather
broad around the two lower values and is in fact bimodal
around both 0.36 and 0.52. Thus, if we were to use the
average of y determined by this distribution function, it
would describe a four-cycle that is not identical with any
four-cycle of the logistic map for any value of A, . This
consequence of the noise in the master map output can be
eliminated by reducing the noise level by increasing N
(see below). It is also noteworthy that the apparent four-
cycle reached by the master map distribution function is
reached in relatively few iterations, i.e., in much less than
100 iterations.

(8) N=400, A, =0.886. This is the same as case (7), ex-

cept the precision is now —, . This precision is still not

good enough because a precision of at least, ' is needed

in order to distinguish each separate eight-cycle point.
(9) N=4000, k=0.886. Now the precision is high

enough for the distribution function to follow the
logistic-map output. The time required by the computer,
however, has grown enormous.

(10) N=400, X=0.886, W(208, 1)=1. This time we

have started the master map distribution function with
all of its probability on one of the eight-cycle points
(0.5216, 400X0.5216=208.64). We must also initialize
the logistic map with y =208. The behavior of the mas-
ter map distribution function is now dramatically
different. It can follow the eight-cycle accurately. For
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the large cycle values (0.88) it is extremely sharp, and it is
somewhat less sharp for the smallest values (0.36), but for
the intermediate values (0.52) it is rather broad. Never-
theless, the distribution function is clearly peaked at
0.5216 and 0.5254, respectively, in spite of the fact that
its rather broad structures for these two-cycle points
overlap greatly. By contrasting the results for cases
(7)—(10), we see that the outcome depends crucially on
the initial conditions. It is clear that a trajectory with a
transient will create a growth in the master map distribu-
tion function that will persist even after a stationary state
has been reached, whereas the absence of such a transient
permits the master map distribution function to follow
the logistic map even when the noise level would indicate
that there is insufficient precision. Even though by start-
ing on one of the eight-cycle points, the probability distri-
bution follows the logistic-map output, averages with
respect to this distribution do not satisfy Eq. (10). It is
simply the peaks of the distribution that follow the
logistic-map output. The averages satisfy Eq. (11) for
N =400. By increasing N, Eq. (10) is approached more
and more accurately.

(11) N = 100, I,=0.9. The value of A, implies chaos for
the logistic map. The Liapunov exponent for this A, is
0.183. Scrutiny of an attractor plot for the logistic map
shows that the attractor for A, =0.9 is made up of two dis-
joint regions. One region covers the x interval from
about 0.3 to about 0.6 whereas the other region covers
the x interval from about 0.8 to about 0.9. The invariant
measure on these regions is not uniform. ' The
logistic-map output quickly reaches the attractor and
then jumps about chaotically on the attractor. The mas-
ter map distribution function, however spreads out on the
two attractor regions and alternately hops from one to
the other. After only a few dozen iterations, the distribu-
tion function reaches a steady two-cycle behavior. This
two-cycle is between two broad subdistributions. Any
average over this behavior would look like a two-cycle.
Equation (11) is strongly the case. Most remarkable of
all, however, is the fact that the union of the two subdis-
tributions very closely matches the invariant measure for
the logistic map attractor. By increasing N, this match
gets better. Thus we see that the master map's probabili-
ty distribution may be identified with a noisy average of
the invariant measure for the deterministic logistic map.

(12) N= IOO, A, =0.95. The value of 1, implies chaos for
the logistic map. The Liapunov exponent for this lambda
is 0.435. Scrutiny of an attractor plot for the logistic
map shows that the attractor for A. =0.95 is now made
up of just one region. Once again the master map proba-
bility distribution quickly approaches a steady distribu-
tion that closely matches the invariant measure for the
logistic map with A, =0.95. Since the Liapunov exponent
here is bigger than in case (11), the steady distribution is
reached correspondingly more quickly. Again, by in-
creasing X, the correspondence with the invariant mea-
sure is improved. Because there is now only one region
covered by the very broad distribution function, or by the
invariant measure for that matter, an average over the
master map distribution function yields a simple fixed
value that bears no resemblance to the chaotic trajectory

of the logistic map.
(13) N=100, A, =0.96. This value of A, produces a

three-cycle for the logistic map (0.1494, 0.4879, 0.9594).
This is in one of the periodic windows of the attractor
plot. The corresponding Liapunov exponent is
—0.0044. This is clearly not chaotic. However, the tran-
sient for the approach to the three-cycle causes the mas-
ter map distribution to grow very broad before the three-
cycle attractor is reached. Consequently, the distribution
ends up steady and broad and looking very much like the
invariant measure for a chaotic A, just below 0.96. Be-
cause there is again only one region covered by the very
broad distribution function, an average over the master
map distribution function yields a simple fixed value that
bears no resemblance to the three-cycle trajectory of the
logistic map.

(14) N=300, A, =0.96, W(146, 1)=1. This is the same
as case (13) except that the initialization of both the mas-
ter map and the logistic map has been switched to a
three-cycle point (0.4879). The distribution function now
attempts to follow the logistic map's three-cycle and does
so quite sharply for over a dozen internations, but by
iteration 15 it has developed a broad background. Never-
theless, a steady distribution is not the outcome as it was
in case (13). A three-cycle distribution results in which
each of the three subdistributions has three peaks and a
broad background spanning the space between the peaks.
The peak corresponding to the cycle point of the logistic
map is the largest in each case, and accounts for 99% of
the total probability, whereas the background accounts
for less than 0.1% of the probability, while the two lesser
peaks make up the remainder, about I'//o. This three-
cycle distribution is reached in about two dozen itera-
tions.

(15) N =100, A, =l. For the logistic map, this is the
strongest chaos with a Liapunov exponent of 0.693. The
master map probability distribution rapidly spreads over
the entire unit interval and assumes a form very similar
to the invariant measure for the logistic map. ' Be-
cause the entire unit interval is covered by the distribu-
tion function, an average over the master map distribu-
tion function yields a simple fixed value that bears no
resemblance to the chaotic trajectory of the logistic map.
By increasing N, the correspondence between the proba-
bility distribution for the master map and the invariant
measure for the logistic map gets better.

V. CONCLUDING REMARKS

These examples demonstrate how very different the
logistic map and the master map behave. When A, is less
than 0.89248. . . , the Liapunov exponent for the logistic
map is less than zero and the master map can produce a
distribution function that follows the behavior of the
logistic map as accurately as desired provided N is taken
sufficiently large. Indeed, in the macroscopic limit they
have identical behavior. In practice, however, N may
have to be enormous in order to have the master map dis-
tribution follow a 2 cycle with k & 5. For k greater than
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1

P(x) = J dz 5(x —4Az(1 —z ) )P(z),
0

(12)

in which the kernel, 5( }, is a genuine Dirac delta func-
tion [cf. Eq. (3)]. Clearly, the invariant probability distri-
bution determined by Eq. (3) is equivalent to P in the
macroscopic limit. The importance of these thoughts in
realistic physical contexts has been explored else-
where. """

0.89248. . . , chaos ensues for most A. values. For the
chaotic A, 's, the master map distribution grows broad and
no longer follows the behavior of the logistic map. In
fact, it goes rapidly to a steady distribution (or to a low
cycle distribution of subdistributions). This steady distri-
bution has a very accurate resemblance to the invariant
measure on the attractor for the logistic map. It is made
more accurate by increasing N, which is tantamount to
decreasing the noise. For A, values corresponding with
periodic windows, the Liapunov exponent is again less
than zero. Nevertheless, points not on the periodic at-
tractors tend to exponentiate part until their iterates
reach the periodic attractors. The master map distribu-
tion function in this situation depends strongly on the ini-
tial conditions. A trajectory with a transient will result
in a broad and steady distribution. By starting on a cycle
point, however, a periodic distribution will result that fol-
lows the logistic map and also possesses a low level but
broad background.

The point of this paper is to take the view that this
simple paradigm represents physical reality as regards
the relationship between a macrovariable description and
an underlying microscopic or master equation descrip-
tion. " In this view, the master map is viewed as physi-
cal reality whereas the logistic map is viewed as a con-
tracted description created by averaging with respect to
the master map's distribution function. As long as the
distribution is sharply peaked, Eq. (10) may be expected
to hold and one can have faith in the contracted descrip-
tion. But when the distribution is not sharply peaked,
Eq. (11) must hold instead and the contraction is no
longer valid. This circumstance occurs whenever the
contracted description (the logistic map) predicts chaos,
because of the connection of the Liapunov exponent to
the Jacobi matrix and the connection of the Jacobi matrix
to the covariance of the fluctuations. " Therefore, un-
der these circumstances, the only recourse is to abandon
the logistic map and to use the master map instead. This
consequence is of special significance when it comes to in-
troducing external fluctuations into consideration. '

Since the logistic map is no longer valid, external fluctua-
tions must be introduced into the master map in order to
properly see their effects. The chaos of the logistic map is
a mathematical artifact of an equation that no longer has
physical significance. It is, nevertheless, significant that
the invariant measure for the chaotic attractor produced
by the logistic map is so similar to the stationary proba-
bility distribution produced by the master map, in the
low noise limit. This fact is readily explained by looking
at the equation for the invariant measure on the logistic
map's attractor (the Frobenius-Perron equation):
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APPENDIX

IF W(q, N, 1 ) & 0 then

FOR m=OtoN

IF m = INT[4Aq (N —q) IN] then

LET W(m, n +1,2}=W(m, n, 2)+ W(q, n, 1 }

END IF

NEXT m

END IF

NEXT q . (A 1)

In this mapping, a third variable, taking on the values 1

or 2, has been introduced into O'. After completing the
FOR-NEXT cycle above, the W values are updated for
another cycle of Eq. (Al) by the FOR-NEXT cycle below:

FOR q=0to N

LET W(q, n +1,1)=W(q, n +1,2)

LET W(q, n +1,2)= 0

NEXT q . (A2)

This master map does not achieve our desired result very
effectively. In fact, it produces a probability distribution
that follows the modified, diophantine logistic map,

y„+,=INT (4Ay„(N —y„)IN), (A3)

precisely if W(q, 0, 1}=1when the initial value of y for
Eq. (A3) is yo=q. Since we really want to follow Eq. (2)
with a master map and not Eq. (A3), we must make our
master map a bit more complicated. The desired result is
achieved by subdividing the integer interval between q
and q+1 into a large number of equal subintervals and
distributing the probability uniformly among them before
mapping the probability into the next generation. This is
achieved by the following mapping:

This program produces a plot of the master map distri-
bution function. In fact, it yields the scaled logarithm of
the distribution because the distribution function ranges
over many orders of magnitude, but it can easily be
modified to yield the distribution function directly if
desired. It also plots the position of the output from the
logistic map as a pair of points just below and above the
distribution function plot. This makes it easy to compare
the two types of output. We develop the program in the
following simple steps. The restriction of q to the in-
tegers may remind one of maps on the integers, but
here this restriction only occurs in the master map:

FOR q=0 to N
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FOR q =0 to N —1

IF W(q, n, 1))0 then

FOR m =0 to N

FOR j = 1 to 50

IF m =INT [4A(q +j /50)[N —(q +j/50)]/N] then

LET W(m, n + 1,2)= W(m, n, 2)+ W(q, n, 1)/50

END IF

NEXT j
NEXT m

END IF

NEXT q

LET q =N

IF W(N, n, 1))0 then

LET W(0, n + 1,2) = W(0, n, 2)+ W(N, n, 1)

END IF ~ (A4)

This FOR-NExT cycle must be followed by Eq. (A2). In this example, 50 subdivisions have been invoked. It should be
clear that in the macroscopic limit this fine subdivision will have no efFect on the logistic-map limit. However, it will
just as clearly afFect the fluctuations l)ecause probability in the integer interval from q to q + 1 will now potentially end
up in more than one integer valued pi obability bin, W(m, n + 1,2). In this way, the master map follows the behavior of
of the logistic map, Eq. (2), with a noise level of 1/N. A version of the entire program, written in the true-basic
language of Kemeny and Kurtz, follows for a Macintosh II computer.

REM LOGISTIC MAP MASTER MA P

SET WINDOW 0, 640, 0,460

DIM W(0 to 10000,2)

PRINT "What is N?"

INPUT N

PRINT "What is lambda?" '

INPUT lambda

LET i =0

LET s =0

MAT REDIM W(0 to N, 2)

I.ET W(25, 1 ) = 1

LET y =25

DO

FOR q =0 to N —1

IF W(q, 1))0 then

FOR m =0 to N

FOR j = 1 to 50

IF m =INT [4*lambda*(q +j /50)*[N —(q +j /50)]/N ) then

LET W(m, 2) = W(m, 2)+ W(q, I )/50



1952 RONALD F. FOX 42

END IF

NEXT j
NEXT m

END IF

NEXT g

LET q =X

IF W(N, 1 ) )0 then

LET W(0, 2) = W(0, 2)+ W(N, 1)

END IF

LET y =4'lambda "y '(N y) /N-

LET i =i +1
CLEAR

FOR m=0toN
PI OT 100+m, 300+ 10*log[ W(m, 2)+ le —50j

LET s =s+ W(m, 2)

NEXT m

PI.OT 100+y, 50

PI.OT 100+y, 350

PRINT i, "sum =";s,"lambda = ";lambda, "N =";N
PRINT g

FOR m=0to X

LET W(m, 1)=W(m, 2)

I.ET W(m, 2)=0

NEXT m

LET s =0

LOOP

END

In this program, the initial probability is entirely put into bin no. 25. This is an arbitrary choice. The subdivision by
50 is also aribtrary. Becuase the mapping is now embedded in a DO-LOOP, we no longer need the reference to n and
n +1 inside 8. The variable s checks the normalization requirement after each mapping interation.
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