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We study a power-series expansion for a conserved quantity K in the case of the two-dimensional
Henon-Heiles potential. An alternative technique to that of Gustavson [Astron. J. 71, 670 (1966)] is

applied to find the coefficients in the expansion for E. The technique is used to determine twelve or-
ders for the conserved quantity E, more than twice as many as that calculated by Gustavson. We
investigate the degree of constancy of our truncated E in regions where the motion is known to be
chaotic and also where it is nonchaotic.

I. INTRODUCTION

Some time ago, Henon and Heiles' studied the follow-
ing model Hamiltonian in two dimensions:

H =
—,'(p„+p +x +y )+x y —

—,'y

They were interested in finding if another integral of the
motion (or conserved quantity) existed in addition to the
total energy H. If such a quantity exists, the motion is
not expected to be chaotic. Their numerical studies
showed that both chaotic and nonchaotic motion existed
for this system. For H (0. 11 (approximately), the
motion appeared to be nonchaotic. For H &0.11, the
motion was in general chaotic, although for certain initial
conditions some nonchaotic motion still existed at the
higher energies.

Henon and Heiles presented their numerical results as
a two-dimensional graph of y versus y showing the suc-
cessive intersections of a trajectory with the x =0 plane
(called a Poincare section). Here and below, we use
x =p„and y:—p . By convention, only points are plotted
which have a positive x as the trajectory crosses the x =0
plane. Examples of such graphs are shown in Figs.
1(a)—&(a).

The fact that the points on the section seem to lie on a
closed curve in Fig. 1(a) suggests the presence of another
conserved quantity in addition to the total energy H,
whereas Fig. 3(a) would appear to indicate the absence of
such a quantity. Usually, of course, a conserved quantity
has a time derivative which vanishes identically, irrespec-
tive of the particular values of the energy or the initial
conditions. More precisely, a nontrivial conserved quan-
tity is a first integral, which is valid over some domain of
parameter space, or a configurational invariant, which is
defined for some specific value of a parameter.

It is conceivable that a conserved quantity K might be
expressed as a formal power series in the four variables
consisting of the coordinates and velocities and that such
a power series might converge on nonchaotic trajectories
and diverge (or be asymptotic) on chaotic trajectories.
Recent work by Ziglin gives a forrnal proof that no
rneromorphic first integrals in addition to H exist in te
case of the Henon-Heiles problem. However, earlier

work by Gustavson shows that a truncated formal
power-series expression for a conserved quantity clearly
has relevance in the Henon-Heiles problem and, in fact,
can be used to approximately reproduce curves such as
those shown in Fig. 1(a).

Gustavson developed a formal power series for a con-
served quantity using an intricate technique of successive
canonical transformations which progressively, order-
by-order, brought the Harniltonian H into so-called nor-
mal form. From the fact that H could be brought into
normal form, a formal power series for a conserved quan-
tity distinct from H could be deduced. Gustavson ex-
pressed his series as a sum of multinomials in the coordi-
nates and velocities for orders n =4-8. Gustavson
verified that the quantity obtained by truncating his for-
mal power series was indeed approximately constant over
curves of the type shown in Fig. 1(a).

The technique used in this paper simply begins with a
formal power series in the coordinates and velocities for a
quantity K. By taking the time derivative of K and in-
serting the equations of motion, a recursion relation in-
volving the power-series coefficients is derived and the re-
sulting equations are solved. (A somewhat similar ap-
proach was investigated by Leach, but his calculations
contain an error which we discuss later. ) This technique
is rather straightforward since it does not involve canoni-
cal transformations to other variables. This method,
however, does require the treatment of certain subtle
uniqueness issues in determining K.

II. RECURSION RELATION
FOR THE EXPANSION COEFFICIENTS

In this section we will derive and discuss the properties
of the expansion coefficients for a conserved quantity K
for motion corresponding to the Hamiltonian H of (1.1).
It is useful to introduce the complex notation z =x +iy.
In terms of z, the equations of motion implied by the H of
(1.1) are

where z is the complex conjugate of z. We now assume
the existence of a conserved quantity K which has the fol-
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lowing expansion in terms of non-negative powers:

K = g i "b „,z~z~z "z',
p, q, r, s

suit be identically zero leads to the following recursion
relations:

(p +1)bp ~) q „,, +(q +1)b

where n =p+q+r+s is the order. Taking the time
derivative of K, inserting (2.1), and requiring that the re-

(r + 1 )b ] +] (s + 1 )b

:(r+1)b ~ +, (s+1)b zq (2.3)
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FIG. 1. (a) Graph of the Poincare section for an energy of H =0.05 with the initial conditions x =y =0.0, y = —0. 15, and x nega-
tive. (b) Graph of the series K through 7th, 11th, and 15th orders. The energy is H =0.05 with the initial conditions x =y =0.0,
y = —0. 15, and x negative. (c) Graph of the series K through 11th and 15th orders. The energy is H =0.05 with the initial condi-
tions x =y =0.0, y = —0. 15, and x negative.
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FIG. 1. (Continued).

Equation (2.3) relates coefficients of order n on the left-
hand side to those of order n —1 on the right-hand side.
Note that coefficients with any negative index are zero by
definition.

Although it is not obvious from Eqs. (2.2) and (2.3), the
quantity E so constructed will respect the symmetries of
the Hamiltonian H given in Eq. (1.1), as we discuss in

Sec. V. In that section it will become clear that E will
satisfy the consequences of such theorems as that of
Thompson, which states that when H is quadratic in the
momenta, one need only look for autonomous first in-
tegrals which are either even or odd in the momenta.

Our program is to solve the Eq. (2.3) iteratively
using a computer algebra system. There are
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FIG. 2. (a) Graph of the Poincare section for an energy of H =0.08 with the initial conditions x =y =0.0, y = —0. 15, and x nega-
tive. (b) Graph of the series K through 7th, 11th, and 15th orders. The energy is H =0.08 with the initial conditions x =y=0.0,
y = —0. 15, and x negative. (c) Graph of the series K through 11th and 15th orders. The energy is H =0.08 with the initial condi-
tions x =y =0.0, y = —0. 15, and x negative.
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N =(n +3)(n +2)(n + I)/6 coefficients of order n to be
determined, and (2.3) represents the X linear equations
that are to be solved. Some of the properties of the solu-
tions to (2.3) are discussed in Sec. III. 1000 0100 ~QQ10 ~000] (3.1)

for the four n = 1 coefficients then have the unique solu-
tion

III. IMPLICATIONS OF THE RECURSION RELATION

We begin the process of finding iterative solutions to
(2.3) by solving for the first-order b coefficients. (The ir-
relevant boors has been set equal to zero. ) Equations (2.3)

The first allowed nonzero coefficients are thus of second
order, and the set of Eqs. (2.3) for these second-order b's
is clearly homogeneous since all the terms on the right-
hand side of equality in (2.3) vanish by (3.1). We find that
these equations have nontrivial solutions, and we deter-
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h, =
—,'(x +x ), h2= —,'(y +y ),

h3 =xy+xy, h4 =xy —yx
(3.2)

mine the relative values of the b's for these solutions. In
second order, K is thus made up of an arbitrary linear
combination of the following linearly independent
second-order terms (written here in terms of the original
x and y variables):

We can now write K in second order, which we designate
K2, as

Kz =r&h &+rzh2+r3h3+r4h4, (3.3)

where the r; are arbitrary constants linearly related to the
b coefficients. Among the second-order terms in (3.2), we
find the x and y subenergies h, and h2 and the angular
momentum h 4. These second-order terms have b
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FIG. 3. (a) Graph of the Poincare section for an energy of 0=0.11 with the initial conditions x =y =0.0, y = —0. 15, and x nega-
tive. (b) Graph of the series K through 7th, and 15th orders. The energy is 0=0.11 with the initial conditions x =y=0.0,
y = —0. 15, and x negative. (c) Graph of the series I%: through 11th and 15th orders. The energy is H =0.11 with the initial condi-
tions x =y =0.0, y = —0. 15, and x negative.
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coefficients which are solutions of the recursion-relation
equations because if we take the time derivative of any of
the h, in the (3.2) and insert the equations of motion [i.e.,

(2.1) written in the x and y variables], the resulting ex-
pressions are of third order. The next step is to find the

third-order terms in K.
We find that Eqs. (2.3) determining the third-order b's

have a unique solution in terms of the second-order b's.
Each h; (3.3) in fact has a unique extension to third order.
For example, to third order we have
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FIG. 4. (a) Graph of the Poincare section for an energy of H =0.11 with the initial conditions x =y =0.0, y =0.12, and x positive.

(b) Graph of the series K through 5th, 7th, and 9th orders. The energy is H =0.11 with the initial conditions x =y =0.0, y =0.12,
and x positive. (c) Graph of the series E through 7th, 11th, and 15th orders. The energy is H =0.11 with the initial conditions

x =y =0.0, y =0.12, and x positive. (d) Graph of the series Ii through 11th and 15th orders. The energy is H =0.11 with the initial

conditions x =y =0.0, y =0.12, and x positive.
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h~=h4 —[(x —y )x —2xyy] ——', (x —3xy ) . (3.4)

The time derivative of (3.4) gives now a quantity which is
fourth order in the coordinates and velocities.

The extensions of the process to determine the fourth-
order b's presents a special problem because the equa-
tions determining these b's have nontrivial homogeneous
solutions. This situation can be simply understood from
the fact that the time derivative of products of terms like

h, h, where h, and h are two second-order terms from

(3.2},are now fifth order in the coordinates and velocities.
Therefore, the associated b coeScients must satisfy (2.3)
in homogeneous form. In fact, homogeneous solutions to
the recursion relations (3.2} for the b's always exist for
any even-order n due to the fact that products of n /2 fac-
tors of the second-order h, possess time derivatives of or-
der n+1.

For a general even-order n, we write the nth-order b

coefticients as a column vector denoted b'"'. The recur-
sion relation (2.3) determining the b's can then be written
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Ah'"'=O, (3.6)

Ab(n) c(n —1)
t (3 5)

where c'" " is a column vector determined by the b

coefficients of order n —1. The matrix A, of course, de-

pends upon the order n. The homogeneous solutions re-
ferred to above satisfy the equation

where h'" is a column vector made up of b coelcients
that arise from products of nl2 factors of the h, men-

tioned above or linear combinations thereof. For the case
n =2, as we saw above, there is no inhomogeneous term,
and Eqs. (3.5) and (3.6) are the same.
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FIG. 5. (a) Graph of the Poincare section for an energy of H =0.14 with the initial conditions x =y =0.0, y = —0. 15, and x nega-

tive. (b) Graph of the series K through 7th, 11th, and 15th orders. The energy is H =0.14 with the initial conditions x =y =0.0,
y = —0. 15, and x negative. (c) Graph of the series K through 11th and 15th orders. The energy is H =0.14 with the initial condi-

tions x =y=0.0, y = —0. 15, and x negative. (d) Graph of the series Ii through 11th and 15th orders. The energy is H =0.14 with

the initial conditions x =y =0.0, y = —0.15, and x negative.
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In the case n =4, we find that only certain linear corn-
binations of the original second-order h, will lead to con-
sistent solutions in fourth order. In fact, requiring the
fourth-order equations to be consistent leads to further
constraints on the second-order b's. These constraints
can be expressed as conditions on the r, in (3.3) as fol-
lows: For consistent solutions to the fourth-order equa-
tions to exist, we must have r, =r2 and r, =O. This
means that at second order, I(: is restricted to be

h4'=h4 —(xy —yx)(x +y —x —y ) . (3.8)

where r, and r4 are arbitrary. The term multiplying r, is
just the second-order part of the total energy. This term
just becomes the total energy when third-order correc-
tions are made. Since we are interested in finding a E
conserved independently of the total energy, we shall take
r, =0. One choice of a fourth-order extension of h4 that
can now be constructed is given [using (3.2) and (3.4)] by'

IC2 =ri(hi+h~)+r4h4, (3.7)
[Note that any multiple of (h, +h2)h4 could be added to
h 4.] The time derivative of (3.8) gives a quantity which is
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fifth order in the coordinates and velocities.
We have now guaranteed that consistent solutions to

the fourth-order equations exist. There is additional arbi-
trariness in the solutions, of course, due to the presence
of solutions to the homogeneous equation (3.6) at this or-
der. We can, therefore, introduce a general expression
for K through fourth order characterized by more r-type
parameters, the number of such new parameters corre-
sponding to the number of linearly independent solutions
to the homogeneous equation.

Proceeding to fifth order, we find a unique solution to
Eq. (3.5) in terms of r4 and the other r parameters intro-
duced at fourth order as just discussed, It should be
remarked that Eq. (2.4) determining the b coefficients for
odd-order n always possess unique solutions regardless of
the right-hand side of the equation. This is because there
are no homogeneous solutions to the equations for odd
order, even though homogeneous solutions always exist
at even order. Thus matrix equations of theorm (3.5) also
exist for odd n, but equations of the form (3.6) have no
solution in this case.

When the procedure is carried to sixth order, it is
found that there are no consistent solutions unless r4=0.
Thus we conclude that there are no conserved quantities
K of the form (2.2) with nonvanishing b coefficients below
fourth order (except, of course, for the total energy).

IV. CONSERVED QUANTITY
WITH NONVANISHING FOURTH-ORDER TERMS

In Sec. III we have seen that no conserved quantity K
of the form (2.2) exists with nonvanishing coefficients
below fourth order if we take r, =0, thereby eliminating a
trivial addition of the total energy. It is natural to ask
what happens if we continue the procedure begun in Sec.
III, having now shown that r4 and, hence, c' ' are both
required to vanish in order to make the fourth-order

equations consistent. Is there any hope that we can gen-
erate an infinite sequence of nonvanishing coefficients, or
will consistency requirements force all of the coefficients
to vanish for any K which is not just a function of the to-
tal energy?

To answer these questions, we can turn to the work of
Gustavson mentioned in Sec. I. Using an approach
which is totally different from the one given here, he
developed a prescription for a power series of the form
(3.2) whose first nonvanishing terms, excluding a term
linear in H, were of order n =4. His program made it
clear that there should be an infinite number of nonvan-
ishing coefficients in the series. Thus we expect our pro-
cedure to produce an infinite series of nontrivial terms
which meet the consistency requirements.

So far, we have explicitly verified this by using the re-
cursion relation to determine nonvanishing coefficients
for orders n =4—15 giving us over twice as many orders
for the conserved quantity K as that obtained by Gus-
tavson. We discuss our process in detail in the following
sections. Our approach, of course, does not require us to
make the sequence of canonical transformations used in
the approach of Gustavson, but enables us to solve for
the b coefficients, thus giving K directly in terms of the
original coordinates and velocities.

Furthermore, our approach enables us to focus on the
important question of the ambiguities of the conserved
quantity K. As we have indicated in Sec. III, at each
even order there are homogeneous solutions to the recur-
sion relation (2.3). Thus, at each even order, if consistent
solutions to the recursion relation exist, there will be am-
biguity in the solution for the b coefficients since any
combination of homogeneous solutions may be added.
As we explain in detail in Sec. VII, part of this ambiguity
is removed by the restrictions placed on the coefficients at
one even order to ensure the existence of solutions at the
next even order. Any remaining ambiguity is removed by
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requiring that the "norm" of the coefficients at each or-
der be as small as possible, as we explain in Sec. VI. This
last requirement should optimize the convergence possi-
bilities of the series.

V. SYMMETRIES OF H AND THE 8 COEFFICIENTS

these conditions are introduced into the computer pro-
gram before the recursion relation for the b's is solved at
each order.

VI. SPECIAL SUBSET
OF HOMOGENEOUS SOLUTIONS

In this section we discuss the symmetries of the b
coefficients. A knowledge of these symmetries simplifies
the calculation of the coefficients, which is described in
detail in Sec. VII. We find that the Henon-Heiles Harnil-
tonian (1.1) is symmetric under the following discrete
transforrnations:

Z~Z7 Z~ Z (5.1)

Z ~ Z 7 Z ~ Z 7

z e'~z, z e'~z, e3ig 1

(5.2)

(5.3)

r+s = even integer,

p —q+r —s =3m, m =0,+1,+2, . . . .

(5.5)

(5.6)

The conditions (5.4) —(5.6) greatly reduce the number of
unknown coefficients which must be determined, and

The symmetry (5.1) is just time reversal; (5.2) corresponds
to a reflection through the x origin; (5.3) represents rota-
tions in the x-y plane by multiples of 120'. Thus, if a
physical trajectory is subjected to any of the transforma-
tions (5.1)—(5.3), the transformed trajectory is also physi-
cal (i.e., is a solution to the equations of motion). It fol-
lows that if K is a conserved quantity and if the variables
of K are transformed according to any of the transforma-
tions (5.1)—(5.3), then the resulting function must also be
a conserved quantity, and one conserved quantity gen-

erates others. Thus, e.g. , if K(z, z,i,i ) is a conserved

quantity, so also is K(z, z, —i, —z). Similar statements
can be made about the other symmetries. It is then possi-
ble by taking sums and differences of conserved quantities
to construct quantities which exhibit even or odd behav-
ior under the symmetry transformations (5.1)—(5.3) of the
Hamiltonian.

As indicated above in Sec. IV, the work of Gustavson
shows that a conserved quantity K can be constructed
whose lowest-order nonvanishing terms are n =4. His
fourth-order terms consist of a linear combination of the
square of the angular momentum h 4 and the fourth-order
terms in the square of the energy (h, +hz) . Such terms
are even (or invariant) under all the symmetries
(5.1)—(5.3). The Poincare section of Fig. 1 suggests that if
a conserved quantity independent of the energy exists,
there can be only one such quantity, since otherwise the
curve in the section would degenerate to a single point.
Since we are constructing a single conserved quantity E,
we require it to have in all orders the even symmetry of
the Hamiltonian under the above transforrnations.

This immediately leads to a set of restrictions on the b
coefficients. Assuming K to be invariant at all orders un-
der the transformations (5.1)—(5.3) leads to the following
conditions on the b~qprz.

(5.4}

We now identify a special subset of the homogeneous
solutions at even order, which all satisfies the symmetry
conditions (5.4) —(5.6). As we shall see, these special solu-
tions can be used to determine the power series (2.2),
which has the smallest "norm" for the coefficients b.

First, we note that if K is a conserved quantity in-

dependent of the energy H, then we can add to K linear
combinations of terms of the form K "H and still have a
conserved quantity independent of H and which has the
same even symmetry. This fact points to a fundamental
arbitrariness in the conserved quantity K and shows that
the recursion relations (2.3) cannot have at each order a
unique solution. As we now explain, this arbitrariness is
related to the presence of homogeneous solutions to the
recursion-relation equations at even-order n discussed in
Sec. III.

At even order there are homogeneous solutions to the
recursion relations which can be associated with terms of
the form K "H in the following manner. Calling K4 the
fourth-order part of K and H2 the second-order part of H
[i.e., (h, +h2)], there are homogeneous solutions at vari-
ous even orders associated with powers of K4 and H2 as
follows:

H n=4

H~, HqK4, n =6

H2, H2K4, K4, n =8
(6.1)

where the generalization to higher even orders is evident
and each of these terms represents a particular K "H in
lowest order. Note that the b coefficients associated with
terms in (6.1) all possess the even symmetries expressed in
(5.4)-(5.6).

At even-order n, the special subsets of homogeneous
solutions of the form (6.1) each give rise to column vec-
tors which we designate h,'"' satisfying (3.6). We shall in-

sist that these column vectors h,'"' be orthogonal to the
column vector b'"', which is a solution to the recursion
relation at this order thus satisfying (3.5). Thus we re-
quire

(h (n))Tb (n) —(} (6.2)

In effect, our procedure throws out the uninteresting
terms K"H by requiring that our solution to (3.5) be or-
thogonal to the K"H in the sense of (6.2) in the lowest
order in which they appear. The requirement (6.2} thus
wipes out the components of b'"' in the subspace spanned
by h,'"', which results in minimizing the norm of the vec-
tor b'"' at each even order. This process also eliminates
some of the arbitrariness in K introduced by the homo-
geneous solutions at even order. As we shall indicate in
Sec. VII, arbitrariness introduced in the even-order solu-
tions by the presence of homogeneous terms other than
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(6.1} is eliminated by the requirement that consistent
solutions exist at even orders. The end result is a corn-
pletely unique formal power series for the conserved
quantity K.

VII. SYSTEMATIC GENERATION
OF SOLUTIONS TO THE RECURSION RELATIONS

We now wish to summarize our discussion of the previ-
ous sections. Described here is the systematic process by
which we generate consistent and unique solutions to the
recursion relations (2.3) and deal with the ambiguities
which arise due to the presence of homogeneous solutions
to these equations at even order. All calculations are
done using the program MACSYMA. The following is an
outline of the first few steps taken to produce a unique
formal power series for the conserved quantity K, the
generalization higher orders being straightforward.

(i) n =4. The solution for the b coefficients is given by
the homogeneous equation (3.5) with n =4, subject to the
symmetry conditions (5.4}—(5.6). Two linearly indepen-
dent solutions result, corresponding to H2 and the square
of the angular momentum h4. We now minimize the
norm of the fourth-order b coefficients by requiring that
our solution be orthogonal to the subspace spanned by
Hz as discussed in Sec. VI. This requirement can be ex-
pressed in the form (6.2), where the column vector h,' '

consists of the b coefficients of H2. This now determines
a unique fourth-order solution for the b's, up to an all-
over multiplicative factor which we set equal to 1.

(ii) n =5. At this order we must solve a set of linear
equations of the form (3.5) with n =5. The inhomogene-
ous term c ' is determined by the fourth-order
coefficients resulting from (i). In this case, as for every
odd order, there is a unique solution for the fifth-order b
coefficients.

(iii) n =6. We again have homogeneous solutions.
After requiring the symmetry conditions (5.4) —(5.6), we
find that there are three linearly independent homogene-
ous solutions two of which are in the special subset (6.1).
Consistent solutions to (3.5) can again be found in this
case. By requiring that (6.2) be satisfied using the two
special n =6 homogeneous solutions in (6.1), we mini-
mize the norm of the sixth-order coefficients. The residu-
al arbitrariness in the solution for the sixth-order b
coefficients is characterized by a single parameter associ-
ated with the third homogeneous solution. This parame-
ter is carried along until it is determined [see step (v)] at
eight order.

(iv) n =7. As mentioned earlier, there are no homo-
geneous solutions at this or any other odd order. As in
the case n = 5, there is a unique solution to (3.5) for the
seventh-order coefficients. The inhomogeneous term c' '

and, therefore, the solution for the seventh-order
coefficients will depend upon the single arbitrary pararne-
ter introduced at sixth order.

(v) n =8. At this order there are four linearly indepen-
dent homogeneous solutions satisfying the symmetry re-
quirements, three of which are in the special set (6.1).
There will be consistent solutions to (3.5} if and only if

In this section we present our results for the form for
the quantity K calculated through 15th order. We also
give preliminary results for the calculation of K along
selected representative trajectories with different energies
and comparable initial conditions. We use the Verlet al-
gorithm' for the numerical integration, and except
where indicated otherwise, the mesh size used in the nu-
merical computation of the trajectories is 0.01 s. We call
our dimensionless time unit seconds (s) for convenience.

Table I gives our results for the b coefficients from 4th
to 15th order. The notation used in the table is

[pqrs] =b (8.1)

Parentheses are used within the brackets to eliminate am-
biguity when any of the subscripts are larger than 9.
Also, when a set of b coefficients is related through the
symmetry condition (5.4), only one of these coefficients is
given in Table I. For compactness we are presenting the
coefficients as decimal fractions instead of the exact ra-
tional numbers which we calculated.

We have calculated the quantity K along several trajec-
tories with different energies and initial conditions.
These, along with the corresponding Poincare sections,
are presented graphically in Figs. 1 —5. A much more de-
tailed analysis of the numerical properties of K is being
undertaken and will be discussed in a later paper. We
present representative results for four energies, H =0.05,
0.08, 0.11, and 0.14. From Henon-Heiles, we expect no
chaotic trajectories to occur at the first two energies,

the arbitrary parameter introduced at order n =6 in step
(iii) above takes on a specific value. At this point the
power series for K is now uniquely specified through
seventh order. The eighth-order coefficients are now
determined to within four arbitrary parameters associat-
ed with the four homogeneous solutions. By requiring
that (6.2) be satisfied with the three special n =6 homo-
geneous solutions in (6.1), the norm of coefficients is
again minimized, and the resulting arbitrariness in the
solution for the eighth-order order b coefficients is again
characterized by a single parameter. This parameter is
now carried along until it is subsequently determined at
tenth order.

The procedure outlined here for the first few orders is
extended to determine a unique set of b coefficients
through n =15. At each even order, there is some resid-
ual arbitrariness after the orthogonalization requirements
(6.2) have been imposed. This residual arbitrariness can
be characterized by one or more parameters. These pa-
rameters are then completely determined at the next even
order by the requirements of consistency.

Thus we generate by a well-defined sequence of steps a
unique formal power-series expression for the conserved
quantity K in the Henon-Heiles problem. We have relied
on the results of Gustavson to motivate the existence of
such a power series for K. The fact that arbitrary param-
eters present at one even order all become completely
determined at the next even order once the orthogonali-
zation requirement (6.2) is enforced is by no means obvi-
ous.

VIII. CALCULATIONAL RESULTS FOR j'
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TABLE I. This table gives our decimal representations for the b coefficients from 4th to 15th order.
The notation used is [pqrs]=b~q„, P.arentheses are used within the square brackets to eliminate ambi-

guity when any of the subscripts are larger than 9. Also, when a set of b coefficients is related through
the symmetry condition (5.4), only one of these coefficients is given in the table.

[0220]= l. 5 [1111]= -1.0
Order 4

[2200]= 1.0 [0022]= 1.0

[0311]= —2.333 333
[0140]= —2.0

[1202]=3.0
Order 5

[1400]=0.666 667 [0113]= —2.0

[1320]= —3.847 222
[1122]= —7.347 222
[0204]=2.75

[2211]=7.652 778
[0033]=0.319444
[0006]=0.916667

Order 6
[3300]= —l.236 111
[0402]=2.25

[0231]=4. 152 778
[0600]=0.361 111

[1411]=2.831481
[ 1240]=4. 829 629
[0151]= —0.670 37

Order 7
[3202]= —6.776 852 [2500]= —l.513 889
[0520]=0.917593 [0322]= —2. 519444

[1213]=5.835 185
[0124]= —0.670 37

[2420]=3.841 354
[2222] = l. 304 377
[0044]= —0.637 321
[0413]= —5.278 665
[0017]= —1.629205

[3311]= —8. 171 499
[0440]= —2.968 022
[0611]= —2. 875 81
[1304]= —4.664 159

Order 8

[4400]=2.558 358
[0242]= —4. 141 979
[1502]= —3.620 023
[0215]= —4. 887 616

[1331]=0.236277
[1133]=5.734 674
[1700]= —l.040 625
[1106]= —1.629 205

[2511]= 3.359 273
[2340]= l. 762 42
[1251]= —17.185 67
[0135]=4.730 818
[0504]= —l. 629 205

[3402]=7.861 303
[1620]= —2.421 289
[0531]=9.450 799
[0162]=4.730 818
[0306]= —0.543 068

Order 9
[3600]=3.025 071
[1422]= —18.4352
[0360j=5.080 957
[0702]= —1.685 069
[0108]=0.0

[2313]= 19.601 97
[1224]= —24. 2819
[0333]= 15.1289
[0900]= —0.693 994

[3520]=3.694 813
[3322]= 87. 510 83
[0451]= —12.295 31
[1711]=5.009 957
[2404]=4.052959
[0622]=5.597 295
[0226]=6.642 261

Order 10
[4411]= —10.804 08 [5500]= —4.499 268
[1540]= 18. 19042 [1342]=59.9024
[0253]= —5.887 928 [1144]= 13.879 81

[2602]= 11.733 59 [2800]=4.400819
[1315]= 37.77804 [2206]= —7.001 715
[0424]=4.066 992 [0280]= —3.455 926
[0028]= 3.366 062

[2431]= —59.276 13
[2233]= —88.640 85

[0055]=0.420 791
[ 1513]=28.0709
[0820]=4.317 128
[1117]= 13.643 97

[3611]= —27. 128 94
[3440]= —52.479 21
[2351]=91.8488
[1235]=27.99691
[0371]= —8.947 837
[0911j = —5.448 897
[1604]=28.948 85

[ 1208]= 12.237 58

Order 11
[4502]= —0.403 579 [4700]= —8.886 767
[2720]= —5.398 895 [2522]=77.071 67
[1631]= —28.099 81 [1460]= —36.595 24
[1262]=2.221 826 [0740]= —13.864 91
[0344]= —42. 997 77 [0146]= —17.183 39
[1(10)00]= 3. 185 361 [1802]= 16.146 27
[0515]= —16.411 61 [1406]=25. 387 77
[01(10)0]= —2.719463 [0119]= —2.7194 63

[3413]= —136.4467
[2324]=96.22961
[1433]=—42.23662
[0542]= —31.83882
[0173]= —17.18339
[0713]= —14.69613
[0317]= —9.993542

[4620]= —44. 727 03
[4422]= —333.28 03
[1551]= —34.948 62
[0462]=84.312 66
[2811]= —1.689 138
[3504]=28.471 68
[1722]= —87.795 01

[5511]= 109.4422
[2640]= —56.790 49
[1353]= —230.8863
[0264=56.662 01
[3702]= —25.067 83
[2415]= 10.151 77
[1524]= —231.2888

Order 12
[6600]=7.987 373
[2442] =0.645 53
[2244]=299.4666
[1155]= —107.3596
[3900]= —12.3607
[3306]=62.730 35
[1380]=22.082 94

[3531]=230.0708
[3333]=24.286 45
[0660]=23.489 84
[0066]=0.994 068
[2613]= —37. 11944

[ 1920]= —1 5.022 03
[2217]= 100.4803
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TABLE I. (Continued)

[1326]= —270.0377
[0291]=49.277 57
[0(10)02]= 13.213 76
[0408]=40.009 08

[0831]=40.43763
[1128]= —100.3819
[0(12)00]= 1.7482 19
[020{10)]= 16.275 57

[0633]= 121.0204
[0237]=47.450 82
[0804]=36.708 43
[000(12)]=2.712 597

[0435]=133.3649
[0039]= —0.608 916
[0606]=51.679 85

[4711]= 183.9202
[4540]=359.0139
[3451]=27.944 58
[2335]= —1319.621
[1471]=292.1612
[0751]= —98.712 28
[0355]= —88.978 28
[2(11)00]= —14.64675
[1615]= 54.574 29
12(10)0]=6.965.256
[0724]= —129.2386

[012(10)]= —25. 5859

[5602]= —131.8388
[3820]= —23. 133 77
[2731]= 29.291 11

[2362]= —832.6909
[1444]= 1002.599
[0580]= —17.070 58
[0157]= 17.0345
[2902]= —56.3344
[2506]= —42. 184 89
[1219]= 122. 1018
[0526]=—208. 3652

Order 13
[5800]=9.977 557
[3622]= —201.5325
[2560]=166. 13

[1840]=42. 226 79
[1246]=392.1408
[0553]= —221.5038
[0184]= 17.0345
[1813]= —38.220 72
[1417]= 171.4117
[0(11)20]=10.5397
[0328]= —126.5958

[4513]=528.8384
[3424]=519.1566
[2533]= —722. 8276
[1642]=532.3505
[1273]=417.6925
[0382]= —118.3449
[1(10)11]= —20. 328 84
[2704]= —71.208 92
[2308]= —20. 342 98
[0922]= —12.852 52
[0( 11)1]= —25.5859

[5720]=231.7731
[5522]=289.0572
[2651]=892.8157
[1562]= —607.725
[0473]= —287.3489
[3911]=277. 9768
[4604]= —791.2013
[2822]= —413.5697
[2426]=920.2822
[1391]= —291.8641
[0842]= —351.2261
[02(10)2]= —113.5544
[0(12)11]= —30.359 04
[1904]= —55.491 21
[1508]=—48.451 87
[110(12)]= —5.7963

Order 14

[6611]= —473.7999 [7700]=9.929 093
[3740]=—10.720 35 [3542]= —2217. 106
[2453]=2227.853 [3344]=—3205.876
[1364]= 126. 1688 [2255]=88.944 38
[0275]=—231.9005 [1166]=383.1568
[4(10)00]=23.095 97 [4802]= —171.803
[3515]=S23.6336 [4406]= —916.001
[2624]= 144.267 [2480]=—381.968
[1931]=249.7401 [1733]=232.0079
[2228]=262.3014 [1337]= 128.8331
[0644]= —367.5704 [04(100]= —54. 172 44
[1139]= 176.2321 [0248]= —151.7121
[1(11)02]= —34.973 75 [1{13)00]= —9.279 646

[0815]= —208.4543 [1706]= —57.590 14

[0419]=—101.8696 [130(10)=—26.249 16
[001913) ]= —5.7963

[4631]= —205.0175
[4433]=2997.25
[1760]= —336.7448
[0671]= —200. 1801
[0077]= —11.520 61

[3713]=976.7071
[2(10)20]= —79.8271
[3317]= —478. 8429
[1535]= —125.5053
[0(10)40]=—144.5753
[0446]= —314.3394
[004(10)]= —12.71921
[0(19)13]= —124.5257
[06171=—186.9277
[021(11 )]= 34.777 79

[5811]= —766.296
[5640]= —231.4916
[4551]= —3716.904
[3435]= —1466.569
[2571]= —700.2~".".

[1851]= —49.865 81
[1455]= —9562.744
[0762]=2917.367
[0366]=2287.732
[3(10)02]=—171.9098
[2715]=4563.563
[23(10)0]= 1213.19
[1824]= —3471.631
[122(10)]= —1260.646
[0537]=2440.261
[013(ll)]= 179.0171
[0906]= —48.426 33
[010(14)]=0.0

Order 15

[6702]=556.8142 [6900]=23.015 38
[4920]=364.4094 [4722]= —276.6554
[3831]=—86.856 97 [3660]= 1491 377
[3462]=559.4066 [2940]=459.2791
[2544]=4772. 193 [2346]=10824.03
[1680]= 1003.742 [1653]=—5100.347
[1257]= —4661. 177 [1284]= —4233. 177
[0591]= 1545.467 [0564]=4333.167
[0168]=285.3332 [0195]=285.3332
[3(12)00]= 35.4716 [2913]=2350.75
[3606]= —2661.629 [2517]=4257.682
[2319]=2093.162 [1(12)20]= —92.922 31
[1626]= —4496. 391 [1428]= —3271.283
[0(ll)31]=485.3791 [0933]=1835. 139
[03(12)0]=24S.9171 [0339]=1059.652
[0(13)02]= —23.537 29 [0(15)00]= —5. 162 242

[0708]= —31.11365 [050(10)]= —11.5926

[5613]= 11.944 71
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[0960]=498.1489
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[3804]= —1317.13
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[0735]=2902.98
[01(12)2]=179.0171
[0( 11)04]= —45. 364ck 75
[030( 12)] = —1.9321



POSSIBLE CONSERVED QVANTITY FOR THE HENON-HEILES. . . 1945

whereas chaotic trajectories are expected at the two
higher energies.

In Fig. 1(a) we show the Poincare section correspond-
ing to the plane x =0, for a trajectory with H =0.05 and
with initial conditions x =0.0, y = —0. 15, y=0.0, and
the value of x which is then determined from energy con-
servation is taken to be negative. The Poincare section
Fig. 1(a) then shows the points where the trajectory inter-
sects the x =0 plane with x positive. For this value of
the energy, no chaos is expected, regardless of the initial
conditions. This expectation is borne out in that the
points on the section seem to lie on a smooth curve.

In Figs. 1(b) and 1(c) we display the quantity K along
the points of the trajectory for a total time of 100 s. The
points on the Poincare section cover a total time of about
314 s, and so the calculation of E covers a time corre-
sponding to about one-third of the points of Fig. 1(a). In
Fig. 1(b) we have plotted E evaluated as a summation
from the 4th though the 7th, 11th, and 15th orders to
give a feeling for the convergence of the series. In Fig.
1(c) we have plotted just the 11th- and 15th-order curves
from Fig. 1(b) to show more detail. The difference in the
vertical scales should be noted. Clearly, the fluctuations
in E are becoming smaller as more higher-order terms
are included in the series. Based on this evidence, to this
order the series for E appears to be converging.

Figure 2 presents the corresponding series of graphs
for the case H =0.08, again with initial conditions x =0,
y = —0. 15, y =0, and x negative. Here, again, the points
on the section plot in Fig. 2(a) lie on a smooth curve, and
there appears to be convergence of the series for E
through 15th order. The series does not appear to con-
verge as rapidly as for the case where H =0.05, but this
is to be expected since the variables can take on larger
values at this energy.

At energy H =0.11, we present two series of graphs,
Figs. 3 and 4, for two trajectories. In Fig. 3 the initial
conditions are the same as in the cases of the previous
two energies. In this case we get chaotic behavior as is
indicated by Fig. 3(a), where the points no longer lie on
smooth curve. From Figs. 3(b) and 3(c) we see that the
series for E appears to be diverging or perhaps asymptot-
ic at certain times. In Fig 4 we have used initial condi-

tions y =0.12, x =0.0, y=0. 0, and x positive. We see
from Fig. 4(a) that the trajectory appears to be nonchaot-
ic. Figure 4(b) gives a graph of IC through orders 5, 7,
and 9, showing a clear tendency for the series to improve
up to this point. Figure 4(c) and 4(d) correspond to what
we have been displaying for the smaller energies. The re-
sults clearly show that K to these orders is more nearly
constant here than in the case of the chaotic trajectory of
Fig. 3. Figure 4(d), however, shows that IC through 15th
order is only about as constant as E through 13th order.
Again, this may indicate either that the series may ulti-
mately diverge or be asymptotic.

Finally, in Fig. 5 we show the results for energy
H =0.14. At this higher energy the trajectory appears
even more chaotic and the series for E diverging. We see
in Fig. 5(b), in fact, that at certain times, K through 15th
order is worse than E though 7th order. Also, of particu-
lar interest is Fig. 5(d), where we have a plot of K for the
same trajectory and time period as Fig. 5(c), except that a
mesh size of 0.001 s is used. Use of this smaller size pro-
duced no significant changes in the earlier figures. In this
case the right half of the graph shows a markedly
different structure than it did in Fig. 5(c). This is presum-
ably due to the more chaotic nature of the trajectory and
its greater sensitivity to numerical fluctuations.

The results presented here represent a preliminary dis-
cussion of the series for E and its properties. Interesting
questions are raised by the structure of the graphs for E.
For example, what is the physical significance of the ex-
treme variations of E indicated by the spikes which are
particularly noticeable in Figs. 3(c), 5(c), and 5(d)'? Our
preliminary study of this issue seems to indicate that
these spikes are associated with regions of phase space in
which the trajectory is the most sensitive to initial condi-
tions. This study will be reported in a later paper.

Another program we are pursuing is the adaptation of
our procedure to a new method which will allow us to
calculate more orders in the series for E with greater
speed. This should make it possible to gain more infor-
mation about the series in the delicate region where chaos
sets in and also obtain more confirmation about whether
the ser~es is really converging at lower energies. This
stud; I. planned to be reported in a later paper.
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