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For functions with power-law singularities we consider series expansions ~hose coeKcients
have been determined by Monte Carlo simulation. In many practical problems the relative noise
of the coefficients is constant or slowly increasing with the order. We modeled real Monte Carlo
expansions by test series with known singularity structure where noise with different strength
and form is imposed on the coefBcients. The efficiency of different standard methods of series
analysis (ratio method, Pade approximants, differental approximants) has been tested together
with smoothing methods based on repeated partial summation of the series. We found the Pade
method to give reasonable estimates and its accuracy is independent of the smoothing, while
the estimates of the ratio and the differential approximant methods are greatly improved when
smoothing is applied. Indeed, we found the ratio method with optimally selected smoothing to
give the most reliable results.

I. INTRODUCTION

Different exact series-expansion methods' combined
with methods of series analysis are useful approaches
to critical phenomena. The higher-order terms of an
expansion, however, contain more and more configura-
tional information such that one has to use sophisti-
cated methods and complicated computer programs to
calculate them. Therefore the number of coefFicients is
strongly limited by the available computer time.

In some geometrical critical problems (walks,
percolation, lattice animals, s etc.), however, it is natu-
ral to determine the coefficients of the expansion approx-
imately by Monte Carlo (MC) simulation. In this way-
with simpler computer programs and moderate comput-
ing effort —longer series can be calculated. For problems
where the asymptotic region can be reached only in large
order (cf. k-tolerant walks, 4 i.e. , walks that can visit each
lattice site at most k times) this is a necessary approach.
Quite generally the values of any singular quantity de-
termined by MC simulations on different finite systems
form such a stochastic series.

Having determined the series, the next problem is to
deduce the critical exponent. So far mainly simple pro-
cedures based on the ratio method and combined with

graphical interpretations have been used, but the more
sophisticated methods developed to treat the confluent
singularities of exact series are rarely applied. The rea-
son for this is that for MC series the noise seems to play
the principal role, and special procedures are necessary
to reduce its eÃect. Presumably a smoothing based on
repeated partial summation of the series is adequate for
such a purpose. One hopes that after this transforma-
tion the fluctuations in the individual coefficients will be
washed out such that the effect of noise on the estimate
will be reduced.

In this paper we are interested in the role of noise on
the estimates of diff'erent methods of series analysis and
try to find out strategies to minimize the eff'ect of stochas-
ticity. For this purpose we mainly analyze test functions
with given singularity structure where on the coefFicients
some noise with different strength and form is imposed.
A typical form of the noise is deduced from scaling argu-
ments and from examples of MC simulation.

The structure of the paper is the following. In Sec. II
standard methods uf series analysis (ratio method, Fade
approximants, diff'erential approximants) are shortly re-
viewed and a smoothing transformation based on re-
peated partial summation of the series is described. Dif-
ferent noisy series are analyzed in Sec. III, while the re-
sults are discussed in Sec. IV.
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II. METHODS OF ANALYSIS
AND SMOOTHING

I'(n —i+ s)"'= r(.)r( — +1) (2 8)

A. Standard methods of series analysis

Let us consider a series of the following elements:

a1) a2) a3) ". an) ~ ~ ~ )

which for large n asymptotically behaves as

a„=An (1+bn ~+cn '+ )

(2.1)

(2.2)
a„'=A,n+'(1+b, n P+c,n '+ ) (2.9)

For s = 1, obviously C„; = 1; thus (a„) is the partially
summed series of ja„).s Similarly for integer s the (a„')
give the 8-times partially summed series.

Performing the summation in (2.7) one can see that
for the transformed series both the leading and the next-
to-leading exponents are shifted by s, but their relative
strength has changed as

where n & 0, 0 ( P & l. In critical phenomena there
are many examples for such series, e.g. , walks, lattice an-

imals, percolation, or the finite-size behavior of singular
quantities at the critical point. s On the other hand, the
power series with coefficients a„

f(z) = ) a„z" (2 3)

defines a function, which has a power-law singularity at
z, =18

f(z) (1 —z) ~ + 1 for z ~ 1. (2 4)

Various methods of analysis have been developed to de-

termine the critical exponent n from a finite series. 2 s

In the ratio method an estimate for n is obtained from
the ratio of two subsequent coefficients r„=a„/a„-i as

cx„= n(r„—1). (2.5)

B. Smoothing by partial summation

Let us perform the following transformation on series
(2.1):

a„'=) C„',a; (2.7)

where the coefficients are expressed by the P function:

On the other hand, in the differential approximant (DA)
and Pade method each estimate depends on all coeffi-
cients. In the DA method f(z) is the solution of the
diA'erential equation:

Q (.)f'(*)+P.(*)f(.)+~ ( ) = o(. '""")
(2.6)

with QM(0) = 1. Here the functions QM(z), P'(z),
and R"(z) are polynomials of the order of M, L, and
N, respectively, chosen in such a way that Eq. (2.6) is
fulfilled up to O(zM+'+~+ ). Then the solution f(z) is
called the [N/I; M] approximant.

Equation (2.6) contains as a special case the Pade
method for QM(z) = 0, and the solution is denoted as
the [N/L) approximant. Finally the Dlog Pade method
corresponds to R"(z) = 0, with solutions denoted as the

[L/M] approximant.

where the coefficients are

r(1 +.)
I'(s+1+ n)

'

,r(s+1+~) r(1+~ —p)
r(1+a) I'(s+1+a —p)

'

S C
c, =(a+s)

2 o.

(2.10)

As one can see from Eq. (2.10) the strength of the conflu-
ent singularity monotonically increases with s. Since for
noisy series appropriate smoothing is expected for posi-
tive s, one has to make a compromise, selecting s opti-
mally.

III. ANALYSIS OF STOCHASTIC SERIES

A. The form of the noise

TABLE I. Relative noise of 8„for random walks in a MC
simulation on the square lattice.

5
10
20
30
40
50
60
70
80
90

100

o(n)

0.0296
0.0275
0.0287
0.0280
0.0303
0.0322
0.0324
0.0322
0.0323
0.0324
0.0323

Before starting to analyze MC series first we have to
discuss their main properties: what is the typical form
and strength of the noise in various coef5cients? As an
example we study the results of a MC simulation on the
square of the end-to-end distance R2 of a random walk

of n steps on a square lattice. The relative noise o, i.e.,

the standard deviation divided by the average is given
in Table I for 100 groups of &=1000 walks. As is seen

o(n) is fairly constant close to its asymptotic value o
~-1/2
This kind of behavior of the noise is typical for gen-

eral self-avoiding walks, too. To show this we recall the
probability function in the scaling regime
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P(a, n) = a-"y
i

—„ i,
(a)
i, n") (3 1)

which measures the probability to find a walk with a
distance R from the starting point after n steps. Using
expression (3.1) it is easy to verify that the relative noise
is indeed independent of n.

Based on these observations we believe that for a wide

class of MC series the coefficients can be represented as

a„=a„(1+oh„), n = 1, 2, ..., N (3 2)

where a„denotes the exact value and b„ is a random
number with normal distribution, zero average, and stan-
dard deviation 1.

In practice, if we want to determine the coef5cients
of a series with a given accuracy, the computer time
necessary to calculate them rapidly increases with the
order. Therefore in many algorithms the higher-order
coefficients are determined with less accuracy than the
lower-order ones. One possibility to model this behavior
is to choose the relative noise as increasing linearly with
the order:

2na„=a„1+o —b„~, n = 1, 2, . . . , N.
N )

(3.3)

Note that the average of the relative noise in this case is

the same as for (3.2).
To test the different methods of analysis we use test

functions with given singularity structure and with noise

according to (3.2) and (3.3). The test functions listed in

Table II are the simple power (A), and functions C, G,
and I~, as given by Hunter and Baker. s In practice we

generated 100 series in each case and determined the av-

erage and the standard deviation of the estimates for the
critical exponent. For o' we used three values: 0.01, 0.05,
and 0.2, corresponding to an accurate MC simulation, to
an average one, and to a poor one, respectively.

B. Analysis of series without smoothing

TABLE II. Test functions used to study the effectiveness
of different methods of series analysis. On the coefficients of
their power-series noise of the form of Eqs. (3.2) and (3.3) is
imposed.

A

C
G

In the ratio method according to (2.5) the standard de-

viation of an estimate increases —at least linearly —with
the order, since the uncertainty on r„ is not a decreasing
function of n. Consequently the ratio method without
a further transformation is not applicable to analyze a
noisy series.

The Pade method, however, gives useful estimates
without smoothing, too. In Table III the estimates and
the standard deviations are listed for N = 20 and 50 for
constant and linear noise. In the calculation 16 central
elements of the Pade table were taken, omitting, however,
those terms which differ from the average more than the
triple of the standard deviation. Then, as already de-

scribed, the results are averaged over 100 series.
As one can see from Table III the estimates are rea-

sonably good for smaller constant noise (o = 0.01 and
0.05), and the accuracy increases with ¹ For 0 = 0.2,
however, the estimates scatter very much. Considering
now the series with linear noise, we can say that the ac-
curacy in this case is roughly the same as that with aver-

age constant noise. At first thought this result seems to
be surprising, since for exact series the estimates will be
greatly improved if higher-order terms are present in the
analysis. On this basis one would expect less accuracy
if the higher-order coefficients have larger fluctuations.
In reality, however, the gain in accuracy for lower-order
coefficients seems to compensate this effect.

Next, using the method of differential approximants
we have performed the same analysis as for the Pade
method, using the first-order inhomogeneous DA. (For
the DA method 20 central elements of the table were

taken together with the same selection procedure as for
the Pade method. ) According to the results in Table
IV the estimates are reasonable for this method, al-

though the accuracy is significantly less than for the Pade
method. The form of the noise seems to have little effect
on the estimates, in this case, too.

C. The efFect of smoothing

The test series smoothed by the (3.1) transformation
with s = 1, 3, 5 are analyzed by the Fade and the DA
methods. For these methods we found the difference be-
tween the exact exponents and the average of the esti-
mates to be always smaller than the standard deviation
of the estimates; therefore the effect of smoothing is con-
veniently characterized by the standard deviations which
are given in Table V for constant noise with a = 0.05.

As is seen in Table V the Pade method is insensitive
to the application of smoothing for all cases. As an ex-
planation one could argue that the Fade method using
the whole series for each estimate is insensitive to Auctu-
ations in individual coeKcients. This explanation, how-

ever, does not hold for the DA method, which works us-

ing the same principle. As one sees from Table V the
accuracy does depend on smoothing for the DA method,
and at s 3 this is comparable with that of the Pade
method.

%e now turn to discuss the effect of smoothing on the
results of the ratio method, where —as we have already
noted —it is necessary to perform some transformation
before analysis. By the ratio method, due to its simplic-
ity, one can easily determine a whole series of estimates
n„and more conveniently represent them graphically. In



1926 R. DEKEYSER, F. IGLOI, F. MALLEZIE, AND F. SENO 42

TABLE III. Analysis of test series with lengths N = 20 and 50 for constant and linear noise
with strengths a = 0.01, 0.05 and 0.2 by the Dlog Pade method. Ao is the standard deviation on
the obtained n values.

Function
Constant noise

A An
Linear noise

G

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

20
20
20

50
50
50

20
20
20

50
50
50

20
20
20

50
50
50

20
20
20

50
50
50

1.503
1.509
1.564

1.500
1.505
1.507

1.659
1.668
1.624

1.537
1.549
1.531

1.409
1.505
1.555

1.502
1.499
1.485

1.589
1.596
1.776

1 ~ 518
1.529
1.535

0.021
0.095
0.324

0.014
0.046
0.302

0.098
0.247
0.737

0.057
0.061
0.256

0.058
0.095
0.350

0.017
0.069
0.187

0.105
0.128
0.895

0.062
0.073
0.204

1.501
1.511
1.469

1.501
1.526
1.510

1.662
1.649
1.628

1.543
1.595
1.586

1.419
1.497
1.632

1.497
1.495
1.514

1.589
1.625
1.669

1.510
1.532
1.542

0.019
0.095
0.487

0.008
0.138
0.260

0.111
0.274
0.868

0.092
0.181
0.206

0.058
0.285
0.302

0.018
0.050
0.163

0.191
0.201
0.391

0.031
0.062
0.127

the following we analyze the test series up to 50 terms
using a constant noise of o = 0.05.

Let us start with function A which represents the sim-
plest case. The average of the estimates and its standard
deviation for diA'erent values of s are drawn in Fig. 1 as
a function of 1/n. As one can see the standard deviation
is decreasing with the order, and the optimal value of s is
about s 3, where Ao. is minimal. Due to the fact that
function A contains no confluent singularity there is no
systematic n dependence of n„. Therefore the accuracy
of the estimates is high An & 0.01; it is much better than
with any other method.

The strength of the confluent singularity seems to be
small for function G, too, as one can see in Figs. 2 and
3 for o. = 0.05 and 0.2, respectively. The estimate is
surprisingly accurate, even for strong noise o = 0.2, the
standard deviation being less than 4%.

The confiuent singularity, however, plays an important
role for functions C' and I~, as one can see from Figs. 4
and 5. Although the standard deviations are relatively
small (Aa 0.015) in these cases, too, the estimates n„
contain systematic 1/n corrections, the strength of which
increases with the smoothing. Taking into account a
1/n correction term the estimates are n = 1.51 + 0.05

0.020

0.015—

0.010-

0.005
1.52—

1.50—

1.48
0.00

t

0.02
I

0.04 0.06

FIG. 1. Standard deviation (a) and average (b) of the
estimates of the ratio method for series 2 with o = 0.05
constant noise after smoothing transformation&. (2;, s=3; . , s=4;and. . ., s=5)
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TABLE IV. Same as in Table III but for the method of diR'erential approximants.

Function
Constant noise

Ck

Linear noise

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

0.01
0.05
0.20

20
20
20

50
50
50

20
20
20

50
50
50

20
20
20

50
50
50

20
20
20

50
50
50

1.501
1.566
1.507

1 ~ 503
1.503
1.506

1.547
1.473
1.320

1,535
1.539
1.397

1.388
1.474
1.492

1.508
1.535
1.532

1.515
1.553
1.499

1.495
1.526
1.536

0.069
0.181
0.423

0.067
0.143
0.670

0.118
0.202
0.344

0.105
0.229
0.360

0.065
0.159
0.370

0.046
0.200
0.617

0.061
0.231
0.544

0.056
0.194
0.716

1.529
1.598
1.557

1.497
1.508
1.557

1.550
1.615
1.337

1.508
1.544
1.716

1.407
1.484
1.564

1.517
1.572
1.582

1.530
1.570
1.611

1.499
1.519
1.599

0.102
0.225
0.336

0.049
0.154
0.642

0.115
0.480
0.507

0.083
0.189
0.514

0.060
0.156
0.397

0.052
0.253
0 ~ 523

0.095
0.275
0.636

0.058
0.154
0.495

TABLE V. Standard deviation of the estimates obtained by the Dlog-Pade and the differential
approximant methods after a. smoothing transformation, Eq. (2.7), on the test series with constant
noise (0 = 0.05).

Function
Pade method

N =20 S =50
DA method

K=20 E =50

C

0.095
0.113
0.113
0.107

0.247
0.23Q

0.226
0.239

0.093
0.128
0.131
0.131

0.128
0.135
0.168
0.203

0.046
0.063
0.051
0.056

0.061
0.070
0.066
0.073

0.069
0.059
0.063
Q.060

0.073
0.075
0.067
0.067

0, 181
0 ~ 165
0.124
0.128

0.202
0.243
0.215
0.161

0.159
0.162
0.122
0.197

0.231
0.273
0.155
0.133

0.143
0.087
0.058
0.061

0.229
0.100
0.069
0.079

0.200
0.090
0.059
0 ~ 074

0.194
0.096
0.062
0.083
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0.025 0.025

0.020—

0.015-a
0.015—

0.005
1.55

0.010
1.50

1.50-
1.25

1.45-

1.40
0.00

I

0.02
I

0.04

(b)

0.06
1.00

0.00
I

0.02 0.04

.(b)

0.06

FIG. 2. Same as in Fig. 1 but for series G. FIG. 4. Series C with o = 0.05. Results for s = 1 are
denoted by thick line.

and n = 1.52 6 0.05 for series C and Ix, respectively,
where the uncertainties are mainly due to confluent sin-
gularities. For the function I~ we repeated the investi-
gation with linear noise, Eq. (3.3). As one can see from
Fig. 6 the accuracy of the estimate is about the same as
for constant noise, which is (also in this case) due to the
confluent singularity, since the standard deviation [Fig.
6(a)]—caused by stochasticity —is even smaller than be-
fore.

0.10

Concluding this part we mention another smoothing
procedure based on a transformation that raises the series
to the pth power. This transformation, however, turned
out to be far less effective than Eq. (2.7).

D. Self-avoiding random walk

As a final example we perform the analysis of the
MC series of R~ for self-avoiding random walks on the
square lattice. In the simulation we generated 100 groups

0.025

& 0.05- 0.015-

0.00
1.55

(a)
0.005

1.5

1.50— 1.4—

1.45—

1.40
0.00

I

0.02
I

0.04

(b)

0.06
1.2
0.00

I

0.02
I

0.04

.(b)-

0.06

FIG. 3. Series G with cr = 0.2. FIG. 5. Series Ii with cr = 0.05.
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TABLE VI. Critical exponent of the end-to-end distance of the self-avoiding random walk on
the square lattice obtained by analysing MC series of 10000 and 100 000 started walks, respectively,
after a smoothing transformation.

Walks
Fade method

2V+ 8 6(2v)
DA method

2v+ s A(2v)

10 000

100 000

1.494
2.522
4.500
6.508

1.505
2.502
4.504
6.504

0.237
0.232
0.233
0.225

0.070
0.072
0.068
0.065

1.604
2.590
4.471
6.563

1.514
2.526
4.512
6.522

0.410
0.362
0.389
0.474

0.153
0.116
0.173
0.192

of 100000 starting walks for n=6, 10,14, ... ,50, and per-
formed the same analysis as before. To check the effect
of noise we repeated the procedure with only 10 000 start-
ing walks per group. The results obtained by the Pade
and DA methods are given in Table VI, while the esti-
mates of the ratio method are drawn in Fig. 7.

For this problem the Pade method seems to give the
most accurate estimate 2v = 1.5 + 0.07, close to the ex-
act one, 2v = 1.5.~~ The uncertainty of the DA method is
about twice as large, and in this case the smoothing does
not help too much. The estimates of the ratio method
with smoothing (Fig. 7) show a strong systematic 1jn
dependence, which signals the presence of a strong confiu-
ent singularity. Due to this effect the uncertainty (+0.1)
is not smaller than that of the Pade method.

IV. DISCUSSION

In this paper different methods have been applied to
analyze power series of singular quantities generated by
MC simulation. There are two sources of disturbances
which make the analyses difBcult for these series: conAu-
ent singularities and fluctuations in the individual coef-
ficients. The most accurate methods developed for exact
series reduce optimally the effect of conQuent singulari-
ties, but —as we have observed on the example of differ-
ential approximants —one can only achieve a moderate
success with these methods for series with noise.

On the other hand, the noise, the second source
of problems, can be successfully reduced by different
smoothing transformations. We found the ratio method,

0.02

0.02

0.01-

0.01-

0.00
3.0

0.00
1.5

2.5—

2.0—

1.2
0.00

I

0.02
I

0.04

(b) .
0.06

'l.5
0.00

I

0.02
I

0.04 0.06

FIG. 6. Series A' with linear noise (n = 0.05).

FIG. 7. Estimate and standard deviation for 2v from a
MC simulation of 100 000 started self-avoiding random walks
on the square lattice by the ratio method, using various values
of smoothing.
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combined with optimal smoothing, to give the most ac-
curate estimates for series, where the effect of confluent
singularity is small. This method, however, loses its ef-

ficiency if the confluent singularity is strong, since the
smoothing transformation makes its effect even stronger.
For these cases the Pade method seems to be superior as
we have seen in the example of the self-avoiding random
walk. As a conclusion MC series have to be studied by
different methods, at the same time including smoothing
transformation as well, to clarify the roles played by the

confluent singularity and the noise. The most reliable es-
timates are generally obtained by the ratio method with
smoothing and —if the confluent singularity is strong —by
the Pade method.
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