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We show that in the trace formula of Gutzwiller [J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969);
11, 1791 (1970); 12, 343 (1971)] and Balian and Bloch [Ann. Phys. (N.Y.) 60, 401 (1970); 63, 592
(1971);69, 76 (1972); 85, 514 (1974)],applied to systems of two degrees of freedom, the Maslov index
arising in the contribution from each periodic orbit is equal to twice the number of times the stable
and unstable manifolds wind around the periodic orbit. As a consequence, we find that the Maslov
index of a periodic orbit is equal to the Maslov index defined by either its stable or its unstable man-
ifold. In this way it becomes apparent that the Maslov index occurring in the trace formula is an in-

trinsic property of the periodic orbit, being independent of the coordinates used to find it. In con-
trast to the case of torus quantization applied to integrable systems, where only even Maslov indices

appear, we find that odd Maslov indices can arise in the trace formula of chaotic systems. These
odd Maslov indices arise in the contributions of periodic orbits that are hyperbolic with reflection.

I. INTRODUCTION

In this paper, we will examine the geometrical proper-
ties of the Maslov index appearing in the trace formula of
Gutzwiller' and Balian and Bloch,

=1 T 1 m.

p(E) = cos —S—o.—

Here the density of states p(E) of a quantum-mechanical
system is expressed approximately as a sum over the
periodic orbits (PO's) of the corresponding classical sys-
tem. In this formula, M is the stability matrix of the or-
bit, T is the period of the primitive orbit, and o. is the
Maslov index of the orbit.

An examination of the derivation of Eq. (1.1) reveals
that o. is a sum of two contributions. The first is the
Maslov index of the energy-dependent Green's function,
which can be derived from a count of caustics along the
periodic orbit. The second contribution arises when one
takes the trace of the energy-dependent Green's function
to get the sum over periodic orbits; this contribution is
determined by the stability matrix M. While correct, the
determination of u from this relationship is somewhat
unsatisfactory because the method is not manifestly
phase-space invariant. Each of the contributions to o. de-
pends on the phase-space coordinates being used. On the
other hand, the other quantities appearing in Eq. (1.1)
[T,det(M I), and S] are ob—viously independent of the
canonical coordinates used to compute them; we should
expect the same to be true for o.. It is this problem that
motivates us to seek a coordinate-free geometrical inter-
pretation for o.

We will show that, for systems of two degrees of free-
dom, u is equal to t~ice the number of times the stable
and unstable manifolds wind around the periodic orbit
over a single traversal of it. We determine the number of

windings by following the stable and unstable manifolds
(which we will often refer to, collectively, as the invariant
manifolds) as they evolve in surfaces of section that are
constructed along the length of the orbit. With this inter-
pretation, our goal of finding an intrinsic determination
of o is achieved; the winding number is independent of
the coordinate system used.

In fact, we can go one step further and remove refer-
ence even to the surfaces of section. It turns out that
periodic orbits have associated to them, in a canonically
invariant way, a winding number. ' This follows from
the observation that the invariant manifolds of periodic
orbits are Lagrangian, so that periodic orbits may be re-
garded as closed curves on Lagrangian manifolds. Ac-
cording to a theorem of Arnol'd, the Maslov index of
such a curve is given by a winding number and, as such,
is a canonical and topological invariant. It is natural to
conjecture that, in any number of dimensions, the index
o in the trace formula is just this winding number.
With our calculations, we can prove this in the two-
dimensional case. In this way the Maslov index is placed
on the same footing as, say, the Maslov indices of invari-
ant tori, p, that appear in the torus quantization condi-
tion IJ=(nj+pf/4)fi We would lik. e to stress that, until
now, it has not been sho~n that the index occurring in
the trace formula is a Maslov index in the usual sense.

A central idea of this paper is that periodic orbits have
winding numbers, and that these are related to Maslov
indices. Since the completion of the work described in
this paper, considerably deeper insight into this relation-
ship has been obtained and is planned to be reported on
in the future.

This paper is organized as follows. In Sec. II, we re-
view some of the basics that are needed for the derivation
of the trace formula. We state the %KB approximation
for the energy-dependent Green's function and review
multidimensional WKB theory in preparation for finding
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the Maslov index of the Green's function. In Sec. III, we
examine the Maslov index of the energy-dependent
Green's functions within the context of multidimensional
WKB theory. We show how it can be determined from a
reduction of the dynamics to surfaces of section that are
constructed along the classical trajectories contributing
to the Green's function. In Sec. IV, we examine what
happens when one computes the trace of the energy-
dependent Green's function. Following the original
derivation of Gutzwiller, ' we find that extra contribu-
tions to the index arise over and above the Maslov index
of the energy-dependent Green's function. In Sec. V, we
interpret the contributions to 0 geometrically in the sur-
faces of section and find that o is twice the winding num-
ber of the invariant manifolds in the surfaces of section.
Finally, in Sec. VI, we explore some of the geometrical
aspects of o that make use of the full phase space and are
independent of the surfaces of section.

II. BACKGROUND MATERIAL

In this section, we review some of the elementary facts
that we will use later on. In Sec. II A we write the WKB
formula for the energy-dependent Green's function and
indicate how the trace formula is obtained from it. In
Sec. IIB we state the rules for determining Maslov in-
dices in multidimensional WKB theory.

A. Foundations for periodic orbit theory

p(E)= ——Im f dx 6(x,x, E) .
1

(2.1)

The energy-dependent Green's function is defined by

GI xEI—= (xx, x'1
(2.2)

The basic idea is to use the following semiclassical ap-
proximation for G(x, x', E) as a sum over classical paths:

1 1
G(x, x', E)= .

t& (2iriiri)

X y D(x x' E)e"'""'"""'-'~"
7

class

(2.3)

where the sum is taken over all the classical trajectories
R,&„, that go from x' to x at energy E. X is the number
of degrees of freedom, the phase S(x,x', E) is the action
of the trajectory,

S(x,x', E)=I p.dx,
X

(2.4)

The trace formula, Eq. (1.1), is based on the following
identity relating the density of states p(E) of some Hamil-
tonian H to the trace of its energy-dependent Green's
function G(x, x', E):

the amplitude D(x, x', E)
(N+1)X(%+1)determinant,

is the following

D(x, x', E)=

02S 0 S
axax axaE
()S BS

!
ax aE aEaE

1/2

(2.5)

and p is the Maslov index. Note that each of S, D, and p
depends on the path. In this paper, we will be particular-
ly interested in p.

The trace formula, Eq. (1.1}, is obtained by evaluating
the integral in Eq. (2.1) by the stationary phase approxi-
mation. In doing so, one finds contributions only from
particular paths, the periodic orbits, and the result is the
sum over periodic orbits in Eq. (1.1).

We will not discuss in detail the derivation of Eq. (2.3).
We just point out that the usual derivations begin with
the propagator, or time-dependent Green's function

IC( x, x, t), for which an approximation similar to Eq.
(2.3) can be derived from the path integral or from WKB
theory. This approximation for E(x,x', t) is a sum over
classical paths like the one in Eq. (2.3), except that the
sum is taken over trajectories of a given time rather than
energy. The energy-dependent Green's function is relat-
ed to the propagator by a Laplace transform in time,
which can be evaluated by the stationary phase approxi-
mation. Doing so yields the sum over trajectories of a
given energy that we see in Eq. (2.3).

When the classical dynamics is chaotic (as is the case
for the systems we want to consider}, the exponential sep-
aration of orbits makes the semiclassical approximations
break down after times of order !lniri!. In particular, the
WKB propagator K(x, x', t) is not valid for times
t &0(!infra! ). On the other hand, in deriving Eq. (2.3),
one needs to use the WKB propagator for arbitrarily long
times. One can overcome this problem by giving E a pos-
itive imaginary part i E. This has the effect of introducing
an exponential cutoff in time, e " ", in the Laplace
transform that relates G(x, x', E) to K(x, x', t), thus re-
moving the effect of long-time orbits.

Treating the classical dynamics for complex E is
fraught with difficulties, however, and is not something
we wish to deal with in this paper. In order to overcome
the difficulties with long-time orbits, we will take the
point of view that Eq. (2.3) should include only orbits
that take less than some cutoff time t, —0(!lniii! ). In ad-
dition to errors of higher order in irt therefore, Eq. (2.3)
will contain errors due to the neglect of the long-term dy-
namics. The effect on the trace formula is that p(E) is
only determined to within a finite resolution
hE -iii/t, —O(A'/!lnfi! ). More precisely, fluctuations in
p(E) on energy scales bE or larger will be faithfully
reproduced by the trace formula, but fluctuations on finer
energy scales will be averaged over.

With these problems in mind, we will proceed with the
main purpose of this paper, which is an examination of
the Maslov index. To find the Maslov index in Eq. (2.3)
by tracing through the derivation outlined above is rather
complicated. We must first find the Maslov index for the
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propagator. Having done this, we find the index occur-
ring in the energy-dependent Green's function by taking
into account extra phase contributions that arise in per-
forming the Laplace transform by the stationary phase
approximation. To write the Maslov index of the
energy-dependent Green's function in terms of the
Maslov index of the propagator like this is unnecessarily
complicated. While everything else in Eq. (2.3) is deter-
mined completely by the classical trajectories of a fixed

energy, this approach forces us to consider other trajec-
tories in order to find the Maslov index. This seems
somewhat unnatural. It would be much easier if we
could determine the Maslov index in the energy-
dependent Green's function directly, without reference to
the propagator.

We can do this if we realize that Eq. (2.3) is a special
case of general multidimensional WKB approximations
for wave functions. Within this theory, the Maslov index
is determined entirely by the structure of G(x, x', E) it-
self, so that we do not have to deal with the propagator.
The theory of multidimensional WKB approximations
was greatly advanced by Maslov (Maslov and
Fedoriuk ), and it is his approach that we follow in this
paper. In Sec. II B, we give a brief description of WKB
according to Maslov; more complete discussions can be
found in Maslov, Maslov and Fedoriuk, Delos or Per-
cival.

We would like to point out that a method has been de-
rived by Levit et al. ' and by Mohring, Levit, and Smi-
lansky, " in which the Maslov index is determined direct-
ly for the energy-dependent Green's function. They write
the energy-dependent Green's function as a Laplace
transform of the path integral. Evaluating the integrals
by the stationary phase approximation, they obtain Eq.
(2.3) with explicit rules for determining the Maslov index.
Such an approach is not suitable for our purposes, how-
ever, because it obscures the underlying geometry that we
wish to examine in this paper. We will therefore proceed
with Maslov's approach.

B. Some elements of multidimensional WKB theory

Within the WKB approximation, a wave function is
determined by a Lagrangian manifold L (giving the phase
of the wave function), along with a particle density p (giv-
ing the amplitude) and a choice of overall phase. The
reader who is not familiar with Lagrangian manifolds is
referred to Refs. 5, 7, and 8. Heuristically, we can think
of the wave function as being represented by a collection
of particles distributed over L with the density p. If we
want to look at the wave function in, say, the x represen-
tation, we use the following action function:

S(1)=J p.dx, (2.6)

where y is a path on L starting at some reference point lo
on L and ending at I on L. Because I. is Lagrangian, S(1)
does not change under continuous deformations of y.
This is why we can omit reference to y in S(1). To find
the wave function P(xo) at a given point xo in
configuration space, we add up contributions from all the
points l in L for which x=xo. These will generally be

discrete in number; so we label them with the discrete in-
dex b. The wave function is

y(x) —y ~

(x)~1/2 (i/fi)$(x) —i@~/2

b

(2.7)

@xk+1»xN )R=
()(Pi +) ~pe)

(2.8)

On passing through a caustic, the projection becomes
singular, and one or more eigenvalues of R passes
through 0. The Maslov index is incremented by 1 for
every eigenvalue of R that goes from negative to positive
and is decremented by 1 for every eigenvalue that goes
from positive to negative. This rule for the change in p
follows in a straightforward manner from performing the
change of representation explicitly, using a stationary
phase approximation. Usually we expect that every rep-
resentation, except the x representation, is good, and that
only one eigenvalue of R passes through 0.

As described above, this procedure for determining p,
which is the one most directly suggested by the change of
representation, is mostly algebraic. It can be thought of,
however, in a way that is much more suggestive of the

b=2

CBUSil.C

X

FIG. 1. The singular projection of a Lagrangian manifold
onto confIguration space as the two branches b =1 and b =2
coalesce at a caustic.

where p(x) is the particle density in configuration space,
and (M is the Maslov index. The density p(x) diverges at
configuration-space caustics, where L has a singular pro-
jection onto configuration space as two branches of L
coalesce (see Fig. 1). At these points, the WKB approxi-
mation breaks down in the x representation. It can be
shown, however, that there always exists a p or mixed x-p
representation in which the wave function is caustic-free.
In order that the wave function be smooth in these repre-
sentations, the Maslov index must differ between the two
branches of the configuration-space representation ac-
cording to the following prescription.

First, we find a good representation for the wave func-
tion at the x-space caustic. A representation
(x„.. . , x„,p„+„.. . , piv) is good if the Lagrangian
manifold has a nonsingular projection onto the
(x„.. . , xk, pk+ „.. . , piv) plane, or, equivalently, if
(x), . . . , x„,p„+,, . . . , p)v) are good coordinates for the
Lagrangian manifold. Then we construct the following
symmetric matrix R representing the linearized projec-
tion from L to configuration space:
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geometry, as arising from following the tangent plane to
L as it rotates around in phase space, on going from one
point on L to another. On passing through a caustic, the
plane momentarily intersects momentum space nontrivi-
ally, typically along a one-dimensional subspace (though
at exceptional points this dimensionality may be higher).
The change in signature of R then measures the "sense"
in which the plane passes through momentum space.

Let us illustrate this in the special case of a phase space
of one degree of freedom. In this case, any one-
dimensional curve is a Lagrangian manifold, and any
one-dimensional subspace (i.e., line) is a Lagrangian
plane. R is just a number, tax /t)p; so let us denote it by r
instead. It is easy to see that r is positive for any line just
slightly clockwise of the momentum axis and negative for
a line just slightly counterclockwise of it. Therefore the
Maslov index is incremented by one every time the
tangent plane passes through the momentum axis in the
clockwise sense and decremented by one every time it
passes through in the counterclockwise sense. The total
change in the Maslov index over a whole curve is just the
clockwise intersection number of the tangent plane with
the momentum axis, i.e., the number of clockwise cross-
ings minus the number of counterclockwise crossings.

It turns out that this particularly simple picture of the
Maslov index in one degree of freedom is all we need for
the periodic orbit sum of a two-degree-of-freedom sys-
tem, if we use a reduction of the dynamics to surfaces of
section. In Sec. III, we outline how this is done for the
Maslov index of the Green's function.

III. ENERGY-DEPENDENT GREEN'S FUNCTION
AND ITS MASLOV INDEX

We will consider G(x, x', E ) as a wave function in x,
parametrized by x' and E. With this point of view, we
can construct G(x, x', E), just as in Sec. II, frotn a La-
grangian manifold L and a particle density that we need
not ~orry about for the Maslov index. L is made up of
all the trajectories originating from x' at energy E. We
start with the (N —1)-dimensional initial surface

[ x=x', H =E
) and let it flow under H for positive time.

In this process, L is swept out (see Fig. 2). One can show
that this manifold is Lagrangian, and that its action coin-
cides with the action of the paths in Eq. (2.3); so it does
indeed give the phase of G(x, x', E). Our aim is to follow
the tangent plane to L between x' and x to find p.

Let us focus on the contribution of a particular path to
G(x, x', E). It is convenient to use the following
configuration-space coordinates centered on the trajecto-
ry, as originally introduced by Gutzwiller. The coordi-
nates are (y, z) (which we will still denote collectively by
x), with the N —1 coordinates y transverse to the path in
such a way that y=0 specifies the path, and with z a
coordinate along the path. Expressed in these coordi-
nates, the amplitude D(x, x', E) takes on a particularly
simple form,

=X

FIG. 2. Shown here for the case of two degrees of freedom,
the Lagrangian manifold L is swept out by the initial surface

)
x=x'} in the three-dimensional energy shell [H=E ].

as originally shown by Gutzwiller. ' It was assumed by
Gutzwiller in his original derivation of the trace formula
that the coordinates (y, z) were orthogonal. It turns out,
however, that this assumption is not necessary; the
derivation follows through, with minor modifications, for
any set of coordinates constructed from the trajectory in
this way, irrespective of whether they are orthogonal.
This is a reflection of the fact that the only relevant struc-
ture on phase space should be its symplectic structure;
any metric properties of configuration space should not
affect the final results. It also turns out that for Eq. (3.1)
to hold, it is not even necessary for (y, z) to be tied to the
orbit; they can be arbitrary coordinates on configuration
space. ' However, for our purposes it will suffice to apply
this formula to path-centered coordinates.

Caustics are signaled by a divergence of the amplitude
in Eq. (3.1), of which there are two types. The first
occurs when z =0 (which implies that x=0). In this case,
the trajectory stops and forms a cusp in configuration
space as it moves from one branch of L to another [Fig.
3(b)]. (A special case, which often occurs in practice, is
when the trajectory retraces its path in configuration
space. We will also refer to this occurrence as being a
cusp. ) This type of caustic is the only possibility in one
degree of freedom, where a trajectory is obliged to retrace
its path. Cusps should not be expected to appear in
higher dimensional systems for generic Hamiltonians.
However, periodic orbits of kinetic-plus-potential Hamil-
tonians do exhibit cusps (in which the trajectory retraces
its path), because of time reversal symmetry, and there-
fore orbits with cusps are quite common in applications.

The second type of caustic occurs when ~t) S/t)yt)y'~
diverges. In more than one degree of freedom, this is the
most common case and corresponds to the trajectory
moving between branches of L in configuration space
without stopping.

%'e wi11 dea1 only with the second case. If the first case
arises and the trajectory forms a cusp in configuration
space at the caustic, we can treat it as if there were no
cusp by doing the analysis in the momentum representa-
tion. While the intermediate results will be different, the
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final conclusions about the Maslov index in the trace for-
mula will be independent of representation. The reason
we want to avoid cusps is that when they occur the coor-
dinates (y, z ) constructed above are ill defined, as are the
surfaces of section and their mappings that we will con-
sider presently.

Let us refer to the set of points in configuration space
that correspond to caustics of L as the "caustic surface. "
Apart from exceptional singular points, the caustic sur-
face is a simple (N —1)-dimensional surface. The caustic
crossings that we are considering are such that the trajec-
tory approaches the caustic surface, touches it tangential-
ly, and moves away again. This means that the z direc-
tion is tangent to the caustic surface at the crossing. It is
shown in Appendix A that this implies that a good repre-
sentation for the Green's function at the caustic can al-

ways be found by choosing z and some combination of
the y's and p 's: i.e., that we never have to change repre-
sentation in the z component. It is this fact that allows us
to determine the Maslov index by working entirely with
the dynamics in surfaces of section that we construct as
follows.

At each point zo along the trajectory, we denote by
X(zo) the surface of section formed by the set [z=zo,
H=E). We use (y, p ) as canonical coordinates on

X(zo). Between any two surfaces of section, X(z') and
X(z), say, we can construct a symplectic surface-of-

B
M= (3.2)

so that we have explicitly for initial and final variations
(5y', 5p» ) and (5y, 5p„), respectively,

6y= 36y'+Bop',

6py =C5y'+ D6p'

(3.3a)

(3.3b)

The surfaces of section and their mappings are useful
because the Jacobian matrices R of Eq. (2.8) that are used
to determine the Maslov index are all taken at constant z
for the representations that we are considering, and so
are derivatives along the surfaces of section. As a conse-
quence, they can be written in terms of M and its ele-
ments. Suppose, for example, that a good representation
is (z, p» ), as it will be in most cases. Then p, is determined
by the change in signature of the matrix,

section mapping F(z,z') (see Fig. 4). By letting z vary
continuously, F(z,z') can be regarded as a Hamiltonian
flow in "time" z, with one slight complication being that
the space in which the flow takes place, X(z), is changing
continually as one moves forward in z. The linearization
of F(z,z') about the reference trajectory, M(z, z'), is a
(2N —2) X(2N —2) symplectic matrix, which we write in
block form as

Phase Space
(3.4)

(a)

n Space

where the second equality follows easily from Eq. (3.3).
The case of more general representations, such as
(z,y&, . . . , yk, p», . . . , p» ), can be dealt with by

manipulating submatrices of BD '. Caustic crossings
occur precisely when B becomes singular. This is evident
from Eq. (3.4) in the case of typical crossings, but is actu-
ally true, in general, even when (z, p ) is not a good repre-
sentation. Physically, if g is a null eigenvector of 8, then
an initial pencil of rays, emerging from x' with (5y', 5p» )

Phase Space
F(z,z')

n Space

(b)

FIG. 3. Illustrated in the case of two degrees of freedom are
(a) a typical caustic crossing and (b) a degenerate caustic cross-
ing in which the trajectory comes to rest and forms a cusp in
configuration space.

Z(z')

FIG. 4. The mapping F(z,z') carries the surface of section
X(z') into the surface of section X(z) using the flow in a neigh-
borhood of the orbit.
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proportional to the vector (0,(), refocuses at the caustic,
where (5y, fip } is proportional to (8$,Dg)=(O, Dg).

One should note that the initial point of any trajectory
lies right on top of a highly degenerate caustic for which
M =I, and therefore R =BD '=0. Because the trajec-
tory starts on this caustic and does not actually pass
through it, one needs to give it special consideration.
The contribution to p that one assigns to this initial caus-
tic is determined as follows: p receives a decrement of 1

for every negative eigenvalue of R(0+), where R(0+)
denotes the R matrix constructed for infinitesimally short
times along the orbit. For example, if all the eigenvalues
of R are initially positive (as discussed in Appendix 8,
this is always the case for kinetic-plus-potential systems),
then p=0 initially. It is helpful to note that p is deter-
rnined from this initial caustic as if all of the eigenvalues
of R were initially infinitesimally positive and the trajec-
tory went cleanly through the caustic.

One can see that the initial value of p is determined in
this way by considering the propagator for short times.
In a momentum representation, the %KB approximation
for the propagator is not ambiguous at t =0 and, in fact,
can be written E(p, x', t =0)=(2+k) exp( ip —x')
In transforming to a position representation for short but
nonzero times, one finds that the initial value of the
Maslov index of the propagator is determined by its La-
grangian manifold, according to rules similar to those
outlined above for the energy-dependent Green's func-
tion. If the energy-dependent Green's function is then
computed from the propagator by means of a Laplace
transform in time, the stated procedure for finding the in-
itial Maslov index of the energy-dependent Green's func-
tion is recovered.

Therefore we have the following algorithm for deter-
mining the Maslov index of the energy-dependent
Green's function. First, we construct, all along the tra-
jectory from x' to x, the surfaces of section X(z}. From
them we find the surface-of-section mappings and their
linearizations M. Next, we find those places along the
trajectory at which the component 8 of M is singular;
these are the caustics. Finally, at each caustic, we add a
contribution to p according to the signature change of
the symmetric matrix BD '. In particular, one decre-
ments p by one for every negative eigenvalue of BD
computed for short times.

We can view this procedure in a way that is directly
connected with the discussion of Sec. II B, concerning the
determination of Maslov indices from the evolution of
Lagrangian planes. Here, however, rather than finding
the Maslov index from the evolution of N-dimensional
Lagrangian subspaces of the 2N-dimensional phase space,
we find the index from the evolution of (N —1)-
dimensional Lagrangian subspaces of the (2N —2}-
dimensional surfaces of section. The (N —1)-dimensional
subspaces we speak of are the tangent planes of the inter-
section of I. with the surfaces of section, at the trajectory
(see Fig. 5). The intersection of L with the surface of sec-
tion X(z'), at the start of the trajectory, coincides with
the (N —1)-dimensional momentum space of X(z'),
which we denote by P(z'). The intersection with the sur-
face of section X(z.), at some later point of the trajectory,

is obtained by letting P(z') flow forward under F(z,z'),
which gives us F(z,z')P(z'). Linearizing about the tra-
jectory, we find that I. intersects X(z) along the (N —1)-
dimensional plane M(z, z')P(z'), which we denote by
A, (z). [M is defined by Eq. (3.3).] At caustics, where 8 is
singular, we find that A, (z) intersects P(z) nontrivially,
along (B(,Dg)=(O, Dg), where g is the null eigenvector
of B. As A,(z) passes through P(z}, p is incremented ac-
cording to the sense in which it passes through, as deter-
mined by the change in signature of BD . Evidently,
we determine p from the evolution of A,(z) in X(z) in ex-

actly the same way that we would determine the index of
an (N —1)-dimensional wave function propagating in

time, by following the tangent plane to its Lagrangian
manifold in the phase space of (N —1) degrees of free-
dom.

By passing to the surface-of-section dynamics, we have
essentially achieved a reduction in the number of degrees
of freedom, at least as far as the Maslov index is con-
cerned. This is a useful picture for determining the
geometrical properties of o, and it is the point of view we
will adopt in the forthcoming sections. However, in ap-
plications, for example, if one warited to analyze numeri-
cally the trace formula for a kinetic-plus-potential sys-
tem, it might be better to use a method that does not de-
pend on the construction of the (y, z) coordinates and the
surfaces of section X(z). We outline how this can be done
in Appendix B.

Finally, we note that the prefactor ~B S/ByBy'~'~ can
be written very simply in terms of the surface-of-section
mappings. Using the generating-function conditions on
S(x,x', E) we can write B'S/ByBy'= —Bp' /By, which is

equal to —B ', and therefore write the Green's function
as

1 1
G(x, x', E)=

«(2miiri)

exp[( i /vari)S( x, x', E ) —ipm /2]
~zz deta~'"

This completes the discussion on the Green's function.
The next step for the trace formula is to actually take the
trace. This introduces extra contributions to the Maslov
index that we describe in Sec. IV.

IV. THE DETERMINATION OF o'

Now let us proceed with evaluating the trace,

TrG= fdx6(x, x,E}, (4.1)

where G(x, x,E) is written as a sum over trajectories
x~x, i.e., trajectories that close in x space. We follow
here the original derivation of Gutzwi11er. Doing the in-

In this section, we discuss the index of the trace formu-

la as it arises in performing the trace in Eq. (1.1}. In Sec.
IVA, we show how o. arises in taking the trace, and in

Sec. IV B we examine the question of whether a is con-

stant along an orbit.

A. Taking the trace
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tegral by the stationary phase approximation yields con-
tributions from the periodic orbits, i.e., those trajectories
that close in the full phase space. In the neighborhood of
each periodic orbit, we find that the integral over x splits
up into an integral in z along the orbit and one in y trans-
verse to the orbit.

The integral in y is a complex Gaussian:

i 8 S(x,x, E)Iz= dyexp ' '
y

Byway
(4.2)

where y is the transpose of y. The matrix
W =8 S(x, x,E ) /Byway can be written as

8 S(x,x', E) 8 S(x,x', E)
By'By'

Byway'

8 S(x,x', E) 8 S(x,x', E)
ay ay

+
ayay X=X

(4.3)

which, using the generating-function conditions on
S(x,x', E), can be reduced to

W=B ' A —B ' —8 '+DB (4.4)

where these matrices are derived from the surface-of-
section mapping taken once fully around the periodic or-
bit. (We would like to emphasize that this is not quite the
same as before. Until now we have considered mappings
between diff'erent points on the orbit. ) The transverse in-
tegral is then

cT —p+v . (4.5)

We are now left with just the longitudinal z integral, and
the sum, after some manipulation, reduces to

~det8'~'

where the index v is the number of negative eigenvalues
of W. This combines with p, the Maslov index of the
Green's function, to give the index, 0, of the trace formu-
la; i.e.,

( I )
p; det(M I)—

detB
(4.7)

Since det(M I) is an inv—ariant of the orbit and, in par-
ticular, never changes sign, we see that an eigenvalue of
W changes sign at precisely those points at which B
(computed for a full iteration of the orbit) is singular and
does so by going through infinity. But it is at these points
that p changes also. If B is singular, a caustic lies right
on top of the initial (final) point of the orbit. If we shift
this point a little, then the caustic will move relative to it.

function K(x,x, t ). It is important to realize that this is
not true. A count of caustics yields p, which depends for
its definition on having a preferred set of coordinates in
phase space, namely, those connected with the x repre-
sentation in which we compute the Green's function. It
should not determine completely something that should
be a phase-space invariant like the index of the trace for-
mula.

In fact, p is not even a property of the orbit, since it
can depend on the starting point of the orbit. We illus-
trate this with a specific example from the stadium bil-
liard. ' ' In Fig. 6, we show an orbit which, depending
on the starting point, can have either one or two caustics.
The p that we calculate with each of these starting points
will be different; it will be greater by one for the starting
point with two caustics. A more detailed analysis of the
same orbit would reveal that v is also different for these
two starting points.

Therefore we see that neither p nor v is an intrinsic
property of the orbit alone; each depends on where we
start the orbit. How is it then that their sum O. =p+v
depends only on the orbit? Obviously, it must be that
they both change at the same places on the orbit and
change there by equal and opposite amounts.

The index v changes at those points at which an eigen-
value of W changes sign, either by going through 0 or by
going through infinity. We note the following identity
that is used in deriving the trace formula:

I
y

exp[(ilk')S i era.l2]—
~det(M I) '—(4.6)

where dt is the time increment dz Iz (we assume that z is
defined in such a direction that z )0), and f denotes an
integral around a single iteration of the primitive orbit.

It is customary at this stage of the calculation to note
that the integrand is constant and to replace f with T,
the period of the primitive orbit. However, we would like
to raise the objection that it is not completely obvious
that o. is constant around the orbit, though this seems
very natural and ultimately turns out to be true. We will
examine this question in Sec. IV B.

B. Is the index constant?
LnZ

In previous discussions of the trace formula, it has
often been implicitly assumed that the index o. can be ob-
tained by counting caustics of the energy-dependent
Green's function, or even the time-dependent Green's

FIG. 5. The Lagrangian manifold L intersects a surface of
section along the tangent plane A, at the periodic orbit.
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According to whether the orbit closes before or after the
trajectory crosses the caustic, a di6'erent number of caus-
tics crossings and therefore a difFerent Maslov index p
will be assigned to the orbit. A convenient terminology is
to call points at which a caustic lies on top of the initial
(final) point self-conjugate points. This terminology has
been used by Bogomolny' and Heller.

Therefore, since both p and v change at the same
points, it is possible that they change in such a way that
cr is constant. It is easy to demonstrate this explicitly, at
least in two degrees of freedom, but we will not do it here
since it will become completely transparent once an inter-
pretation for o. as a winding number of the stable and un-
stable manifolds has been developed. For now, we note
that 0 is indeed constant and write the trace formula as

Tro= .=1 T (1 /fi)S —i o m /2

«po, I det(M —I) I

'" (4.8)

Here, the period T refers to the primitive orbit, whereas S
and M refer to the full orbit. In Sec. V, we will pursue
the geometrical aspects of 0..

V. GEOMETRICAL INTERPRETATION FOR 0

Let us now restrict ourselves to the special case of un-
stable orbits in systems of two degrees of freedom. For
these systems, the dimensions of the objects we are con-
sidering are low enough that we can easily visualize them.
We show in this section, using geometrical arguments,
that the index 0. for these systems is twice the clockwise
rotation number of the stable and unstable manifolds
around the periodic orbit in the surfaces of section X(z).

A. cr is a winding number

First, we observe that for systems of two degrees of
freedom the surfaces of section are two dimensional, em-
bedded in the three-dimensional energy shell K=E. The
linearized surface of section mapping M, between any
two surfaces of section, is a 2X2 matrix; so let us denote
it by

a b

c

The lagrangian manifold L, associated with the energy-
dependent Green's function, is also a two-dimensional
surface in the energy shell and intersects each surface of
section X(z) along a one-dimensional curve. In the nota-
tion of Sec. III, this curve is tangent to the line A.(z) at
the orbit (see Fig. 5). We obtain A, (z) by mapping the
momentum axis of X(z') forward with M(z, z'). There-
fore it is the line spanned by the vector (b, d)

Because the surfaces of section X(z) are two-
dimensional and the lines A.(z) are one-dimensional, it is
easy to find p. We just follow A, =span(b, d) as it rotates
around in the surfaces of section. Then p is the clockwise
intersection number of A, with the momentum axis, just as
described for a system of one degree of freedom in Sec.
II B. That is, we increment p by one for every clockwise
intersection of A, or (b, d) with the momentum axis and

FIG. 6. In (a) a starting point on the diamond periodic orbit
of the stadium billiard is chosen for which there is just one caus-

tic. A slightly dift'erent starting point of the same orbit in (b)

gives two caustics.

a +d —2 TrM —2 ~+ 1/w —2N=
b b b

(5.2)

decrement it by one for every counterclockwise intersec-
tion.

Having rotated around in the surfaces of section X(z),
the line A, finally ends up in a direction that is determined
by the surface-of-section matrix M of a full iteration of
the periodic orbit. Because the orbit is unstable, M will
have a hyperbolic structure that places a priori restric-
tions on the final direction of A, (Fig. 7). More precisely,
M has two real eigenvectors, e„and e„corresponding to
real eigenvalues r and 1/r, respectively, where ~r~ ) l.
The vectors e„and e, are tangent to the unstable and
stable manifolds at the orbit. These directions divide the
surface of section into four quadrants, which we label 0,
I, J, and E, starting clockwise from H, containing the
upper momentum axis (see Fig. 8). It is not difficult to
see that, in accordance as M is hyperbolic (r) 0) or hy-
perbolic with reflection (~&0), the vector (b, d) ends up
in either the same quadrant as it started in, H, or the op-
posite one, J, respectively. Similarly, the line k, which
starts out running through the pair of opposing quad-
rants K and J, must end up in the same pair of quad-
rants.

The index v depends very simply on where A, finally
ends up within the quadrants H and J. First, we recall
that v=0 if w =(a +d —2)/b is positive, and v= 1 if w is

negative. Next, we note that
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initial final

FIG. 7. The final position of the line k is determined by the
hyperbolic structure of the surface-of-section mapping near the
periodic orbit.

e, (z) =M(z, z')e, (z') defined in this way are just the stable
and unstable directions of the intermediate surface of sec-
tion X(z). While e„(z) and e, (z) are defined independent-

ly of any coordinate systems that we might choose, the
vectors e„*(z) and e, (z) depend, for their definition, on
having the preferred coordinate systems y-p in the sur-
faces of section X(z). Such noninvariant quantities can
be significant, however, in determining p and v, because

p and v are in turn coordinate-dependent quantities.
As we follow A, around the orbit, we can define p for in-

termediate points before the orbit closes. It is the net
number of clockwise intersections of I, with the momen-
turn axis up to that point. We cannot, strictly speaking,
do the same for v (and therefore tT) as it is defined only in
terms of the surface of section matrix for the completed

Since ~x+1/~~ )2, we conclude that r+1/r 2ha—s the
same sign as v+1/~ and therefore r This m. eans that the
numerator of m is positive if M is hyperbolic, and nega-
tive if M is hyperbolic with reAection. The denominator
b is positive or negative in accordance as the vector ends
up to the right or the left of the momentum axis, respec-
tively. Let us further divide the quadrants H and J into
the sectors H, H+, J, and J+ as shown in Fig. 8.
The negative (

—
) subscripts indicate the sectors that are

counterclockwise of the momentum axis, and the positive
(+) subscripts indicate the sectors that are clockwise of
it. Then, we find that w is positive if the vector (b, d)
ends up clockwise of the momentum axis, in either of the
sectors H+ or J+ (r and b have the same sign), and is
negative if (b, d) ends up counterclockwise of it, in either
of the sectors H or J (~ and b have opposite signs).
Equivalently, v=0 if A, ends up running through the sec-
tors H+ and J+, and v= 1 if A, ends up running through
the sectors H and J

Having found the geometrical meanings of p and v, we
next examine their sum e. With an appropriate generali-
zation of the sectors H, I, J, and K to surfaces of section
at intermediate points along the orbit, we will show that,
whereas p is the net number of times that k passes
through the momentum axis, 0. is the net number of
times that A, passes through either of the sectors I and E.

The sectors H, I, etc. , are defined by the eigenvectors
e, and e„of the surface-of-section mapping for a specific
surface of section X(z'). We can extend them from this
initial surface of section to intermediate surfaces of sec-
tion by extending the vectors e, and e„. We do this by
constructing the vectors e,*(z) and e, (z) in X(z), which
are given the same coordinates relative to the y and p
axes in X(z) as e„and e, have in X(z'). That is, moving
around the periodic orbit, e,*(z) and e„*(z) (and therefore
the sectors H, I, etc.) are held rigid with respect to the y
and p~ axes. We would like to stress that this is neither
the most obvious nor the most natural extension of e, and
e„. The only intrinsically meaningful way to extend e,
and e„ is to map them forward with the surface-of-section
mappings. The vectors e„(z)=M(z, z')e„(z') and

Invariant subspaces

v=1

Invariant subspaces

FIG. 8. The division of the surface of section into the sectors
H, I, J, and K by the stable and unstable manifolds is illustrated
in (a). The dependence of v on the final position of A, within the
sectors H and J is shown in (b).
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orbit. However, with the aforementioned definition of
the sectors H, I, etc. , for points on the periodic orbit oth-
er than the initial point, we can artificially define v for
these intermediate points, according to the positioning of
A, relative to H, I, etc. We define v to be 0 if A, is clock-
wise of the momentum axis, in the sectors H+ and J+,
and 1 if A, is counterclockwis- of it, in the sectors H and
J . We will not bother to define v for k in the other two
quadrants, I and K, because A, will not be in them at the
end of the trajectory.

With this extension of v to intermediate points, cT

varies very simply as A, evolves in the surfaces of section.
It is clear that, as A, sweeps through quadrants H and J, cr

remains unchanged, with the change in v exactly com-
pensating for the change in p whenever X passes through
the momentum axis. On the other hand, o. changes by
one every time k passes completely through the quad-
rants I and K. In fact, taken over the whole orbit, o. is
the clockwise intersection number of A, with the quad-
rants I and K.

We can state this even more simply in terms of the
stable and unstable rnanifolds. First, let us stress the fol-
lowing rather obvious fact: If A, does not coincide with
any of the invariant manifolds at the initial point, it can-
not coincide with them at any other point along the orbit.
This is because M, being symplectic, can never be singu-
lar and so cannot map two distinct directions into one.
This implies that k sweeps the invariant manifolds along
with it as it rotates around in the surfaces of section.
Therefore the invariant manifolds have the same intersec-
tion number with the sectors I and K that A, has. This in-
tersection number is especially significant for the invari-
ant manifolds because they have the property that they
return to themselves on going once fully around the orbit.
Because they return to themselves, they rotate around in
the surfaces of section some half-integer number of times,
a half-rotation being equal to a rotation of 180'. We can
count the number of clockwise rotations using the inter-
sections with the quadrants I and K: Between every
clockwise half-rotation, there is a single clockwise inter-
section with I and K. Therefore the net number of clock-
wise half-rotations is equal to the net clockwise intersec-
tion number with I and K. This implies that cr is precise-
ly twice the number of times the invariant manifolds ro-
tate around the periodic orbit in the clockwise direction.
This is the principal result of this paper.

We wish to point out that, since the space in which the
winding number is defined is changing throughout the
loop, there is no a priori fixed frame relative to which the
winding number is measured. Instead, the winding nurn-
ber is obtained from the rotation relative to the set of
y-p~ axes in successive surfaces of section. (We showed
above that it was measured relative to the quadrants H, I,
etc. , but by definition these are half fixed relative to the
y-p frame. ) This is characteristic of all Maslov indices;
they need, for their definition, a global coordinate system
to exist on phase space, which in this case corresponds to
the (y, z,p,p, ) coordinates around the orbit.

We can generalize the definition of the winding number
to be independent of the (y,p ) as follows. We measure
the winding number relative to any continuous and

periodic set of vectors e (z) in the surfaces of section X(z)
which has the property that the Lagrangian planes
spanned by e (z) and the Aow vector of the Hamiltonian
have a zero Maslov index on going once around the
periodic orbit. The justification for this comes in a later
section, when we show that by lifting the calculation
from the surfaces of section to the full phase space, 0. is
actually given by the rotation of the two-dimensional in-
variant manifolds relative to the p-I frame. In doing this,
we remove all reference to the choice of y and z as
configuration-space coordinates. In fact, cT is computed
from the invariant manifolds in exactly the same way
that we compute, for example, the Maslov index of in-
variant tori in torus quantization. In this sense, cr is truly
a Maslov index.

B. Remarks

With this interpretation of 0. as a winding number of
the invariant manifolds, a number of facts become obvi-
ous that are not at all clear if we simply regard cr as being
the sum of p and v.

First, it is now obvious that cr does not depend on the
starting point on the orbit, since the number of times the
invariant manifolds wind around is the same no matter
where we start. We were therefore justified in replacing

f dt by Tin Eq. (4.6).
Next, we observe that if the orbit is iterated more than

once, 0. scales directly with the number of iterations; that
is, if cTp is the index of a primitive orbit, cr increments by
o.

p for every successive iteration of it. This is a trivial
consequence of the fact that 0. is a winding number; the
invariant rnanifolds make c7p half-rotations during each
iteration of the primitive orbit, independent of the history
of the orbit. This property of cT is not obvious from
0 =p+ v because neither p nor v scales with the number
of iterations. The contributions p and v do not increment
by the same amount in each iteration because each of
them depends on the history of the orbit. For example, p
is determined by the refocusing of a pencil of trajectories
emerging from the initial point x' of the first iteration of
the primitive orbit. These trajectories will refocus at
different places along, say, the second iteration of the

primitive orbit than those in the first, because the trajec-
tories starting the second iteration will already have been
dispersed on passing through the primitive orbit the first
time. In particular, there is no reason why there should
even be the same number of caustics in each iteration.
For example, in the orbit of Fig. 5(a), there is just one
caustic in the first iteration, whereas two caustics will
occur in a second iteration of the same orbit. Just as p
does not scale with the number of iterations, so it is that
v does not scale with the number of iterations either.
This is obvious because v can only be 0 or 1 and cannot
therefore increase indefinitely. Since neither p nor v
scales with the number of iterations, it is not easy to see
directly that their sum o. =p+v does; this becomes ap-
parent only after we realize that o. is a winding number.
In fact, to our knowledge, there has not been a proof of
this fact until now, though in previous discussions of the
trace formula it has been taken for granted that this is the
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case.
Finally, we note that cr is odd if and only if the orbit is

hyperbolic with reflection. c7 is odd precisely when the
invariant manifolds make some half-integer number of
rotations. In this case, a vector, e say, along an invariant
manifold ends up, on being propagated once around the
orbit, pointing in the opposite direction to the one in
which it started. Clearly, this is the case if and only if the
orbit is hyperbolic with reflection. The fact that cr can be
odd for orbits that are hyperbolic with reflection is a
direct consequence of the nonorientability of the invari-
ant manifolds of such orbits. These invariant manifolds
are like two-dimensional strips that have an odd number
of twists put in them and which are then glued at the
ends; so topologically, they are like Mobius strips. It can
be shown' that Maslov indices defined for closed curves
on a Lagrangian manifold can be odd only if the La-
grangian manifold is nonorientable. In Sec. VI, we show
how cr is a Maslov index defined in the usual way by the
invariant manifolds.

VI. EXTENSIONS AND FURTHER OBSERVATIONS

In this section, we will explore some of the
ramifications of the results derived in Sec. V. In Sec.
VIA, we examine how o. may be interpreted in the full
phase space, and, in Sec. VI B, we show that o may be re-
garded as the winding number of the periodic orbit.

A. o as a Maslov index in the full phase space

In Sec. III, we showed how the Maslov index of the
energy-dependent Green's function p could be found by
following the Lagrangian manifold L in the surfaces of
section. In this section, we go in the opposite direction;
that is, we lift o. from the surfaces of section to show that
it is the Maslov index of the invariant manifolds, defined
in the full phase space. For notational convenience, we
will often refer only to the unstable manifold in what fol-
lows; everything we say about the unstable manifold will
hold equally well for the stable manifold.

As we have noted already, the unstable manifold is a
two-dimensional Lagrangian manifold that intersects
each surface of section X(z) along a one-dimensional
curve that is tangent to the vector e„(z) at the periodic
orbit. Its Maslov index along any closed curve, such as
the periodic orbit that defines it, is determined by the ro-
tation of the two-dimensional tangent plane in the four-
dimensional phase space relative to the momentum plane.
The Maslov index receives a contribution every time the
tangent plane passes through momentum space, just as
described in Sec. II. We could determine the Maslov in-
dex along the periodic orbit, just as we determined the
Maslov index of the energy-dependent Green's function
in Sec. III, by dealing with the caustics in the (z,p ) rep-
resentation. This would lead to the prescription of fol-
lowing the unstable manifold in the surfaces of section:
The Maslov index is the number of clockwise intersec-
tions of the tangent vector to the unstable manifold,
e„(z), with the p axis of X(z) minus the number of coun-
terclockwise intersections. This is exactly the prescrip-
tion we found in the preceding section for determining o .

Therefore cr is the Maslov index of the unstable (and
stable} manifold taken around the periodic orbit.

One might well ask why it is useful to know that o. is a
Maslov index in the full phase space. This interpretation
is certainly more complicated computationally than the
surface-of-section picture, since we need to deal with a
phase space of two degrees of freedom rather than the
one degree of freedom of the surfaces of section. One
reason it is useful is that, when we regard o. as a Maslov
index of the invariant manifolds, it is not tied up with any
particular set of coordinates, such as the (y, z,p~,p, ) coor-
dinates, or any unnecessary phase-space structures, such
as the surfaces of section X(z), which we would need oth-
erwise. For example, caustics that occur at
configuration-space cusps are difficult to deal with in the
surface-of-section picture, because the coordinates
(y, z,p~,p, ) break down there, but are easily dealt with in

the full phase-space picture, since we are free to choose
any configuration-space coordinates (x„x2) along with
their momenta (p„p2 }, in examining the caustic. Anoth-
er reason is that the Maslov index is very well understood
and an extensive theory exists for it that we can apply to
o. For example, it was possible in Sec. VB to observe
that odd cr can exist for orbits that are hyperbolic with
reflection only because their invariant manifolds are
nonorientable.

One can also see that, for Hamiltonians of the kinetic-
plus-potential form, it is possible to determine o from a
simple count of the caustics of the invariant manifolds.
(More generally, it can be shown ' '" that the Maslov in-

dex defined by any Lagrangian manifold which evolves
under the flow of a kinetic-plus-potential Harniltonian in-
creases along trajectories. ) The caustics of the invariant
manifolds correspond precisely to the self-conjugate
points; every self-conjugate point is on a caustic of either
the stable or the unstable manifold, and vice versa. The
number of self-conjugate points is therefore equal to the
number of caustics of the stable manifold plus the num-
ber of caustics of the unstable manifold. Therefore o,
which is equal to the number of caustics of either of the
invariant manifolds, is equal to half the number of self-
conjugate points. Similar observations have been made
previously by Bogomolny. '

Finally, the fact that o corresponds to the winding
number of the invariant rnanifolds in the full phase space
admits an immediate generalization to higher dimensions.
This generalization, which follows from the application
of a theorem of Arnol'd, is discussed in the next section.

B. Connection with Arnol'd's theory

The main result of Sec. V, namely that in two dimen-
sions the Maslov index in the trace formula is equal to
the winding number of the invariant manifolds, admits a
generalization to higher dimensions. This follows from
the observation, implicit in the preceding analysis, that
an unstable periodic orbit has associated to it, in a canon-
ically invariant way, a winding number. ' The argument
is as follows. It is straightforward to show that the in-

variant manifolds of unstable orbits are Lagrangian, just
as the Kolmogorov-Arnol'd-Moser (KAM) tori which
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surround stable orbits are Lagrangian. Therefore, an un-

stable periodic orbit may be regarded as a closed curve on
a Lagrangian manifold.

Arnol'd has shown that the Maslov index of a closed
curve on a Lagrangian manifold is an intrinsic property
of the curve and is a topogical invariant. The argument
is based on associating to the original curve, y(t), a new
curve A.(t) in the abstract space of Lagrangian planes,
which we denote by A. It turns out that A has a non-
trivial topology and, in particular, has the fundamental
group of a circle. This means that one can choose in A a
fundamental closed curve A(t) that cannot be contracted
to a point, so that any closed curve, such as k(t), can be
continuously deformed into some number n of iterations
of X(t). Arnol'd has shown that n, the winding number
of A, , is precisely the Maslov index of y(t) (provided that
the sense of A(t) i.s correctly chosen). This is because the
set of Lagrangian planes that have nontrivial intersection
with momentum space, C say (these correspond to caus-
tics), partition A in such a way that the intersection num-
ber of a closed curve with C (this is the Maslov index) is

equal to the winding number of the curve.
It is easy to see how this works in one degree of free-

dom. Here, phase space is a two-dimensional plane, and
the Lagrangian planes are precisely the one-dimensional
subspaces. We can parametrize a Lagrangian plane A, by
the angle P it makes with the x axis. P ranges from 0 to
~, and the angles 0 and m are identified, since they both
correspond to the plane along the x axis. Thus A can be
mapped onto the unit circle according to A, ~2$. (On the
unit circle, the angle P increases counterclockwise ac-
cording to the usual convention. ) For the fundamental
closed curve k(t), we take a single clockwise winding of
the unit circle. The Maslov index of a curve A,(t) is then
given by the net number of times it passes through
P=n/2 in the clockwise direction. For closed curves,
this is just equal to the number of clockwise windings.
We have already seen that this is so in the case of the
Maslov of the invariant manifolds when we follow them
in the one degree of freedom surfaces of section.

The most familiar application of Arnol'd's theorem is
in the torus [or Einstein-Brillouin-Keller (EBK)] quanti-
zation conditions, where the Maslov indices are the wind-
ing numbers of the tangent planes along the angle con-
tours on invariant tori. Since unstable periodic orbits
may also be regarded as closed curves on Lagrangian
manifolds, they also have, according to Arnol'd's
theorem, a winding number. This winding number is a
canonical invariant and is additive with the number of
iterations of the orbit. It is natural to conjecture that, in
more than two dimensions, the index of the trace formula
is still given by this winding number.

VII. CONCLUSIONS

In this paper, we have demonstrated that, in two de-
grees of freedom, the Maslov index appearing in the trace
formula has a phase-space invariant meaning as the
Maslov index of the stable and unstable manifolds or, al-
ternatively, as a winding number of the stable and unsta-
ble manifolds in surfaces of section (or even the full phase

space, using Arnol'd's construction). In doing so, we

have placed the Maslov index on an equal footing with
the other classical quantities appearing in the trace for-
mula. These are the action of the orbit S, the period of
the primitive orbit T, and the quantity det(M I)—which
is derived from the surface-of-section mapping M; all of
which are invariant under canonical changes of coordi-
nates in phase space.

That the invariance of the Maslov index is not obvious
from the usual derivations of the trace formula is an un-

satisfactory feature of these derivations. One would hope
that it should be possible to derive the trace formula in
such a way that its canonical invariance is obvious from
the start. Such a derivation would hopefully be simpler
and more transparent than the one discussed in this pa-
per, which is the only one that has been presented to
date. One of us' has, in fact, found a formulation in
which trace formulas are found in a phase-space invari-
ant way. It is hoped that this approach might lead to a
more transparent demonstration of the facts presented in
this paper.

While our arguments apply to two dimensions, it
should be true in any number of dimensions that the
Maslov index in the trace formula is an intrinsic property
of the periodic orbits. We have conjectured that this in-

dex is the winding number of the invariant manifolds.
This remains to be proved. Since the completion of this
work, one of us (J.M.R.) has suceeded in showing that the
trace formula index is indeed the winding number of the
invariant manifolds in arbitrary dimensions. This will be
reported on in the future.
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APPENDIX A

In this appendix, we show that configuration-space
coordinates that run along the caustic surface at a caustic
crossing can always be chosen to be part of a good repre-
sentation at the caustic. In particular, this means that,
for the coordinates (y, z) defined in Sec. III, a good repre-
sentation can always be found in which z rather than p, is
used. Because there is little added difficulty in doing so,
we deal in this Appendix with the more general case of
configuration-space coordinates (x &, . . . , X~. ), for which

(x, , . . . , xi, ) are parallel to the caustic surface. In this
case, we want to show that a good representation can al-
ways be found in the form (x &, . . . , xk, xi, + &

or
p&+, , . . . , xz or p~). The proof of this is based on the
following proposition.

Proposition. At a caustic, with configuration-space
coordinates (x, , . . . , xz ) as described above, the tangent
plane to the Lagrangian manifold that defines the caustic,
intersects momentum space P along some subspace of the

pk + i pÃ plane'
Proof. Let us denote the tangent plane by A. and the
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basis vectors defined by the phase-space coordinate sys-
tem (x„.. . , x,v,p, , . . . ,p~) by x„.. . ,P&. Then each
of the basis vectors x„.. . , xk is contained in the projec-
tion of A, onto configuration space; that is, we can write

x, =l, +g, (Al)

for each i k, where 1, is in I, and g, is in P. Now let

go=+, a,P, be an arbitrary vector in Ao=A, (lP U.sing
the fact that

(A2)

A, (lo =(A, (lcr)nP

=(A, AP)Ao

o&c

=0.
It follows that A, is transverse to cr, so that
x&, . . . , x~ ~, pz ~+». . . , pz is a good representa-
tion.

where [,] denotes the symplectic form, we find that, for
i ~k,

~, = [x; ko]

(A3)

The product [I;,go] is zero because I, and go are both in
the Lagrangian plane A, , and [g, , go]=0 because g, and go
are both in the Lagrangian plane P. Therefore we can
conclude that go is in the p&+„. . . , p~ plane, as re-
quired.

Because ko is contained in the p&+». . . ,p~ plane, it
follows from an argument of Arnol'd's ' that
(x, , . . . , xk ) can be chosen as part of a good representa-
tion. We present the argument here for the sake of com-
pleteness.

Let us suppose that ko=kAP is m dimensional. Be-
cause it is m dimensional, it follows that Ao is transverse
in P to at least one (N —m)-dimensional coordinate plane
~, which is spanned by N —m of the p axes. Because ko is
contained in the plane spanned by the pk+». . . ,pz axes,
we can further conclude that ~ may be chosen so as to
contain the p], . . . , p& axes. Without loss of generality,
we can assume that ~ is the plane spanned by the
p &, . . . , p&,pI, +». . . , p~ axes. We wish to show that
a good representation is xi xx- pN — +1 ' ' ' pN'
(Note that this representation includes x„.. . , xk. ) We
do this by showing that k is transverse to the plane cr

spanned by the p&, . . . , p& ~,xz ~+». . . , xz axes,
i.e., that A. Acr =0. The following facts are straightfor-
ward consequences of the definitions.

ko+ ~=P,
[A, , A.o]=0,
[o,r]=0,

(A4a)

(A4b)

(A4c)

where A,o+~ denotes the direct sum of A,o and ~. A4a
holds because ~ is transverse to A, o in P, by definition, A4b
follows because A,o is contained in A, , which is Lagrangian,
and finally A4c holds because ~ is contained in o, which
is also Lagrangian. All three of these together imply that

0= [iE (l o,ko+ ~]= [A, (l a, P ] . (A5)

Therefore k A a is contained in the skew-orthogonal com-
plement of P. However, because P is Lagrangian, its
skew-orthogonal complement is just P itself. We can
therefore write

APPENDIX B

In this appendix, we describe two practical methods
for determining 0 that have been useful in numerical
computations. The first method is useful for kinetic-
plus-potential systems, because it works even when the
periodic orbits have cusps. The second method applies
specifically to billiard systems and makes use of the fact
that, for such systems, the surface-of-section mappings
are easily computed analytically from the geometry of the
periodic orbits. In each of these methods, o. is deter-
mined from the formula cr =p+v rather than from the
interpretation of 0. as the Maslov index of the invariant
manifolds.

Let us begin with a discussion of the determination of
cr for kinetic-plus-potential systems. As discussed in Sec.
III, the surfaces of section and their mappings will often
be ill defined on the periodic orbits of these systems. For
a systematic treatment of the Maslov index in these sys-
tems, it is therefore desirable to use a method which does
not rely on the construction of the surfaces of section.
To this end we will describe how to determine the Maslov
index of an invariant Lagrangian manifold by propaga-
ting a frame of N vectors, tangent to the manifold, along
a trajectory. This procedure can be applied to the La-
grangian manifold L of the energy-dependent Green's
function, to determine p in cr =p+v. By using this con-
struction, p is determined without reference to the sur-
faces of section. The remaining contribution, v, is easily
found from a reduction of the dynamics to a single sur-
face of section, constructed at the initial (final) point of
the periodic orbit. Because it relies on the construction
of just a single surface of section, this method should not
be expected to fail for a kinetic-plus-potential system.

The first step in determining p is to find N vectors that
are tangent to the Lagrangian manifold at a reference
point. For the energy-dependent Green's function, the
reference point is at the initial point, x, of the contribut-
ing trajectory. The N vectors we choose are the flow vec-
tor of the Hamiltonian XH, which is tangent to I. because
L is invariant, and an additional N —1 vectors,
(e„.. . , e~, ), which span the initial surface
[H=E,x=x'I. Assuming that x&%0, we choose the
vectors e, to be such that their only nonzero components
are Ap;=1 and Ap~= —x&/xz. The component Ap~ is
chosen so that an infinitesimal displacement along e, con-
serves energy. These N vectors span the tangent plane to
I, at the initial point of the trajectory. We find a basis for
the tangent plane to L at subsequent points on the trajec-
tory by propagating (e„.. . , e~, ,XH ) along it with the
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linearized dynamics. We denote the frame of vectors ob-
tained in this way by (e, (t), . . . , ez, (t),XH(t)}. This
frame of vectors completely determines p.

Let us arrange the N vectors in the frame
(e, (t), . . . , ez, (t),XH(t)} so that they are the columns
of a 2NXN matrix T. Separating the x and p com-
ponents, we can regard T as being made up of the N XN
matrices Uand V; that is, we write

U
T

Q1 Q~ 1
I

V1
'

VN —1 P
(Bl)

where u, and v, are, respectively, the configuration-space
and momentum-space components of e, , and XH =(x,p).
The symmetric matrix R of Eq. (2.8), whose changes in
signature determine the Maslov index, is obtained from T
according to

coincides with the surface of section z=const. , with its
coordinates y. We can therefore determine v from the
surface-of-section matrix M, constructed from the surface
of section x~ =0 using the coordinates (x&, . . . ,xz, ); it
is the number of negative eigenvalues of the symmetric
matrix 8' =B ' A +DB ' —B 'B ', where A, etc. ,
are the block entries of M, as defined by Eq. (3.2).

Suppose now that one wanted to determine cJ numeri-
cally for some list of periodic orbits. Then, according to
the calculations above, we have the following algorithm.
First, one finds each periodic orbit in some surface of sec-
tion of the form x~=0. Having done this, one propa-
gates the X vectors (e„.. . , e~ &, XH) along the orbit,
beginning at the surface of section. The initial values for
the vectors (e„.. . , e v, ) are along the momentum axes
of the surface of section. They are propagated using the
linearized equations of motion,

R =UV (B2) e, =JH"e, , (B4)

In writing this equation for R, we have used the p repre-
sentation, which is a good representation provided V is
invertible. We can see that Eq. (B2) holds by noting that
an alternative basis for the Lagrangian plane is obtained
by selecting the column vectors of the matrix T' = TV
[The columns of T' are linear combinations of the vectors
(e, (t), . . . , e~, (t),XH(t)).] Noting that

UV-]
(B3)

we can just read off the relationship R =Ox jap= UV
The caustics occur when U is singular. A null eigen-

vector of U specifies the components, in the basis
(e, (t}, . . . , e~, (t),XH{t)), of a vector in the intersection
of the Lagrangian plane with momentum space. For gen-
eral Hamiltonians, we must follow the eigenvalues of the
matrix R in order to determine the contribution to the
Maslov index from caustics. There is a significant
simplification, however, in the case where the Hamiltoni-
an is of the kinetic-plus-potential type, because for such
systems it can be shown" '" that the Maslov index al-
ways increments at caustic crossings. The Maslov index
over the whole trajectory can therefore be obtained sim-
ply by counting the number of places at which the condi-
tion detU =0 is satisfied. Finding and counting the zeros
of det U is much easier than following the eigenvalues of
R.

Having found p for a periodic orbit, we next determine
v. The first step in determining v is to locate the periodic
orbit on some surface of section, which is formed by set-
ting a configuration-space coordinate to a constant value.
Very often the periodic orbits are found in the first place
by means of a search in such a surface of section; so this
may be done already. Without loss of generality, we can
suppose that the surface of section is specified by x~ =0.
The surface of section must be chosen so that the period-
ic orbit crosses it transversely in configuration space;
thereby we are at liberty to choose the y coordinates of
Sec. III so that they coincide locally with the coordinates
(x&, . . . , xz, ) at the surface of section. The surface of
section x~=0, with its coordinates (x, , . . . , x~, ), then

z(t) =det[( U —i V)( U+ i V) '], (B5)

which in turn is equal to the winding number of the curve

z'( t) = [det{ U —i V) ] (B6)

Though this second curve is not closed, it does return to
its initial direction in the complex plane and therefore

where H" is the matrix of second derivatives of H, evalu-
ated on the orbit, and J is the unit symplectic matrix. It
is not necessary to integrate any differential equations ex-
plicitly for XH since it is determined everywhere by
Hamilton's equations. From the configuration-space
components of e;(t) and XH(t), one then constructs the
matrices U ( t) along the orbit. The Maslov index p is
equal to the number of zeros of the function detU(t).
The next step is to find the surface-of-section matrix M.
To do this one propagates an additional N —1 vectors
around the orbit, whose initial values are along the x axes
of the surface of section; together with e„ these vectors
completely determine M. The index v is then the number
of negative eigenvalues of the matrix W, computed from
M. Finally, one computes o =p+v.

By a slight modification of the procedure described
above, according to which we determined the Maslov in-
dex p of the energy-dependent Green's function, we can
determine cJ directly as the Maslov index of the invariant
manifolds. The only difference is that we choose the vec-
tors e„ in the initial surface of section, to be, say, the un-

stable eigenvectors of M, rather than choosing them to be
along the momentum axes of the surface of section. With
this choice for the initial vectors, the frame
(e, , . . . , e~-, ,XH ) spans the tangent plane of the unsta-
ble manifold along the orbit. For general Hamiltonians,
o is determined by the changes in signature of the matrix
R = UV ', constructed from this frame. For Hamiltoni-
ans that are of the kinetic-plus-potential form, o. is sim-

ply the number of zeros of det U taken over one iteration
of the orbit.

Alternatively, it can be shown ' that o. is the winding
number of the following closed curve in the complex
plane:
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Mtrans
1

0 1

1 L/p
0 1

(87)

where t =L /p is the time taken to go from one surface of
section to the other with velocity p. The mapping that
takes a surface of section that lies just before a reflection
to one that lies just after it is

M
2p /p cosO —1

(B8)

where p is the radius of curvature of the boundary at the
point of reflection, and 0 is the angle of incidence of the
trajectory there. The mapping between two arbitrary
surfaces of section can now be built up from a sequence
of translational segments, interspersed with reflections

has a well-defined winding number. If one were to apply
the full phase-space method to o. for a general Hamiltoni-
an, it would be advantageous to use Eq. (86), which re-
quires us to keep track of a single complex number z'(t),
rather than the analysis based on R, which requires us to
keep track of X eigenvalues. For kinetic-plus-potential
systems, however, there is no practical advantage to be
gained in using Eq. (86).

The disadvantage of following the invariant manifolds
as outlined above is that we need to follow the periodic
orbit twice in order to determine o.. A preliminary itera-
tion is needed to find the surface-of-section matrix M,
and, once this is done and the eigenvectors of M have
been obtained, we need to iterate the orbit a second time
in order to propagate the vectors e, . On the other hand,
using the method described above in which p and v are
determined separately, the vectors e, are found as part of
the procedure for determining M, and just one iteration
of the periodic orbit is needed. However, if computing
time is not a problem or if M is known already, the
method of following the invariant manifolds may be
easier to implement; it is certainly more pleasing aestheti-
cally.

The methods discussed in this paper, employing sur-
faces of section constructed along the length of the
periodic orbits, are well suited to billiard systems. This is
because, given the lengths of the straight-line segments
and the angles of incidence at reflections, one can com-
pute analytically the surface-of-section mappings for a
given orbit.

In a billiard system, the trajectories in configuration
space consist of straight-line segments connecting
reflections from the boundary. In a two-dimensional bil-
liard, the straight-line segments can be used as the basis
for a rectangular coordinate system in the following way.
We let y be the perpendicular distance from the trajecto-
ry and z be the distance along it; these coordinates define
surfaces of section X(z) specified by the condition
z =const. We construct the linearized surface-of-section
mappings M between these surfaces of section as follows.
The mapping between two surfaces of section on the
same straight-line segment, separated by a distance L, is
the following free-particle shear in the (y, p» ) coordinates,

from the boundary as follows:

MtransMrefl MreflMtrans (89)

In this way, we can analytically construct the surface-of-
section mappings from a knowledge of the basic
geometry of the orbit.

Let us now consider the Maslov index p of the energy-
dependent Green's function. Unlike the case of smooth
systems, the Maslov index in billiards is not determined
solely by caustics; p must be incremented by 2 at every
reflection from the boundary. These contributions from
the boundary are such that the Green's function satisfies
the boundary condition that it vanish there. The incre-
ment of p by two gives the corresponding two branches
of the Green's function a phase difference of m at the
boundary, so that they cancel there, making the Green's
function vanish. In addition to the contributions from
reflections, one also has contributions from regular inter-
nal caustics. These are determined by the vanishing of
the b component of the surface-of-section matrix M, as
described in Sec. III. Because b varies linearly with dis-
tance along the straight line segments, there can be at
most one caustic between every reflection. One therefore
needs only to check whether b has changed sign on going
from one reflection to the next. An added simplification
is that, because the dynamics is like that of a free particle
in the interior of the billiard, the Maslov index always in-
crements at caustics; therefore p is obtained from a sim-

ple count of the zeros of b.
It is sometimes useful to think of the problem of

finding caustics in terms of geometrical optics. The
reflections from the boundary are like reflections from
spherical mirrors that have an effective focal length of
—,'pcos0. The caustics are then the images formed when

an object is placed at the initial point of the orbit; the
caustics are a result of the focusing that occurs after tra-
jectories reflect from the boundary. In this picture„ for
example, it is obvious that a boundary that is made up
entirely of dispersing, concave inward, components will

not give rise to internal caustics. For such systems, p is

just twice the number of reflections. A system whose
boundary has focusing components, such as the stadi-

um, ' ' will have internal caustics, however, and these
need to be taken into account for a full evaluation of the
Maslov index.

Finally, the index v is computed from the surface-of-
section matrix taken from a full iteration of the periodic
orbit as described in Sec. IV. The trace-formula index is
then 0.=@+v.

Just as for the previous case of kinetic-plus-potential
Hamiltonians, one can apply similar methods to obtain
the index o. from the evolution of the invariant mani-
folds. If an eigenvector of M is propagated around the
orbit, the index o. is equal to the number of times the
eigenvector passes through the p axis plus twice the
number of reflections from the boundary. Once again,
however, this method has the disadvantage that it neces-
sitates following the dynamics around the periodic orbit
twice: once to find M and a second time to propagate the
invariant manifolds.
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