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Effects of parametric perturbations on the onset of chaos
in the Josephson-junction model: Theory and analog experiments
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We propose an analog apparatus simulating a standard Josephson junction, which allows easy ex-

perimental manipulations and measurements. We center our attention on the onset of chaotic
responses, in particular on its dependence on the different physical parameters, and we obtain quite

good agreement with other existing data. Great attention is also paid to compare the results with

the theoretical threshold of chaos we deduce from Melnikov's method: The agreement is globally as

good as possible, taking into account the approximations and the validity of the method; in particu-
lar, we obtain a description of the behavior of the threshold for small frequencies, and of the impor-
tant role played by the dc bias term. We also discuss, both theoretically and experimentally, the
case of a Josephson junction to which a periodic modulating term has been added.

I. INTRODUCTION

Considerable effort, both experimental and theoretical,
has been devoted to the analysis of the Josephson junc-
tion (JJ), especially for what concerns the determination
of the onset of chaotic responses (see Refs. 1 —10, and
references therein). This analysis, in fact, is far from
easy, not only for the intrinsic difficulties connected to
nonlinear phenomena, but also for the relatively large
number of the physical parameters involved, which even
makes the comparison difficult between different sets of
results available in the literature.

For these reasons it may be useful to resort to an ana-
log simulation by means of a suitable device, prepared in
such a way to produce responses obeying the same equa-
tion as that describing the JJ. The advantage of this de-
vice is the possibility of performing with relative simplici-
ty a large number of observations and measurements, and
of directly investigating the dependence of the threshold
of chaos on the various physical parameters.

The results obtained in this way will be compared not
only with other available data, but also with the theoreti-
cal results deduced according to the Melnikov method
for the determination of the threshold of chaos" ' (see
Sec. III). In Sec. II we briefly comment on the validity of
this method, discussing why we found it very convenient
and instructive to choose Melnikov results as a compar-
ison test for our experimental results.

Taking advantage of the great adaptability and possi-
bilities offered by the analog equipment, we will also in-
vestigate the case of a "modulated" JJ, in which a modu-
lating time-periodic term in the effective potential is in-
troduced (Sec. IV).

II. THK EXPERIMENTAL DEVICE
AND THEORETICAL APPROACH

Analog simulations of JJ have been obtained by several
authors in the past. ' ' In particular, the simulation
carried out by D'Humieres et al. shows a wide panora-
ma for different values of the control parameters of the
system, and it was performed with a phase-locked loop.
In our simulations we use the same technique, but with
the introduction of some improvements by means of the
"minimum components technique, " recently developed in
our laboratory. Figure 1 shows the scheme of the elec-
tronic circuit that we will use (the interested reader can
find some detail in the Appendix).

The dynamics of the JJ system is examined, as suggest-
ed in Ref. 3, by directly observing the phase-space por-
traits (sing, P) on the oscilloscope screen [P being the
junction phase, as usual; see Eq. (3) and the Appendix];
then, Poincare sections are obtained by means of a modu-
lation of a z-axis oscilloscope synchronized to the driving
signal.

The threshold of chaos is defined by the value of the ac
driving voltage that produces the appearance of a strange
attractor in the Poincare sections; after that, all dynami-
cal transients have disappeared. Due to unavoidable hys-
teresis effects, one could obtain different thresholds for
increasing and decreasing values of the parameters: In
our measurements, we always take only the data for in-
creasing driving voltage.

The errors in the determination of the threshold of
chaos are produced essentially by three effects: (i) the
internal and external electronic fluctuations of the device,
which have been reduced using a minimum number of
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where 5=@, ', P, being the McCumber parameter, and

y is the amplitude of the ac driving term with normalized
frequency co. We can assume that 6, y, cu & 0.

Being a perturbative approach, Melnikov's method is
clearly expected to be valid at the limit e=O, i.e., in the
region of nearly vanishing non-Hamiltonian terms. Fol-
lowing an argument in Ref. 9, we can expect that the
sufficient conditions ensuring the validity of the method
would be the following:
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FIG. 1. Scheme of the electronic analog circuit model for the
"standard" JJ and the "modulated" JJ.

electronic components and assembling them in only one
block, according to our simulation techniques; (ii)
thermal drifts of the electronic components (this causes,
principally, a drift of the constant dc term which can be
easily compensated); (iii) the presence of thin structures
close to the boundaries of the ordered and chaotic re-
gions, which makes difficult the precise determination of
the threshold (cf. Refs. 2, 3, and 7).

The error bars shown in the experimental measure-
ments are evaluated by a rough standard deviation of the
data obtained for each choice of parameters; it can be
noted, in fact, that because of the competition of both
stochastic and deterministic noise, the statistics are not
expected to be strictly Gaussian.

This threshold will be compared with the theoretical
value obtained by means of the classical Melnikov
method. " " Let us now state Melnikov's results in a
convenient form for our purposes. We write the equation
describing the problem in the following rather general
form [with P =P( t), —m. & P & vr]:

P = —sing+ pa+ eF ( P, P, t ),
where pp is the dc component, and F includes all non-
Hamiltonian contributions ("damping, " ac forcing terms,
and possibly other perturbations). The condition for the
appearance of the typical "Smale-horseshoe" chaos'
is given by the vanishing of the Melnikov function M(to);
i.e.,

We will respect these prescriptions in part, but in part we
will operate at the extreme-limit case (e.g. , we will set, for
operational convenience, 5=0.25). On the other hand, a
tentative extension of the procedure beyond the range of
strictly small values of the perturbing parameters might
provide some instructive information (see, e.g. , Refs. 13
and 14 for a discussion and some related remarks. Notice
also that the Melnikov method actually deals with the oc-
currence of transverse homoclinic points, which are to be
considered as "precursors of chaos;" one can say, in gen-
eral, that the actual threshold becomes visible a little bit
over the Melnikov indications).

Many other ways (or "scenarios"), different from or
even in competition with the Melnikov approach, have
been proposed as routes leading to chaos; however, in
this paper we will refer exclusively to Melnikov's results
for two essential reasons: (i) From the experimental point
of view, we detect chaos starting from a regular phase-
space trajectory, near the separatrix (cf. Ref. 3); by in-
creasing the driving voltage we produce the perturbation
which breaks the homoclinic loop, as prescribed by
Melnikov's technique. (ii) From the theoretical point of
view, the Melnikov method is one of the (few) analytical
methods suitable for describing very difFerent situations
and (at least, in principle) several intervals of variations
of the physical parameters: This makes it a very useful
"reference guide" for testing experimental results.

In view of the above remarks, it is clear that we cannot
hope that the agreement of theoretical and experimental
results will be excellent; rather, we will consider it a good
result if the experimental curves exhibit a global qualita-
tive behavior roughly "similar" to the theoretical curves,
and we expect discrepancies to increase as the perturba-
tions increase in importance.

III. "STANDARD" JJ: EXPERIMENTAL
AND THEORETICAL RESULTS

M(t, )= J dt's, (t)F(p,(t), p„(t),t+t, )=O,

where

po(t )o

(2)

(2')

We devote this section to the case of the "standard" JJ,
which is described by Eq. (3). First of all, let us recall
that in the case of no dc bias, i.e., pp:0 there are two
homoclinic orbits [Eq. (2')] given explicitly by (see, e.g. ,
Ref. 14)

is the homoclinic orbit for the problem (1), evaluated at
the Hamiltonian limit @=0.

In the case of the "standard" JJ, which will be con-
sidered in Sec. III, Eq. (1) becomes, in dimensionless vari-
ables as usual,

$o(t)=+(4arctan e' 7r), $o(t)=+2—sech t,
and that, in this case, the above condition (2) for the ap-
pearance of chaotic responses becomes, as is well
known' [independently of the + sign in (5)],
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—~ —cosh —=R o(co ),4 cote

6 ~ 2
(6)

where we have introduced for convenience the "Melni~ov
ratio" A0=c=R ( ). This condition, however, does not
completely agree wiith the available experimental resu ts

Fi . 2 curves (a) and (b), which represent
the rough envelope of the chaotic region, taken from Ref.
3 and Refs. 2 and 10, respectively], especially for relative-
ly sinall n~; in particular, Eq. (6) does not show any
minimum poin or et f th threshold, in contrast with experi-
ments. The low-frequency behavior of the threshold has
been the object of another previous analysis: it as een
shown through digital simulations that there is a narrow

f h which is accurately described y
Melnikov's result, while the higher onset typica y o-
served in simu ad 1 tions is seen as an effect associate with a
saddle-node bifurcation, unrelated to the Melnikov pic-

here, based on Melnikov's idea, may be the unavoidab e
&0. It has beenpresence of some very small dc term p0

s ow, ' in fact, that this term drastically changes precise-
ly the low-frequency behavior of the threshold for chaos:
In Fig. , t e o er

' . 2, h th three curves give the theoretical
holdvalues we o tain rombt

'
from condition (2) for the thres o

with different values of p0 as indicated. It can be a re-
markable fact that there is qualitative agreement of these
t core icah t' 1 results with previous experiments and, in par-

imum of theticular, the correct position of the minimum o e
threshold line R =R(cu, po) at co=0.6 (changing po oes
not sensibly change this position).

Note also that when pa%0, Melnikov's integral (2) can-
not be evaluated analytically, but precise numerical ca-

sion o e of the homoclinic orbit for this case. oreover, in
particu ar, i can1 't an be proved by means of genera argu-
ments based on Melnikov's condition (2) that i po
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and if the critical points are hyper o ic,ic the threshold
function R behaves near a~=0 as I/co (obviously, in the

(0= (5) one also has to take into ac-extreme range =co
count the con ition y&, wo & 1 which guarantees at the static
1' it the ermanence of critical homoclinic points .imi e pe

All of the above discussion shows the intereinterest and the
relevance of the dc term p0 in the JJ. We now present in

Fi . 3 the experimental results we obtained by means o
the analog device described in Sec. . p' g

ig. e ex
~ ~

d we lot as a function of co the threshold values for
the appearance of chaos of the amp itu e y in

FIG. 3. Threshold values of the amplitude y for the appear-
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FIG. 2. Threshold for chaos in a JJ. Chaos appears if
/6 ~ R. Curves (a) and (b) are rough boundary lines separatingy . ur

chaotic from regular regions taken from
10, respective y. oin s1 . Points {c) and {d ) are taken from Ref. 4 with

=0.05, and Ref. 8 with po=0. 1, respectively. The ot er inespo=o. , an e
show the theoretical values we obtained fromfrom the Melnikov con-
dition for three different values of the dc bias po as indicated.

FIG. 4. Threshold values of the amplitude y for the appear-
ed=0. 75.
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V(po, g) = cosP —m.posin — ( n&(t & ~)—,
. (8)

the Melnikov integral can then be explicitly evaluated to
get the following condition for chaos

cases: pp=0, small crosses, and pp=0. 1, closed circles
(experimental errors are not shown here, for simplicity;
see, however, Figs. 4 and 5). In Fig. 3, curve (a) is the
same as curve (a) in Fig. 2 and is drawn here for refer-
ence, in order to show the very good agreement of our
data with other experimental results. These data are also
compared with the values (open circles along the curve
(x) in the same Fig. 3) that we numerically deduced from
the Melnikov condition, with po=0. 1. Finally, curve (z}
is the plot of the function Ro(co)5, with Ro given by Eq.
(6). The above analysis is confirmed by this set of results.

In addition, let us mention the very critical behavior of
the threshold for pp=0, as discussed elsewhere. ' This
depends on the fact that the linear term —

poP in the po-
tential corresponding to Eq. (1),

V(po P)= —cosP —
po

not only breaks the reflection symmetry of the pendulum-
like potential V(0,$), but also drastically changes the
global behavior of the homoclinic orbits: For example, if
pp=0 these orbits are odd functions of time, whereas
they become euen functions if poAO; thus we can say that
the global properties of the potential V(0, $) are "unsta-
ble" against the perturbation —poP.

In order to complete our analysis, we also studied the
dependence on pp of the threshold: Figure 4 shows the
results obtained by means of the analog apparatus, and
the small circles are the theoretical values deduced from
the Melnikov condition, with fixed co=0.75, and 5=0.25.
The agreement is even better than the agreement in Figs.
2 and 3.

As remarked above, analytical calculations are not pos-
sible in the Melnikov integral (2) if p&%0; it may be in-

teresting to observe, however, that by substituting the JJ
potential (7) with the following one [very similar to (7)],

v ~no(~ ~4)
y ~4—cosh

2v
I
sin(~X/v) I

(9)

where

Pov= 1 —~—
4

' 1/2

(10)

Pp
A, = ln( 1+v) ——' inn.

2 4
(10')

y ~5Ro(ru) 1+ =5R+ (ru, po ),

where Ro(co) is given in (6), and the "double" sign of +
depends on the sign in (5). It can be remarked that this
"doubling" of the threshold would indicate that the ap-
pearance of chaos may be favored or not, depending on
the relative signs of po and (()o, but clearly, when averaged
on several cycles, the mean effect will be that of choosing
the lower curve as the actual threshold. In Figs. 3 and 4,
the curve (z ) is precisely this threshold. Froin these
figures, we can see that the method described here pro-
vides a fairly good approximation when pp=0. 05 —0. 1

and co +0.5.

(which confirms, in particular, the expected very critical
limit pc=0). The curves denoted by (x) in Figs. 3 and 4
are just the right-hand side of Eq. (9), plotted, respective-
ly, as a function of co, with pp=0. 1, and of pp, with
to=0. 75. The perfect agreement of these curves with the
numerical results (open circles} obtained for the JJ poten-
tial (7) shows that the above modified potential (8) really
provides a very good description of the JJ potential, with
the advantage of allowing analytic calculations.

To conclude this section, let us briefly comment on an
approximate method, ' ' ' which has been used for deal-
ing with the dc term pp, and on its validity. This method
amounts to moving the term pp from the Hamiltonian
into the perturbative part eF of the equation (1): As a
consequence, its effect in the Melnikov integral (2) simply
amounts to a perturbation of the homoclinic orbit in the
form (5). According to this approach, the Melnikov con-
dition (2) explicitly ' ' ' becomes

0.8-

0.6—

IU. "MODULATED%% JJ
Let us now introduce in the JJ a modulating term with

(small) amplitude g and frequency 0, according to the
following equation:

0.4- (()= —[1+icos(At+0}]sin(t+po —5$+y cosset . (12}

0.2—

0.2 0.4 0.6

Again, the Melnikov method can be applied: In particu-
lar, if po=O, the integral (2) can be evaluated to give the
following condition:

FIG. 5. Experimental {via analog simulation) and theoretical
thresholds for chaos, in the presence of modulation vs the
modulating amplitude g. Curves (z) and (z ) are deduced from
formula {14),with pa=0 and pa=0. 05, respectively, and 8=0.
The other parameters are 5=0.25 and co=0.75.

M (to ) = —85+2m.y sech coscoto
2

+2m(0 csch sin(Ate+8)=0.Qm
(13)

A rough result that can be immediately deduced from
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(13) js that a sufficient condition —independent of the

ambiguity in the + sign and of the phase difference 0—
for the chaos does not appear (we can assume here that

g& 0) is

y sech +(0 csch (
Again, the + sign in (13) originates from the double

sign in the homoclinic orbit $0 (5); it is easy to verify that
changing this sign is the same as changing the sign of g,
or that of 8. We can say that the presence of the modula-
tion introduces an asymmetry between the orbit with

Po&0 and that with Po(0, but we can expect that the
mean effect will be that of lowering the actual threshold
of chaos.

In order to get a more detailed and easy analysis of the
situation, let us choose co =0 from now on. In Fig. 5, the
experimental results we obtained for the threshold values
of y, having fixed pa=0 and 8=0, are given as a function
of the modulation amplitude g in the same Fig. 5, curve
(z) is the theoretical threshold deduced from (13}. The
explicit expression of this curve can be directly obtained
from (14) below putting pa=8=0. Once again, we obtain
a very rough qualitative agreement; on the other hand,
the presence of a further perturbation term would pro-
duce a condition of the following type [more stringent
than in (4)] for the validity of the approach:

I y I+ I g I
« I /~,

and this clearly makes its accuracy even more problemat-
1c.

We see that the global effect of the modulation is that
of lowering the threshold, i.e., of favoring chaos. In-
terestingly, this result may be compared with the situa-
tion considered in Ref. 24, where it is shown both numer-
ically and theoretically that a resonant modulation in a
DuSng-Holmes oscillator produces, on the contrary, a
suppression of chaos. The opposite effects of the modula-
tion in these two cases actually depends on the different
form of the potential functions and the homoclinic orbits
involved, which produce different types of contributions
in the Melnikov function. It can be noted that if pa%0,
the JJ potential (7) becomes somewhat "similar" to the
Duffing-Holmes potential, and that the more the po is

large, the more this similarity looks true. Actually, nei-
ther po nor g can be chosen to be too large in our case
(preserving the existence of critical points in the potential
gets the condition lpol+ I(I+ Iyl (1); so we can expect
that including modulation in the presence of po&0 should
produce small changes in the threshold of chaos. Numer-
ical calculations based again on the Melnikov technique
show, in fact, that for po =0.4, co =0.75, and $=0.4, one
should expect an increase (very small, in fact) of the
threshold value y of the order Ay=0. 06. If po is small,
this effect is completely negligible; then, let us finally
write down, for completeness, the theoretical expression
for the threshold of chaos we would obtain by treating
this term poWO according to the approximate method
sketched at the end of Sec. III (in the hypothesis
/co (I45/m —pol):

y & 5RO(co) csch sin8
7T/CO COAT

2

2
'1Tpo1—
4

2 1/2 '

7T)CO COACT

csch cos8 (14}

where Ro(co) is the usual expression (6). In Fig. 5, curve
(z ) shows this threshold for 8=0 and pa=0. 05.

In conclusion, we can say that the analog device
presented in this paper reveals to be a useful tool. The
agreement with other existing data is very good; also, the
comparison with theoretical results deduced via the Mel-
nikov method appears, in general, to be rather satisfying
and interesting.

APPENDIX: THE ANALOG DEVICE

The scheme of the circuit is in Fig. 1: With the switch
S in the position shown, the sum of the currents at the
point A gives

Vs + + +CV( =0,
R~ R) R

(Al)

where V~ is the driving voltage, produced by a generator
applied to the input. The phase of the signal V2 at the
output of the voltage-controlled oscillator (VCO) is
driven by the voltage V, according to the relation

P =k V, , where k is the VCO frequency-modulation
coefficient. If coo is the VCO frequency, then

Vz =sin(coot+/). The generator connected to the Miller
multiplier M1 is tuned at the same frequency, so that at
the output of M1 we obtain

V3 =sin(coot +P )coscoot

=
—,'[sing+sin(2coot+P)] . (A2)

The frequency cutoff of the low-pass filter is chosen in
such a way as to exclude the component at frequency 2coo

(in our case, coo=628 kc/s). Then V5= —,'sing, and the

Eq. (Al) reads as

sing P y C~V

2Rq kR) R k
(A3)

which is the same as (3), once written in dirnensionless
variables and taking into account that

Vr = —(y cosset+pa)R /2R~ . (A4)

In order to introduce a modulation, we apply the volt-

age V4 to the input of a second multiplier AD 534, and
the switch S is turned to the left position (see Fig. 1). A
fraction V of the ac voltage of the forcing generator is

added to a dc voltage Vo and connected to the other in-

put of the multiplier M2. In this way, the reaction volt-
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age is

Vs = ( Vo+ V costot )sing

= Vo(1+(costot )sing, (A5)

where (= V /Vo. This ensures, in particular, the equali-

ty of the frequencies and phases of both components
(driving and modulating) during the experiments. Once
written in dimensionless variables, the equation of the cir-
cuit now becomes Eq. (12), with to =0 and 0=0.
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