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Relaxation oscillations are very commonly found in nature. When modulated by an external

field, such systems show phase-locked, quasiperiodic, or chaotic behavior, dependent on the specific
parameters. We present an exact analysis for a triangular modulated relaxation oscillator and deter-

mine the parameter-space phase diagram. We identify critical lines associated with qualitatively

different transitions to chaos and complete phase locking (CPL). One transition is related to over-

lapping of phase-locked regions and is also identified as the transition from quasiperiodicity to
chaos described by a noninvertibility of the Poincare map. Another is a nonchaotic transition to a

CPL regime, where a gap appears in the Poincare map. Also, we find a sudden transition between

this CPL regime and a regime where all attractors are chaotic. The critical lines separating the
different regimes are found and attributed to either a horizontal or vertical line segment in the Poin-
care map. Moreover, we find analytically a number of scaling relations for the phase-locked stabili-

ty intervals on and nearby the critical lines. We also comment on the situation when the modula-

tion is sinusoidal and when damping is present.

When a nonlinear oscillator is modulated, phase lock-
ing may occur between the intrinsic frequency and the
frequency of the modulation. For many such systems the
general behavior is well captured by the circle map At
small nonlinearity, phase locking is not pronounced, and
the complement of the phase-locked regions has a posi-
tive measure. On this set the orbits are quasiperiodic.
However, increasing the nonlinearity, the phase locking
becomes more dominant„and reaching a certain critical
line in parameter space, phase locking is encountered al-
most everywhere —only a set of zero measure is left for
quasiperiodic orbits. The phase locking is said to be com-
plete. Crossing the critical line the phase-locked regions
start to overlap and chaos develops. The critical line can
be identified by the existence of a horizontal inflection
point in the circle map.

In contrast to the simultaneous transition to chaos and
complete phase locking (CPL) observed in usual circle
map systems, recent reports on experiments have given
evidence to the existence of oscillating systems showing
complete phase locking in entire nonchaotic regions.
In a previous paper, we have explained the presence of
such regions as a consequence of an "integrate-and-fire"
phenomenon where a variable V develops continuously in
time (integrates) except when it reaches an upper thresh-
old T„,where V is reset to the value of a lower thresh-
old Tb„(firing). The integrate-and-fire phenomenon is

not only known from electronic oscillators, but is gen-
erally encountered in a number of physical, chemical, and
biological systems with Lorentz-type attractors, where
trajectories greatly separate over short times. Examples
include systems as diverse as charge-density-waves sys-
tems, the Belousov-Zhabotinskii reaction, and neuronal
encoding.

Reference 9 gives a characterization of integrate-and-
fire systems varying the exact way of enforcing an exter-
nal modulation. In particular, it is shown that modula-
tion on the upper threshold gives rise to a nonchaoti'c
CPL region. In contrast, a lower threshold modulation
yields the usual circle map dynamics, including a transi-
tion from quasiperiodicity to chaos. The former is ac-
companied by a gap, the latter by a noninvertibility of the
Poincare map [i.e., V„+,= V( t„+,) as function of
V„=V(t„), where t„+, t„=T and T is t—he period of the
modulation].

In this paper we give an exact description of a simple
one-dimensional integrate-and-fire system showing both
kinds of supercritical behavior. Such systems found in
nature include the self-oscillating Belousov-Zhabotinskii
reaction (two competing internal frequencies), the exter-
nally modulated electronic relaxation oscillator, and cer-
tain combined electronic-optical feedback systems with
time delay. ' While the equations for the electronic re-
laxation oscillator can be deduced with regards to the
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modulation on both levels, the other systems are too
complicated, and the information about the level modula-
tion can only be deduced from the actual return maps.
For simplicity we choose a linear growth between firings
and put a triangular modulation M(t) with equal frequen-
cies and phases but different amplitudes A„and Ab„on
the thresholds (Fig. 1),

V=I, V
IO

0
V(t +

) = A ...M(t) if V(t) = 1 + A „,M(t), (2)

where

4(t n ——
—,') if n ~t ~n+ —,

'

4(t—n ——=') if n+ —' t n+1
4 2

(3)

0
0

f (rp)=Q+~p . (4)

To determine the stability of the attractor consider the
P distinct firings at times ~o, v.„.. . , ~p 1

~ We note that
the firings in intervals [n, n+1/2], where M(t) is in-
creasing, will result in a change of the distance of close
trajectories with a factor of

1 —Ab„

1 —A„
This is apparent from Fig. 2: An initial distance 6 V, be-
tween nearby trajectories yields a difference in firing time
At given by

Ikt =AV)+4At
p (6)

The resulting distance AVz between the trajectories after
firing is determined similarly by

Iht =EV2+4Ab„ht .

Hence A =b, Vz/b, V, =(1—Ab„)/(1 —A„). Analo-

gously, firings in the intervals [n + I/2, n+1] result in a
change of the distance between nearby trajectories with a

(n is an integer). The frequency is set to 1 and the dc
values of the thresholds T„and Tb„ to 1 and 0, respec-

tively. The positive control parameter I with the two am-

plitudes gives a three-dimensional parameter space
(I, Ab„, A„)." Although these parameters are indepen

dent, we shall for convenience define the normalized am-

plitudes Ab„=4Ab„/I and A„=4A„ /I. This system

of equations does not represent any of the above-
mentioned experiments exactly, but it does contain the
most important features.

Each phase-locked region is characterized by a con-
stant rational rotation number R =P/Q, defined as the
average number of firings in one period of the modula-
tion. Figure 1 shows an attractor with R =—', . We define
the firing function f by ~&=f(rp), where r, and rp are
successive firing times. Since the modulation is piecewise
linear with period 1, f is also piecewise linear, fulfilling
the circle-map condition f(t+n)=f(t)+n. A periodic
attractor with rotation number R =P/Q will, after P
firings in a time interval Q, close on itself,
V(t+Q) = V(t), and

I

~ 0 IR. O
I3.0 I4. 0

FIG. 1. An attractor on the —' step for ( J, 3b „3I )
= (1.51,0.3,0.2).

factor of

1+ Ab„
1+A„

Thus, if P of the P firings takes place in the intervals

[n, n + 1/2], and P+ firings occur in the intervals

[n + I/2, n +I], (P +P+ =P), the criterion for stability
1s

(9)

i.e., the Liapunov exponent A, =lnA must be negative.
A point in parameter space lies in the P/Q phase-

locked region if a ~p exists fulfilling both conditions (4)
and (9). Keeping the amplitudes A b„and A „ fixed and
varying I, the upper edge I„and lower edge I& ~I„ofa
phase-locked region can be found from where one of
these conditions breaks down. The exact way this break-
down occurs depends on the position in parameter space.

The reduced parameter space ( Ab„, A „)can be di-
vided in several regions characterized by the types of
motion allowed (Fig. 3). The regions in the reduced pa-
rameter space (Ab„, A„„),the values of A and A+, and
the different types of motion are summarized in Table I.
We shall see that the critical lines associated with transi-
tions to chaos and CPL depend solely on the normalized
amplitudes A b„and A „.However, the parameter
space is three dimensional and only by fixing one parame-
ter (e.g. , I), the actual position of the steps in (Ab„, A „),
space is determined. To illustrate this, some of the
phase-locked regions are shown in (I, A „„,) space for
constant A „=0.2 (Fig. 4) and in (I, A„) space for con-
stant Ab„=0.2 (Fig. 5).

Consider first A„„)1, i.e., the parameters above the
line k, :A„=1where the increasing part of the upper
threshold has slope I. In this region the decreasing parts
of the modulation shadow the increasing ones and
prevent any firings there (Fig. 6). In this region firings
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FIG. 2. Trajectories separated by a distance b Vl will, after a firing, be separated by 6 V&. ht is the difference in firing time.
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only occur in the intervals [n + 1/2, n + 1], resulting in a
Liapunov exponent proportional to lnA+ and therefore
[Eq. (8)] negative when A„„)Ab„(region A) and posi-
tive when A„(Ab„(region 8). In the former case the
attractors are always phase locked and we have CPL in
the entire region A. ' In the latter case all attractors will

1/I —A „, /4+ A b„(K + —,
'

)
p=

1+Ab„
(10)

between R = 1/K and R = 1/(K + 1). Varying p by
changing I while keeping At p

and Ab„ fixed only
changes the distance from f to the diagonal. Under these
conditions one can determine the width bp(P/Q) of the
stability interval for R =P/Q (called the P/Q step
below), '

be chaotic. Everywhere on the line l&. At p Ab t be-
tween the regions A and 8, both A and A+ equal 1 and
almost all attractors will be quasiperiodic with irrational
rotation number R. Since the average increase of V be-
tween two successive firings is I/R and each firing de-
creases V by exactly 1 along the line l&, we have R =I on
I, .

In region A, the firing function f (Fig. 7) consists of
line segments with slope A+ and A, = ( 1 —A b„)/
(1+A„) and a vertical gap of size g = A,„ /(1+ A„).
The gap is due to the shadowing at the upper modulation.
Moreover, since all firings take place on the decreasing
part of the upper modulation, all firing times r, for an at-
tractor will lie on the intervals where f has slope A+.
The value p defined by f (

—p) =0 (Ref. 13) gives a mea-
sure of f's distance to the diagonal (Fig. 7). Outside the
1/Q phase-locked regions, p is a smooth function of the
parameters

FIG. 3. The lines k„kb, I 1, and 12 and the different regions in
~ ~ hot ~ top ~ space.



1894 CHR ISTIANSEN, ALS'7RNM AND LEVINSEN 42

d the type of their solutions.ns in arameter space anTABLE I. The different regions in p

Region Motion

8
C
D
E
F

~bot & top~ top

~b t & ~t.p

~bot + ~top3„+Ab„&2

Forbidden
Forbidden
&1
&0, &1
&0, & —1

& —1

&1
&1
&1
&1
&1
&1

Periodic
Chaotic
Periodic
Periodic
Periodic
Chaotic

and quasiperiodic
and quasiperiodic
and chaotic

ri ht-hand side in Eq. (11) is the size of the gap

for P) 1,

uation (13) holds in all of the regime A
''me A including the

E . (13) one can show analyticallycritical line k, . From q.

Converting from p
[(1—g)(1+ Ab„)=A+],

to

)2
+

~I'(P/Q) =(1—g )(1—A+)

we

(12)

have

(P/Q) —=1.1

I1/(K+]j P/Q &1/K

Since also (for fixed Abpt topand A„)
1/II [1/(K+1)]—1/I((1 /K) =1

+~—(~/Q) =(1—A+) p
+

(13)

=Q for I=II(1/Q)For the 1/Q steps we have p, =
(K=Q). Hence, by Eq. (10),

1/I/ Q+(Atop Abo~)/4

Similarly, p=Q —g for I=I„(1/Q) (K =Q —1 yields

(14)

1/I„=Q —( —,
' —g)(A„—Ab„ (15)

, —A =1—A+, Eq. (13) is also validSince (1—g)(Atop Abpt +,
for P =1.

[Eq. (14)], the pe hase loc ing is ccomplete —the comple-
has zero measure.

Dfo th b X()
the hase-locked reg&ons as

of steps larger than
of ste widths with P thatfrom the exponential decay of step wi s

0 in a way that abruptly changes the
the line l, from B into region

lin"'l "'th
the distance dA = At p Ab t ince — +—
(13) gives, to first order,

0

AJ

0
I

0
Abot

[0 O. B

are Inarked wit eir
'

h th rotation number P /Q.r 3 =0.2. The largest regions arens in (I, Ab„t) space for At p eFIG. 4. Phase-locked regions in

and 1 are shown.Also the lines k„kb, 1„and
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0
I

A~op

marked with their rotation number P/Q.) s acefor Ab„= . . e„=0.2. The largest regions are mar e wiFIG. 5. Phase-locked regions in (I, „„p
Also the lines k„kb, I, , and I, are shown.

(P/Q)- ——dA .
1 1

I P

For small steps,, b, (1/I )-AI/I, and using that I=P/Q
on l& wehave

(20)

tbI(F /F )] as function of ln(dA .Fi Ure 8 shows ln;;+&
1

g
es of d A, the curves are linear wtth a s ope

I'
AI(P/Q) — dA . (19)

B E . (19) we find in particular thathat the widths b I(1/Q )

of the 1/Q steps are inversely proportio
bI(F /F ) of the steps for the Fibonacci se-

quence F, /F, +, (Fo= 1, F, =1, F, +, =
versely proportional to F, : 0

N

& Ttop
/ )

/

l0
V

0

0
0

I1.0 IZ. O
I 0 I 0 6.0

I

. 0
I0.0

l1.0

Is n n + —' cannot take placeFIG. 6. Firings in the intervals [n, n

+1.due to the shadowing eff'ect fromm the intervals [n + —', n + ].
FIG. 7. The firing function f (r) for parameters /=

A f p 0.3, and 3b„=0.1 in region A.top
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However, the linear increase in step widths stops closer
to l

&
as F; increases. Such behavior is necessary in order

for the phase-locked regions not to start overlapping.
When A„&1 firings can take place at all times and

we have divided this region into four (C F) (Fig. 3).—In
the region D where „,b„1,and Ab„& A„,
we have A+ & 1 and 0 & A & 1 making the existence of
both quasiperiodic and phase-locked attractors possible.
A periodic attractor on the lower (upper) edge II(I„)of a
step will fire at so =n + —,

' (so =n ) where the modulation is

maximum (minimum). When ro crosses n + —,
' (n ), the

number P+ increases by 1 while P decreases by 1, mak-
ing the stability criterion Eq. (9) invalid. Starting on I,
(where almost all attractors are quasiperiodic) and in-
creasing Ab„, phase-locked steps appear (Fig. 4). The
phase-locked regions display distinct hourglass shapes
with the step widths in some points decreasing to zero.
Nonetheless, the total measure of the phase-locked re-
gions continues to grow and the phase locking becomes
complete on the line kb. Ab„=1, where the increasing
part of the lower threshold has a slope of I. Considering
the inverse firing function f, the arguments leading to
Eq. (13) can be repeated. The step widths 6(1/I)(P/Q)
are obtained from Eq. (13) by substituting A+' for A+.
In particular, the fractal dimension along kb is zero.

Inside region E where 3b„& 1, 3„)1, and

t p
+ c4 b t (2, the phase-locked regions continue to

grow near kb causing them to overlap. Figure 9 shows
two different attractors in the same point in parameter
space on the —', step and —', step, respectively. As in region
D, the upper edge I„ofa phase-locked region is given by
'To =n. The lower edge II, on the other hand, is given by
~o=n+ —,

' only near kb. Consider, for example, A„p fixed

FIG. 9. Two different attractors with R =
—,
' and —', respec-

tively, in the same point (I, Ab„, A„~)=(1.705,0.45,0.2) in re-

gion E.

(Fig. 4). While the upper edge I„ofa step increases in re-
gion E, the lower edge II only decreases until the stability
is lost at ~o = n + —,', and a knee emerges. II then increases
until it meets I, where the phase locking is lost. On the
line lz. Ab„t+ A„p=2, A becomes —1, and all phase-
locked regions have vanished. By a simple calculation we
find the edges of the 1/Q regions

I„=(1+Ab„—A„„)/Q if A„& Ab„& Ab„,
(21)

(1—Ab„+ A„)/Q if A„& Ab„& Ab„

2(A,„+Ab„) if Ab„& A„„&Ab„, (22)

where

1 —(2Q —1)A„tap
bot

2Q

1 —(2Q+1) A„p
bot

2Q

(23)

We see that the 1/Q regions disappear exactly on the line
l2. But this is not typical. Numerically, we find that the
distance from kb to where the P /Q region disappears de-
cays exponentially with the numerator P with the same
exponent P ln(A+ ) as in Eq. (13). This is not unexpected
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A, = lim [N (t)—ln(~A )+N+(t)ln(A+)],1
(24)

where N (r) and N+(t) are the numbers of firings at
times less than t on the intervals [n, n+ —,'] and

[n+ —,', n+1], respectively. Figure 11 shows (for the

same parameters as in Fig. 10) the values of ~, obtained
from the time interval [501,1500]. Chaotic motion is as-
sociated with a positive value of A, .

Consider now the Poincare map, i.e., V„+&
as function

of V„, where V„ is taken tobe V„=V(n+ —,') to keep V„

in the unit interval [0,1]. For simplicity, assume R (l.
In this case an attractor will fire 0 or 1 times during a

noting that both I„and I&, except for the knee, are ap-
proximately linear in region E.

In region F where A b„& 1, A „&1, and

A„„+Ab„& 2, we have A & —1 and A+ & 1, and all at-
tractors are chaotic. In region C where A b„& 1,
A t p

& 1, and A b„& A „ the situation is the same as in

region D, except that I& now is found by to =n, and I„by
7o=n + —,'. Both periodic and quasiperiodic attractors are
present and the phase-locked regions are hourglass
shaped.

In Fig. 10, V„(n =501,502, . . . , 1500) is displayed as
function of Ab„ for I= —", and A„=0.2 (i.e., A„~ &1}.
We observe quasiperiodic and phase-locked attractors in
region D (0.2 & Ab«(0. 277. . . ), phase-locked and chaot-
ic attractors in region E (0.277. . . & Ab„&0.355. . . ),
and the absence of attractors other than chaotic ones in
region F (Ab«&0. 355. . . }. Several periodic windows
are clearly seen in region D as well as a degenerated bi-
furcation tree and its inverse in region E. The associated
Liapunov exponent I, is given by

time period 1. The Poincare map will consist of two
branches, one below the diagonal V„+&

= V„and one
above. A point ( V„, V„+,) on the branch above the diag-
onal corresponds to a situation where no firing has taken
place in the time interval ]n, n+1[. Due to the linear in-
crease of V between firings, V„+]= V„+I, so this branch
has a slope of 1. Likewise a point on the branch below
the diagonal corresponds to a situation where the system
has fired exactly once in the period ]n, n+1[. This
branch is piecewise linear with a slope of A or A+, ac-
cording to whether the firing took place in the interval
]n, n+ —,'[ or ]n+ ,', n+—1[.The break points P, and P~
are determined by firings at t =n and n+ —,', respectively
(Fig. 12),

Pi =(1+A„p —3I/4, I/4+ Ab„),

P~ =(1—A „I/4,—3I/4 Ab„—) .

(25)

(26)

Note that the V„values do not depend on Ab„while the

V„+, values do not depend on A „p.
Assume first A„&1 [Figs. 12(a)—12(e)]. Starting in

region C the map is one to one with A & 1 and
0& A+ & 1. Increasing Ab„, both slopes will approach 1

until they are exactly 1 on the line l&. In region D,
A+ & 1 is increasing, 0&A &1 is decreasing, and the
map is still one to one until the critical line kb is reached
where the slope A becomes zero, and P] and Pz both
have the V„+, value 2Ab„, at which the map is noninver-
tible. In the region E, A becomes negative while A+
continues to grow. The map is now noninvertible in an
interval and coexistence of trajectories with different ro-
tation numbers, as well as chaotic trajectories is possible.
A decreases further as Ab« is increased (the slope A is

0

0
y„m

0

m

0

iL,

L

i)j
[5, ;.

j!:', ".I. 'i

0. 26 O. BO
4bot

IO. SS O. AO

FIG. 10. V„, n =501,502, . . . , 1500, as function of A b„ for 3„p =0.2 and I =
9
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FIG. 11. Liapunov exponent A, as function of A&„ for the same parameters A„~=0.2 and I = '9 as in Fig. 10. In both figures the

first 500 time steps have been ignored for each value of A~, to avoid the transient behavior.

—1 on the line separating regions E and F).
As mentioned above, the Poincare map is one to one in

region C [Fig. 12(a)]. Increasing A«, the V„coordinates
of P, and P, are approaching each other, and A is

diverging. On the line k, [Fig. 12(I)] the V„coordinates
of P, and P2 collapse, and a gap emerges in the lower
branch of the Poincare map at V„=1 2A& p

In region
A [Fig. 12(g)] the V„coordinate of P, exceeds that of P2
and the Poincare map is now apparently multivalued.
However, the shadowing effect of the upper modulation
opens a gap inaccessible for attractors in the Poincare
map, making it effectively single valued. The gap opens
abruptly with a size 2(A „—As«) at the line k„and the

gap size grows as the region A is penetrated. It is worth
noting that the existence of one gap implies an infinity of
inaccessible regions in the Poincare map for an attractor.

In summary, we have treated a simple modulated
integrate-and-fire system, and we have obtained analyti-
cal results for its phase diagram. In particular, we have
identified the critical lines k, and k&, one associated with
a nonchaotic transition to CPL, the other with the onset
of chaos. Also a critica1 line I, exists which separates a
CPL region and a chaotic region. In all cases, we have
related the behavior to the Liapunov exponent and the
specific form of the Poincare map.

In the fixed A „projection (Fig. 4), we notice that the
transition at the line k& is clearly seen as the edges of the
phase-locked regions are nearly normal to this line. In
contrast the edges are nearly parallel to the line k„and
the transition on k, is hard to observe. In Fig. 5 the situ-
ation is reversed. Here the edges of the phase-locked re-
gions are nearly normal to k, and nearly parallel to k&.

Substituting the triangular modulation with a

sinusoidal M(t) =sin(2n. t ) only changes the details of the
systems behavior —the overall structure of the parameter
space is left unaltered. The parameter space will be di-
vided into regions by critical lines A~„=1 and A„p =1
where the normalized amplitudes now are
A&«=2m A&«/I and A«~ =2m'A«~/I. In region D the
hourglass shapes will be replaced by monotonically grow-
ing phase-locked regions, but all attractors will still be
quasiperiodic or periodic and the Poincare map one to
one. Again the measure of the phase-locked regions will
grow from zero on I, :A&„=A „ to completeness on k„,
where the fractal dimension is now D=0.87 and the Poin-
care map (at irrational values of R) develops a horizontal
inflection point. In region E the phase-locked regions
start to overlap giving birth to the complicated scenario
of chaotic attractors and periodic windows known from
circle map studies. ' Also on the line k, we have CPL
with fractal dimension D=0.87, but the Poincare map
has a vertica/ inflection point. In region A a gap is
present in the Poincare map and the phase locking is
complete with fractal dimension D =0. Near k, the gap
size grows square-root-like with the distance from k7.
In the region B all attractors will be chaotic and again
the line I &, where R =I, will separate this region from the
CPL region A.

Let us briefly comment on the changes in the phase di-
agram when damping is added. Then the variable V
asymptotically converges towards a constant value (Fig.
13), giving rise to a nonfiring region (zero-step) if this
value is less than the minimum of the upper threshold.
For clarity, consider the specific system with triangular
modulation [Eqs. (2) and (3)] and the evolution between
firings determined by
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V = 1+ A „,respectively. This gives

I+I 4

I r/I—k:A
I + I'/4

(28)
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yn

V=I —I V, (27)

where the damping I &0. The asymptotic value of V is
I/I (V=O), and the zero-step is therefore given by
I/1 &1—A„~. The critical lines kb and k, are deter-
mined by V=4 b„, = b„, and V=4A „,

FIG. 12. Poincare maps in the different regions in parameter
space. In (a)-(e), A„~=0.1 and I=0.7, while in (f) and {g),
A „~=0.2 and A b„=0.1. (a) In region C with Ab„=0.025; (b)
on line I, with Ab«=0. 1; (c) in region D with Ab«=0. 15; (d) on
line K& with A,«=0.175; (e) in region E with Ab«=0. 22; (f) on
line k, with I=0.8; (g) in region A with I=0.6.

The damping suppresses both critical lines in the reduced
parameter space ( A b„, A „), k, more than kb. Note
that k, now depends explicitly on the control parameter
I. The curve I

&
separating the CPL region A and the re-

gion B where all attractors are chaotic is no longer a
straight line, and R &I. However, I, still joins k, and kb

in their mutual point of intersection.
We conclude the paper by commenting on the

inhuence of relaxing the requirement of identical phases
and frequencies. When relaxing the requirements on
phases the only difference is found for regions B and F,
which include phase-locked solutions except for the in-

phase and antiphase situations. For different frequencies
the system becomes more complex. In general, the fre-
quencies are incommensurate, allowing, in addition to
chaotic attractors, for two- and three-frequency quasi-
periodicity. In spite of these complications, the regions
in parameter space persist. The characterization summa-
rized in Table I is still valid with the above-mentioned
modifications if one substitutes periodic attractors with
two-frequency quasiperiodic attractors, and quasiperiodic
attractors with three-frequency quasiperiodic attractors.
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