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We study the dynamics of classical particles interacting with attractive Gaussian potentials. This
system is thermodynamically not stable and exhibits negative specific heat. The results of the com-

puter simulation of the dynamics are discussed in comparison with various theories. In particular,
we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dy-

namics cannot describe the collapse.

I. INTRODUCTION

There is a widespread feeling that the dynamics of N
particles interacting via two-body potentials determined
by a Hamiltonian

rejects the features one learns in kinetic theory. The
momentum distribution should become Maxwellian and
temperature differences should diffuse away. Finally in

equilibrium a distribution homogeneous in I and Gauss-
ian in p should be reached, which corresponds to a sta-
tionary solution of the Boltzrnann equation. Recent'
computer studies have shown that this does not happen
generically but on the contrary, if one starts with such a
distribution, a cluster can develop and the temperature
increases. Only for stable potentials the motion shows
the expected features. Stable potentials are such that
there exists a constant Eo such that

H~ —EON ~0 VN . (1.2)

Clearly, if P, (x, —x, )=v(x, —x ) 0 Vx, , it is not
stable. But also an electrostatic type of potential with
repulsion and attraction may or may not be stable. If
p;, (x; —x~)=e, ejv(x; —xi), ~e;~ =e, then the potential is
stable if v (x)=e ", and unstable if v (x)=x e " . Thus
stable potentials are rather special. For unstable poten-
tials also thermodynamic stability gets lost: in a certain
energy range the microcanonical specific heat will be-
come negative. This means that the temperature in-
creases with decreasing energy. (Microcanonically the
temperature is defined by thermal contact with a small
thermometer whereas the canonical temperature corre-
sponds to contact with a big reservoir. ) This
phenomenon can be understood as follows. Below a cer-
tain condensation point a cluster will be formed. In the
unstable situation the potential energy per particle and
therefore also its kinetic energy will increase with the
number of particles in the cluster N, . Since N, will in-

crease with decreasing energy so will the kinetic energy
of particles giving an increase in temperature with de-
creasing energy. The thermodynamics of this
phenomenon has been analyzed on various theoretical
models ' but then it was objected that for these sys-
tems the foundations of thermodynamics do not apply
and the problem was a dynamical one.

In this paper we report on computer solutions of the
equations of motion resulting from (1.1) showing that the
dynamical behavior reflects the properties of the thermo-
dynamical picture. In the latter a phase transition occurs
between a homogeneous phase and a phase where a small
cluster contains a good fraction of all particles. This for-
mation of a dense cluster also happens if the equations of
motion are solved on a computer, a phenomenon resem-
bling very much the formation of a star from a cloud of
gas. That thermostatics has some bearing on the dynam-
ics has the following origin. The former shows that for
N~ ~ the major part of the energy shell corresponds to
a big cluster and some atmosphere around it. Thus any
orbit will almost surely end up in such a configuration.
Although the recurrence theorem applies to such systems
and in the exact dynamics such clusters should eventually
dissolve again, they do not do so on the computer since
the minimal randomness due to roundoff errors prevent
strict reversibility. %e see in this feature a virtue and not
a fault since in real systems one can never completely
eliminate all outside influences.

It turns out that the computer solution of the dynamics
shows in addition some important effects which are not
contained in the thermodynamical description. In this
sense there was some truth in the objection put forward
in Ref. 6. %e find that the heating is such that first the
cluster heats up and only eventually the surrounding as-
sumes the same temperature. From the point of view of
statistical mechanics this constitutes only a transient
phenomenon, but for us who live on the temperature
difference of the sun and the earth this is of vital impor-
tance. It answers the question how the universe got out
of the equilibrium it was supposed to be in originally. If
we expand a gas of particles with unstable interactions we
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find that at a certain point inhomogeneities in ternpera-
ture will develop.

II. MICROCANONICAL STATE

For the pair potential v we shall consider three models:
(a),

x —y! in2 2
(2.2a)

(b),

v(x y}= /XV, (x)XV(y},
I

(2.2b)

In this section we shall study the probability measure
5(HN E)—e ' ' in phase space. We take the latter to be
V XIR where VCIR is some finite region the area of
which we shall also denote by V. A point in the N-

particle configuration space V will be written as
X=(x,, x2, . . . , xN) such that the Hamiltonian assumes
the form

X p2
+4(X), 4(X)=—g g av(x, , x, ) .

i=1 j i() j)

(2.1)

the system tends to form one big cluster, even the simple
version (c) reflects already the salient features.

(2) The usual thermodynamic limit N ~ co with
p=N/V and c.=E/V kept fixed together with the poten-
tial strength ~ does not exist. However, if we keep
E=EIN as well as V and the potential strength fixed
then the entropy per particle, namely,
limN „(I IN)S (EN, V), exists.

First, we calculate the probability density p(X) in the
configuration space V by integrating over the momenta

p(X) f d pi ' ' ' d pN5(HN E)e

e
—s(E)[E q (X)]N

—i (2 3)
(N —1)!

p(X) increases sharply with ~4~ and since 4 maps VN

onto [ N(N ——1)/2, 0], points in V with many parti-
cles close together have a high probability. In (a)

N(N ——1}/2 is attained if all particles sit on the same
point [in the same VJ in (b) or in Vv in (c)]. On the other
hand, these regions have a small volume in configuration
space and it is entropically not favorable to put all parti-
cles in one big cluster. To estimate the best compromise,
consider N, & N particles in a volume V0 C V such that 4
is -N, &&E. This configuration has a probability

where the V are a partition of V,

UVj=V, V;A V =5JVj,
J

'X —1

0

V
(N2)N

—
1

and the characteristic function yv (x) is unity, if xE V,
J

and zero otherwise; and (c),
which attains its maximum for N, -2N/ln( V/Vo). Two
clusters of half the size have a probability

v(x, y)=yv (x)yv (y), VoC V (2.2c) X —2

0
2 N —I

C

Reduced units are used for which m = 1 and o. = 1.
Some remarks are worth mentioning.
(1) The essential feature of 4(X) is that all the particles

attract each other. Though we think about gravity we
take in (a) a regular short-range potential to demonstrate
that it is neither the singularity nor the long range of the
1/r potential which leads to the unusual behavior we are
interested in. (b) is a discretization which allows an exact
analysis of the partition function. Since it turns out that

I

N, /2 V

P 2
—Ã

'
Vo

Thus for V0 fixed and V-N it is advantageous to make
one big cluster. These rough arguments can be made ex-
act in model (c). With N, as the number of particles in

V0 define

X N2 u ~ V

(N —1)! N o Vo
C

' " (E+N,2/2}N 'N!-
N, !(N N,)!—N (%, /'%)

e
N =0

(2.4)

If we take the limit N~ ~ with E=2EIN and V/Vo fixed we find with a=N, /N:

o(a}=in(a+a )
—alna —(1—a)ln(1 —a)+(1—a)ln —

1 +const.V

Vo
(2.5)

The maximum is attained if

c= —a+ (2.6)
V 1

ln —1 —ln ——1
Vo 0,'

which gives for V/Vo »1 and c,~0 the previous esti-

mate for N, .
If we compare N, with our computer simulation in Sec.

V, then Vo has to be chosen of the order of the range of v.

Thus V/Vo-800 and N =400. With these values about
—, of the particles will be concentrated in Vo, in qualita-
tive agreement with the simulation. '
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Next we turn to the question of the local temperature
and

define

ama T: V ~R+ by

2

T(X)=f d p) . d p~ 5(E H—~)e

(2.7)

such that the local temperature is just the expectation
value of the kinetic energy of a single particle at a given
point X in configuration space.

At this stage some comments are in order.
(1) At a given point XE V the distribution is the same

for all p; [we could have integrated ( I/N)gp; instead of
p, ]. This means that in equilibrium the particles outside
the cluster are just as hot as the ones inside.

(2) The microcanonical state differs from the canonical
state by the X dependence of T. If we replace—P[H~ —F(P) ]
5(H& E)e —' ' by e then T= I/P irrespec-
tive of X. F is the free energy. Of course, in
the translation-invariant model (a) T depends only
on the correlations between the particles and
V ' fd x& d x&T(X) becomes independent of x
and in the limit N~ ao the microcanonical temperature
[BS(E)/BE]

(3) It has to be remembered that T(X) is the tempera-
ture for the configuration X in the equilibrium state. In
the dynamical studies the following transient features ap-
pear. If a cluster with N, particles is formed then locally
the gain both in potential and in kinetic energy is -N, .
Thus in the cluster the system heats up to a temperature

However, the cluster is not thermally insulated,
and eventually its temperature is distributed over all par-
ticles to give a common equilibrium temperature -N, /N
(compare Sec. VI).

With the Hamiltonian (2.1) we calculate (m = 1)

III. CANONICAL STATE

The thermodynamic functions and states have been
calculated in the limit N ~ 00 explicitly for the models (b)
and (c).4 5' One finds that for small energies the phase
space is dominated by a configuration with one cluster
containing a finite fraction of all particles. These calcula-
tions have been generalized in Refs. 7 and 8 to the more
realistic situation of the gravitational 1/r potential.
There one needs quantum theory to mollify the singulari-
ty but, in principle, the analysis reduces the problem to
one of type (b). Dividing the volume into a large but
finite number of cells with constant potentials determined
self-consistently one can approximate the full problem
such that in the limit N~ ~ the relative error goes to
zero. We do not want to repeat this lengthy demonstra-
tion here since it is clear that it also works in the present
setting. Instead we shall give a simpler derivation of the
mean-field theory without proving the finer details of
rigor.

We consider N particles in a fixed d-dimensional
volume V. The canonical density in phase space

N p.
p~(x„.. . , p~)=exp —P g —vg v(x; —x~)

i=1 ij

F(P)— (3.1)

p(X, p, ) = X f d p~
. d p~5(H~ —E)epX

'N —2

P&E —4(X)—
2

(N —1)e(E—4(X)—p, /2)
X

2vr[E —4(X)]
As (1—a/N) ~e ' we see that for large N the distribu-

—pi/2T(X)
tion approaches C(X)e ' . This is verified by our
simulation results in Sec. VI.

T(X)= [E—4(X)] .—1

N
(2.8)

is characterized by the fact that it maximizes the entropy.
For a density p the latter is defined by

S(p~)= —fdQPlnp, dQ=d x, . d'p~ . (3.2)

We note the following.
(1) Since 4-N, we ge—t T —N, /N as soon as

E &&N„ for instance, if we start with E —N and
N, -N/3.

(2) The definition (2.7) gives an X-dependent tempera-
ture even for thermodynamically stable systems. Howev-
er, if 4(X)) —cN and E-N there will be only fiuctua-
tions around

1T= —E — d x . d x 4(X)
N 1

For fixed expectation value of the energy,

E„=f d Qp~H~ =fdQp~H~, (3.3)

IC =N fd'x d'pP p„'"(x,p)
2

(3.4)

and the potential energy

e= —~ fdxdxdpdp,N(N —1)

we have S(p~) ~S(p~). E~ is the sum of the kinetic en-

ergy

To justify the definition (2.7) we have to inspect wheth-
er the momenta are actually distributed according to a
Maxwell-Boltzmann distribution for given XE V . For
that we calculate the conditional probability

Xpz (x, , xz, p, ,pz)v(x, —xz),(2)

(3.5)

where we have introduced the k-particle distributions
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(k)
PN (xl~ ~ Pk )

2 . . . 2
PN(x» ' &PN)d k+1 d pN (3.6)

lim N "PN"'(x». . . , xk, v'N p„.. . , VN pk )
Q —+ oo

=P'"'(xi . Pk)
Since 4-N we also want E -N which requires a scal-
ing such that for N ~~, V fixe, the limit exists. Then

E—= lim N (K+4)
2= fd'xd pp'"(x, p) ——fd x, . d p2p' '(x, , . . . , pz)v(x, —xz) . (3.8)

So far we have no relation between p'" and p' ' but we may use the result of Ref. 9 that any symmetrical density
p'"'(xi, . . . , pk) can be approximated arbitrarily closely by (finite) convex combinations of product densities

k

p (xi pk)= yaigpi(x p )

j i=1
(3.9)

The deeper part of this theorem is that we can take all a &0 and —if the p are normalized according to

fpl ( x;,p; )d x;d p; = 1—we have g~ a = 1.

The energy is then the convex combination

K
d x d p p (x,p) —— d x, d'p, u(x, —x2)PJ(xi, pi)p, (x&, p2)

2 2
(3.10)

The entropy for a product density is simply additive,
—PP /2+V(X) —

Vp
p(x, p) =e (3.14)

N

S gp(x;, p;) =NS(p) . (3.11)

(3.15)

where v(x) is determined by the self-consistency equation

v(x)=Pa f v(x —y)e"'"'d y f d y e"'"'.

& g a S(p. ) —g ajlnaj .
J J

(3.12)

We shall apply these inequalities to the case where the pj
is the product of the densities p for the individual parti-
cles. Dividing (3.12) by N and passing to the limit
N~00 we find

lim —S(pN ) = g aJS(pj )N-~ N
J

(3.13)

provided we can exchange this limit with the convex
combinations such that (I/N)g. ajlnaJ=0. Up to this
point everything we said was rigorous but here we have
to refer to the literature for justifying this assumption.
Since the entropy (3.13) and e (3.10) are the same convex
combinations of contributions of the individual p, it is
clear that the maximum of S for given c is reached by
taking the best p . The corresponding variational equa-
tions require

2—lnp(x, p)=P ~f u(x ——y)p(y, q)d y d q +vo.

Here p and vo are Lagrange multipliers, the latter ensur-
ing fd x d p p(x, p)=1. Thus p has the barometric
form

Furthermore, S is concave but not too concave in the
sense that one has the general inequalities with the mix-

ing entropy

+ ai (pi ) + i pi—

We shall now return to our case of interest where the
particles move on a torus, V= T . It is clear that (3.15)
always has the constant solution v(x) =pir fd y v (y)/V.
In fact, an expansion in powers of ~ leads only to the con-
stant solution. The nonperturbative character of a non-

constant solution is illustrated by
Proposition Let u: T. ~R+ be such that i &v(x) &s,

fd x u (x)=1 where d x is the normalized volume ele-

ment on Tz ( f 2d x = 1). Then the integral equation

f d y u(x —y)e'"'
v(x)=b

2 (y)

has for b &[1/(s —i)]arcsinh[(s —i/2)] only the con-
stant solution v(x) =b.

Proof. Denote by v, z the bounds of v, v, &v(x) &vz.
V2 Vi 2

g
g & b(eg —e g). For b & —,

' this equation is satisfied only

for g =0 or g ~ some go(b), go &0. From the variation
of u we know ~v(x) —v(x')~ &b(s i) or g &—b(s i)—
The condition go( b) =b (s i ) imp—lies b (s i)—
=2b sinh[b (s —i)], which yields the quoted bound for b.

Since b in our case is the ratio between the strength v
of the potential and the temperature, this proposition
tells us that only for suSciently strong attraction can a
cluster develop. That this actually happens follows from
the fact that in this case the one-particle entropy for a
p"'(x, p) clustering in x is higher than for a homogeneous
distribution with the same c.. The reason is that one gains
so much potential energy that p is all the more spread out
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in p. For a distribution which factors in x and p the en-
tropy is simply the sum of the log of the volumes in x and

p over which p is smeared out. With the approximate N
scaling we have E=(p /2) —tc with a cluster and e =p /2
without a cluster. Thus the difference between the entro-
pies of a clustering and a homogeneous distribution is
1nVD/V+In(E+a)/e and s is positive and sufficiently
small. This also proves that for large tr (3.15) must have a
nonconstant solution since —taking the necessary con-
tinuity for granted —the one-particle entropy has to at-
tain its maximum, and this cannot be for constant v(x).

Equations (3.14) and (3.15) are numerically solved in
Sec. VII and the results are compared to the simulation.

Thus (4.1) cannot describe the evolution of a homogene-
2 /2ous density p(x, p) =ce ~u to a clustered one since we

have seen that the latter has a higher entropy. Neverthe-
less, the equilibrium density ought to satisfy (4.1) since a
constant density does not change even in a short time.
Indeed (3.14) and (3.15) describe just a time-independent
solution of (4.1). However, it is by no means the only sta-
tionary solution of this equation. According to (4.2) any
function depending only on the constants of motion will

be time independent. Thus with an ansatz of any func-
tion f of the energy,

p(*,p ) =f —v(x)P

IV. TIME EVOLUTION

satisfies the Vlasov equation for

t}p(x,p, t) Bp(x, p, t)
Bt Bx

=P

+ ' ' ~f Vu(x y)p(y, q, t)d—y d~q .
Bp(x, p, t)

t}p

(4.1)

Therefore the time scale for which the Vlasov dynamics
is correct is the time in which particles move a finite dis-
tance in the fixed volume. However, in the limit N~ ~
the velocities increase so much that this time becomes
negligibly small and (4.1) does not describe how a cluster
develops. That it is incapable of doing this is a conse-
quence of Liouville's theorem since the Vlasov dynamics
is governed by a one-parameter family of canonical trans-
formations (x, p) ~(x(t),p(t) }, p(x, p, t) =p(x(t), p(t), 0)
determined by

dx(t)

dp(t) =a f Vu(x y)p(y, q, t)d y d q
—.

dt

(4.2)

As a consequence all p norms (~p(~~= [f d x d q p (x, q, t)]' ~ are t independent and so is the
one-particle entropy (a generalized Gibb paradox)

S= —f d x d p p(x, p, t)lnp(x, p, t)

= lim In//p//p~l 1 p
(4.3)

So far we have seen that the equilibrium thermostatics
is described by a mean-field theory. There exists a coun-
terpart to that for the time evolution, namely, the Vlasov
dynamics. In Refs. 10 and 11 it is shown that in the limit
N ~ 00 the time evolution due to a Hamiltonian

N p2
H~= Q —Kg+ u(x, —x, }

i=1

is described by the Vlasov dynamics if the particles stay
in a fixed volume V. In our scaling procedure these re-
sults imply that

p(x, p, t)= lim Nptv'(x, pv'N, t/v'N )

one can solve (4. 1) provided the potential v is determined
by the self-consistency equation

v(x)= f u(x —y)f —v(y) d'y d'p
2

(4.4)

in agreement with (3.15).
We note the following.
(1) One might hope that the final equilibrium state is

approached via stationary solutions of the Vlasov equa-
tion. The computer studies reveal that first the cluster
heats up and just eventually gets into equilibrium with
the rest. Thus one might look for solutions which have
the property that

dpp p 2 —v dp p 2 —v

V. SIMULATION OF CLUSTER FORMATION

As a test of these theoretical considerations we have
carried out a series of computer simulations which are
presented in this and the following sections. They are
based on the smooth and purely attractive pair potential
of model (2.2a). The first simulations of such a system
have been carried out recently by Compagner, Bruin, and
Roelse. ' Concentrating on the equilibrium properties
they have shown that the qualitative features of the mi-
crocanonical cell model (2.2b) are well reproduced by the
simulation results for equilibrium states of model (2.2a).
This is verified also by our computations, a first account
of which is given in Ref. 2. In the following we shall be

is an increasing function with v. One easily sees this hap-
pen if lnf is a concave function. However, nothing else

distinguishes these solutions and one cannot say that this
feature is predicted by the Vlasov equation.

(2) The stationary solutions are not attractors for the
Vlasov dynamics. If p is of the form p0(x, p)+p, (x, p, t),
then also p, (x, p, t) =pi(x(t), p(t), 0) and all p norms of pi
are constant. However, if pa is normalized, then

fd x d p p, (x, p, t) =0 and it is possible that p, goes to
zero in the mean. In particular, if p, «p0, x(t) and p(t)
are determined essentially by pa and therefore a time-
independent Hamiltonian. If the latter leads to a mixing
motion, the p, will weakly go to zero and pa is a weak at-
tractor.



42 DYNAMICS OF UNSTABLE SYSTEMS 1885

TABLE I. Equilibrium properties for various simulation runs. e and 8 are energy and temperature

parameters defined in (5.3) and (5.4), respectively, and N, ( ~) is the number of particles in the cluster.
For all runs N =400. (a) and (b) indicate the type of initial conditions used as explained in Sec. V. The
statistical error for 0 is about 3%. The symbols G and C refer to gaseous and clustered states, respec-
tively, and E denotes a system of charged particles discussed in Sec. IX.

N/V Initial condition 0
Cl
C2
C3
C4
Gl

C5
62

E1

0.5
0.5
0.5
0.5
0.5

0.125
0.125

0.5

(a)
(a)
(a)
(b)
(a)

(a)
(a)

(a)

0.9226
1.0009
1.0059
1.0060
1.0593

1.0060
1.0593

1.0028

0.113
0.083
0.081
0.079
0.063

0.054
0.060

0.012

210
142
140
142

mainly concerned with transient states leading from
nonequilibrium initial states to equilibrium.

The Hamiltonian of model (2.2a) is given by

N p2
Hlv —X 2m

N —1 N

1=1 J=&+1
2 2

u(x —y)=e '* ", a&0,

(5.1)

(5.2)

and, as before, reduced units are used, for which the par-
ticle mass m, the strength a of the potential and the range
parameter 0 are unity. The simulations are performed
on a two-dimensional torus and with N =400 particles.
A Gear predictor-corrector algorithm in the N represen-
tation and correct through terms of order bt is em-
ployed' with a time step ht =0.0025 for most of the
runs.

Two different types of initial conditions are used: (a)
All N particles are distributed randomly over the square
torus T with volume V =L; (b) All N particles are in a
perfect cluster and on top of each other. In both cases
the velocity components v are taken as equally distribut-
ed in —

uu &v & vu, vv=[3K(0)/Nm]', and K(0) is
the initial kinetic energy. For initial condition (a) and
low enough energy E, small clusters are immediately
formed after initiating the simulation. Typically one of
these clusters grows fast and dominates the rest by ac-
cepting more and more particles until it finally reaches its
equilibrium particle number N, (ao}. This number may
amount to N/3 or more depending primarily on the ratio
L/u (Sec. II). The simultaneous growth of a second
large cluster usually is suppressed. We shall come back
to this point in Sec. IX. For initial condition (b} the ini-
tial potential energy is strongly negative,
4(0)= N(N —1)/2. Co—nsequently, for the same E as
before K(0) has to be very large and the initially perfect
cluster disintegrates quickly by boiling off particles into
the atmosphere. It finally approaches the same N, ( ao) as
for (a). In both cases the approach to equilibrium is very
slow. Typically more than 3 million time steps are re-
quired as will be discussed further in Sec. VIII. The en-
ergy E is conserved by the microcanonical simulation to
better than 0.2%%u~ over the whole length of the run.

For the characterization of the final equilibrium states
we define energy and temperature parameters by

2E
N (N —1)s.

4K ( ~ ) 2kti 'r( ao )
0~=

dN2~ N&

(5.3)

(5.4)

where the dimension d =2. T( ~) is the equilibrium tem-
perature and kti Boltzmann's constant (set to unity as in

previous sections). The relevant thermodynamic proper-
ties for the various simulated states are collected in Table
I. States G 1 and G2 (G denotes gas) have an energy
e &e„the transition energy, and are incapable of forming
a large cluster. They behave as an ideal gas with positive
specific heat. For states labeled Cl —C5 (C denotes clus-
ter) we have e & e„and a cluster is formed. Since
d8(e)/d~ &0 in this e range the respective specific heat
is negative. The transition energy e, is very close but not
identical to unity. For details of the equilibrium proper-
ties and the phase diagram 8(e), Refs. 1, 2, 4, and 5

should be consulted.

VI. TEMPERATURE OF TRANSIENT CLUSTERS

The definition of a cluster is somewhat arbitrary, but it
turns out that its properties are insensitive to the particu-
lar definition. We take the inflection point of the poten-
tial (5.2), D =or/i/2, as the defining interaction range:
two particles i,j are said to belong to the same cluster if
~x;

—x
~
&D. During the simulation a complete cluster

analysis is performed after every 100 time steps. The
evaluation of time-dependent averages over a nonequili-
brium ensemble of trajectories is prohibitively expensive.
We have therefore compromised by averaging dynamical
variables over phase configurations with a given cluster
particle number N,

' realized by a single trajectory (Fig. 1}.
Since the time-smoothed value N, changes slowly in the
course of the simulation (Sec. VIII), an average over
configurations associated with the large dots in Fig. 1

yields what may be viewed as a nonequilibrium average at
time t'. It is denoted by (. . . ;N,

' ). From this definition
it is obvious that the number of configurations sampled
with a particular N,

' —and therefore the statistical uncer-
tainty of the average —depends on the rate of change of
N, . This rate is reflected in the length of the error bars in
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FIG. 1. Schematic representation of calculating nonequilibri-
um averages from a single trajectory. N, (t) is the fluctuating
number of cluster particles and N, (t) is its time-smoothed be-
havior. During the transient stage all configurations with a
given N,

'
(as indicated by the dots) contribute to a nonequilibri-

um average associated with time t' and denoted by (. . . ;N,').

Fig. 2, large error bars indicating fast cluster growth.
Once equilibrium is established X, fluctuates around its
equilibrium value [N, ( ac ) =140 for run C3] and the error
bars become very small.

Let us define the peculiar kinetic energy of the main
cluster per cluster particle by

N

K, /N, = g —(v, —V, );N,
C I =1
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FIG. 3. Normalized velocity distribution of the cluster parti-
cles (solid circles) and of the gas particles (open circles) for the
final equilibrium state of run C3, for which the cluster particle
number N, fluctuates around 140. The temperature of the gas
and of the cluster are equal (Tg = T, =16.3) as predicted by the
comments following Eq. (2.7). As required by the comments
following Eq. (2.8) the distributions are well represented by
Maxwell-Boltzmann distributions (solid lines).

with v; the velocity of particle i and V, the center-of-
mass velocity of the cluster. For state C3 and initial con-
ditions of type (a) this quantity is shown in Fig. 2 as a
function of N, which grows slowly in the course of the
simulation. In agreement with the theoretical expecta-
tion commented about in (3) following Eq. (2.7),
II', /N, —and therefore the local cluster temperature —is
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FIG. 2. Peculiar kinetic energy K, per cluster particle as a
function of the cluster-particle number N, for system C3. The
length of the error bars indicates how often a cluster with a
given N, has been sampled during the transient growth stage of
the cluster. Once equilibrium is approached N, fluctuates
around 140 accounting for the small error bars. At the begin-

ning of the simulation all N =400 particles are equally distribut-
ed over the accessible volume V=400. The initial total kinetic
energy I( =800 corresponds to a temperature T =2. In the col-
lapsing cluster this temperature rises proportional to N, to
reach T= 16.3 for equilibrium conditions.
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FIG. 4. Normalized velocity distribution of the cluster parti-
cles (solid circles) and of the surrounding gas (open circles) for
the transient nonequilibrium stage of system C3 with N, =120.
The gas distribution is narrower indicating a lower temperature
in the gas (Tg =9.2) than in the cluster (T, =14.7). The solid
curves are calculated from a Maxwell-Boltzmann distribution.
During the collapsing stage the number of configurations with a
given N, =120 available for averaging is comparatively small,
and the statistical noise is therefore larger than in Fig. 3.
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4, /N, =—
N —1 N

jv (x, —x, );N,
t =1 j=i+1

(6.2)

number N, =120(N, ( co). The distribution for the clus-
ter is broader than that of the gas, and
T, =14.7 & T =9.2. The solid curves are the respective
Maxwell-Boltzmann distributions.

The potential energy per cluster particle is defined for a
cluster according to

-35
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FIG. 5. Potential energy per cluster particle as a function of
the cluster-particle number N, for system C3. During the non-

equilibrium growth 4, is continuously lowered with growing N,
until equilibrium is reached for N, =140. As in Fig. 2 the
length of the error bars indicates how often a particular N, has
been sampled during the simulation covering the transient
stage.

-N, in the transient stage, whereas the surrounding gas
remains significantly cooler. Only after reaching equilib-
rium do the cluster and the gas end up at a common tem-
perature -N, /N.

In Fig. 3 the normalized velocity distributions of clus-
ter particles (solid circles) and of the surrounding gas
(open circles) for conditions close to the equilibrium state
of run C3 are shown. Both distributions are practically
identical and correspond to a Maxwell-Boltzmann distri-
bution (solid lines) with a temperature T = T, =16.3.
The notion of a local temperature is meaningful also for
nonequilibrium transient states. For the same run C3
these respective normalized velocity distributions are
shown in Fig. 4 for a nonequilibrium state with a cluster

where the sums are over all cluster particles. For the
growth stage of run C3 this quantity is shown in Fig. 5 as
a function of X, . The previous remarks concerning the
length of the error bars also apply to this case.

VII. SIZE OF THE CLUSTER

One of the most noteworthy results is that the size of
the cluster is hardly affected by the condensation process
during the transient approach to equilibrium. This is
demonstrated in Fig. 6 where we plot a parameter s
defined by

N —1 N

s = X X (x, —x);Is)
c c i =1 j=i+1

(7.1)

as a function of N, for the collapsing regime of run C3. s
is the root-mean-square separation of cluster particles
over which the sums in (7.1) are performed. For all prac-
tical purposes s is a constant and close to a /3, o =1. In
hindsight this result explains the success of model (2.2c)
which assumes a single small subvolume Vo C V, in which

all the clustering takes place. As already mentioned this
model contains all the salient features of the more sophis-
ticated model (2.2b) which introduces a whole partition
of V.

The spatial distribution of particles in the system may
be studied by defining local particle densities with respect
to R„the center of mass of the cluster. Putting the ori-

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I

1.00

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I

0.60

0.50

0.80

0.60

0.40

0.20

0.40

0.30

0.20

P. 10

x+~ x
0

0.00
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 20 40 60 80 100 120 140 160

cs
0 00

I s s s I

0 2

s I I I I I I I s I I I I I I I I I I I s I s s s I

4 6 8 10 12 14 16

FIG. 6. Average root-mean-square separation s of cluster
particles as a function of N, during the transient condensation
process for run C3.

FIG. 7. Local one-particle density ng "(x;140)of the gas for
run C3, (N, =140) as a function of the separation x from the
center of mass R, of an equilibrated cluster. The gas is equally
distributed over the accessible volume in accord with the pre-
diction of the cell models introduced in Sec. II.
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N

nJ"(x;N, )= X a(x —x, );N, ),
i =1

(7.2)

gin of our reference system into R, we have for the clus-

ter
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and for the gas

n" '(x;N, )
=

( X a(x —x, (;N,
i Egas

f n"'(x;N, )d x =N N, . —

(7.4)

(7.5)
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The sums in (7.2) and (7.4) are over the cluster and gas
particles, respectively. Since there is no preferred direc-
tion these functions depend only on x =~x~, the scalar
separation from R, .

In Fig. 7 ns"(x;140) is shown for equilibrium condi-
tions of run C3. The gas density is homogeneous thus
confirming the theoretical predictions of model (2.2b) and
the respective assumptions underlying model (2.2c).

The density profile for the cluster, however, is more in-

teresting. It is depicted in Fig. 8 for the respective equi-
librium states of runs C1 and C3. These distributions are
bell shaped. We want to compare these results to the pre-
dictions of the mean-field theory outlined in Sec. III
which is expected to apply to this equilibrium situation.
n,"I(x;N, ( oo )) is identified with p(x, p) in (3.14), integrat-
ed over p and properly renormalized to comply with
(7.3):

FIG. 9. Total energy E, kinetic energy K, and potential ener-

gy 4 for two N =400 particle systems as a function of the run
time of the simulation. The open circles constitute results of
run C1 with an initial configuration chosen such that all parti-
cles are concentrated at the same point, 4(t =0)=—79800,
and have a kinetic energy K(t =0)= 80278 (both numbers be-

ing off the scale of the figure). The cluster shrinks and ap-
proaches the equilibrium cluster-particle number from above

(N, = 142). The solid circles are the respective results of simula-

tion C3 starting from an equal particle distribution with
4(t =0)= —322 and a kinetic energy K(t =0)= 800. This clus-
ter grows and approaches the equilibrium cluster-particle num-

ber from below. For both simulations the total energy is about
equal, and the same final equilibrium state is obtained.

n,"'(x;N, (oo))- fp(x, p)dp . (7.6)

As before, the origin of the coordinate system has been

placed in R, and both p(x, p) and v(x) in(3. 15) may de-

pend only on the absolute separation from the origin. To
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FIG. 8. Local particle density n,"'(x;X,) in the cluster for
the two simulation runs C1 (N, =210) and C3 (X, = 140) in equi-
librium. x is the separation from the center of mass of the clus-
ter. The solid curves are numerical solutions of the time-
independent Vlasov equation as described in Sec. VII. The
upper limit of the spatial integration is R *=2.
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FIG. 10. Total kinetic energy K of a nonequilibrium 400-

particle system as a function of the run time for the first 60 time
units of the simulation. Starting from an equal particle distribu-
tion in V at t =0, K starts to rise indicating the growth of a

large cluster. At time t =60 a time-reversal transformation

(q~q, p~ —p) is performed and the equations of motion are
subsequently integrated backward (dashed line). For 20 time
units K is reproduced by the reversed trajectory indicating a
shrinking of the cluster. At t =40, however, the kinetic energy
K starts rising again even in the backward direction indicating
the continuation of cluster growth.
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arrive at (3.14) and (3.15) the momenta have been res-
caled by &N [see (3.7)], whereas no such scaling is per-
formed in the equations of motion used for the simula-
tion. This difference must be corrected for in the follow-
ing.

To perform the spatial integration in (3.15) a circular
volume V* with radius R * centered on R, is introduced
which contains all N, ( ac ) =—N* cluster particles contrib-
uting to n," ()x.;N, ). Insertion of the potential (2.2a) into
(3.15) gives

v(x)=P'~ f '" "' "«'d f "'~'d y
2

v* v* (7.7)

To arrive at this equation P in (3.15) has to be replaced by
P'=N "P to account for the scaling of the momenta men-
tioned above. Integration over the angle between x and y
in (7.7) finally yields

P K e '" ~) ye "(~'e " Io(2xy )dy
v(x)= " „e (7.8)

f ye' 'dy
0

where Io is a modified Bessel function. This nonlinear in-

tegral equation may be solved numerically by iteration.
Since P*=N*/keT, only the equilibrium particle num-

ber N, ( cc) and the equilibrium temperature T are re-
quired as input for this computation. The solid lines in
Fig. 8 are the result of such a calculation for the respec-
tive equilibrium states. The agreement proves that the
mean-field theory of Sec. III—identical to the time-
independent solution of the Vlasov equation (4.1)—
provides a perfect description of the simulation results
for the particle density in the equilibrium cluster.

VIII. IRREVERSIBILITY

It has been mentioned before that the approach to
equilibrium from the nonequilibrium initial conditions (a)
or (b) of Sec. V is extremely slow and requires at least
3X10 time steps of duration 0.0025. This slow conver-
gence is demonstrated in Fig. 9 where the kinetic energy
K(t), the potential energy 4(t), and the total energy E
are shown both for a collapsing system [state C3, initial
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FIG. 11. Equilibrium configuration of system El interacting with the electrostatic type of potential (9.1) and (9.2). /N2=2 p0a0r-

ticles carry positive charges (blue), the remaining 200 particles negative charges (red). The formation of a large dipole cluster sur-

rounded by shells of uniformly charged particles is clearly visible. The diameter of the particles in this figure is arbitrary. Its value

0.6 has been chosen to provide a clear display of the structure of the cluster.
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condition (a); indicated by solid circles] and a shrinking
system [state C4, initial condition (b); open circles]. For
both simulations E is about equal and constant in time.
The limiting energies are approached only for times
t &8000. This indicates weak mixing properties and a
much smaller Lyapunov instability than, for example, in
Lennard-Jones systems with a repulsive core. ' To ob-
tain an estimate for the Kolmogorov entropy far from
equilibrium we have integrated the equations of motion
forward in time for 60 time units starting with the homo-
geneous initial distribution (a) of run C3. In Fig. 10 the
time dependence of the total kinetic energy K (t) is shown

by the solid curve. At t =60 a time-reversal transforma-
tion (x~x, p~ —p) is performed and the system subse-

quently integrated backward (dashed line). For the initial
20 time units of the time-reversed simulation K is indis-

tinguishable from that in the forward direction: the clus-
ter already formed at t =60 starts to dissolve when going
back. At t =40, however, this trend changes and E starts
to increase again indicating continuation of cluster
growth even in the backward direction. This result is

qualitatively independent of the computational accuracy
(time step). From two runs with time steps differing by a
factor of 2 we estimate that the sum of all positive
Lyapunov exponents is of the order of 1. This provides
an order-of-magnitude estimate for the Kolmogorov en-

tropy hz which is equal to the sum of the positive

Lyapunov exponent: hid =1. This very small value indi-

cates that any direct measurement of the Lyapunov spec-
tra of such systems is a very tedious procedure.

IX. DISCUSSION

For almost all initial conditions the simulations of
model (2.2a) lead to a single dense cluster very early in
the run. It floats in the surrounding atmosphere and
grows steadily until it reaches its equilibrium size. How-
ever, it may happen by accident that two clusters of al-

most equal particle number N, &=N, 2 are formed and

compete against each other for further growth. Such a
situation has been encountered in one of our simulations
and has been recorded on film and videotape. ' Such
metastable states are characterized by a local maximum
of the entropy. In finite systems they do not persist very
long. When the clusters collide, the global equilibrium

2v(x)=x e ", ~=5, ~e, ~=l . (9.2)

Half of the particles carry positive charges (e; =1), the
other half negative charges (e, = —1). The equilibrium
thermodynamic properties are also given in Table I (state
E1). In Fig. 11 a snapshot of an equilibrium
configuration is depicted. The positively charged parti-
cles (red) and the negatively charged particles (blue) clus-
ter separately in neighboring clusters, in this way forming
a large dipole cluster. This simulation demonstrates that
charged unstable systems may lead to quite complicated
cluster patterns.
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characterized by a single cluster is established rather
quickly. If X, &+X, z before the collision exceeds N, ( ao)

the surplus of clustered particles is evaporated off during
the collision process. '

The exchange of particles between cluster and sur-
rounding atmosphere is small. This accounts also for the
slow convergence rate towards equilibrium. A particle
trapped in the cluster oscillates very stably in the mean-
field potential experienced in the cluster. This is clearly
visible in the film mentioned above. '

The choice of potentials of type (2.2a) —(2.2c) for ob-
taining unstable systems is not unique. It has been men-
tioned already in the Introduction that a potential of the
electrostatic type including attractive and repulsive re-
gions may be mechanically unstable. As an example we
present results for a system with a Hamiltonian

N p. X —1 N

Htt= g +a g g e, e, v(~x, —x, ~),
i =1 i =1 j=i+1
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