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Efficient box-counting determination of generalized fractal dimensions
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An alternative algorithm for the numerical analysis of fractal structures and measures is present-

ed, which consumes computer time and memory only quasiproportionally to the size of the input
data set. This efficient tool is applied to various deterministic and random rnultifractals, in particu-
lar to the growth probability measures of diffusion-limited aggregation clusters in two- and three-

dimensional embedding space.

I. INTRODUCTION

Dtt (q) = lim
1

~-o q
—1

in+ ",'[p„(e)]e
in@

Here the index v labels the individual boxes of the e cover
and p, (e) denotes the relative weight of the vth box: In
practice the measure under investigation is represented

In the last two decades it has become clear that non-
trivial self-similar objects, the so-called fractals, play a
major role in many physical situations like nonlinear dy-
namics, critical phenomena, and growth processes.
The crucial feature of such structures is that they are
(often in a subtle and statistical way) invariant under con-
tractions or dilations in the sense of symmetry opera-
tions.

Fractals embedded in Euclidean space E" usually do
not have a finite d-dimensional volume and cannot be de-
scribed in terms of traditional geometry. In order to as-
sign well-defined "contents" to these objects, the D-
dimensional Hausdorff measure has to be used, where
D C [O, d] is the Hausdor6'dimension. While the rigorous
determination of D is almost always impossible for a frac-
tal point set XCE, a very good estimate can be
achieved, in general, by computing the so-called box-
counting (or capacity) dimension Dtt (Ref. 6).

It is defined as

lnN( e)
Dq = lcmI-o 1n(1/e)

where e is the lattice constant of d-cubic covers of X and
N(e) is the number of cubes contained in the minimal
cover.

The single number D~ may be sufficient for a geometri-
cal characterization of the fractal set considered, but
physical processes or probability and weight distributions
that take place on such a structure have to be described
by multifractal measures. The concept of multifractality
has turned out to be of considerable value for the quanti-
tative investigation of the growth zone of aggregates, ' of
the current distribution of critical percolation clusters,
or the distribution of local strain in breaking solids. '

The formalism is based on the so-called generalized (box-
counting) fractal dimensions Dtt (q), q E IR,

"defined by

by a finite ensemble of points (time series, collection of
particle positions in a computer-simulated aggregate,
etc.) in E", whose number N may have to be very large in
order to catch the intricacy of the fractal. Within this
approximation p (e) is given by

N„(e)
p„(e)= (3)

where N, , (e) is the number of points falling into the vth
box. The definition of generalized box-counting dimen-
sions obviously includes the ordinary one, i.e.,
Dts =D~ (0 ).

Let us emphasize here that the spectrum of generalized
fractal dimensions Dtt(q) quantifies the nonuniformity of
the measure defined on the fractal set X. If, on the other
hand, p were chosen as the Dz(0)-dimensional Hausdorff
measure [assigning to each subset A CX its fraction of
Ds(0)-dimensional volume], then Dtt(q)=Dtt(0) for all

q ER. In the following we will refer to this uniform mea-
sure as the trivial one.

A very suggestive way to treat multifractals is provided
by the thermodynamic formalism, which resolves these
measures into homogeneously scaling components locat-
ed on subsets of individual ordinary box-counting dimen-
sion f (a). The entire range f (a) of dimensions (or scal-
ing indices) can be constructed easily via Legendre trans-
formation once the Dtt(q) are known.

So "all" we need are efficient numerical schemes for
computing the generalized box-counting dimensions from
a given pile of data encoding the multifractal
phenomenon in question. At first sight it seems quite
easy to devise such schemes in a straightforward manner
starting from the clear-cut recipe as expressed in Eqs. (&)

and (3). The problem is, however, that consumption of
computer resources, i.e., memory and CPU time, grows
nonlinearly with the number X of data points available. '

Several computational procedures have been reported in
the recent literature, ' but even advanced algorithms con-
sume CPU time of order X . ' Attempts to reduce this
time via Monte Carlo techniques' may entail intolerable
statistical errors.

In summary, the box-counting approach to multifrac-
tal analysis has been regarded, until now, as cumbersome
in general, and as even unfeasible in the case of intricate
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subsets of higher-dimensional Euclidean space (d ~ 3)
(see, for example, Schuster in Ref. 2). The main objective
of the present paper is to demonstrate that this opinion
has to be revised. In Sec. II we will construct an efficient
box-counting algorithm, which reduces the memory costs
to order X and limits the CPU time to order N log2%. In
Sec. III our method is first tested with various standard
objects of Euclidean geometry and then applied to several
deterministic and stochastic fractal structures and mea-
sures, namely, the Kiesswetter curve, the Julia set associ-
ated with the Cayley problem, and diffusion-limited ag-
gregation (DLA) clusters in two- and three-dimensional
embedding space. In particular, this computational
scheme enables us to determine the spectrum of scaling
indices of the growth zones associated with 3D DLA.

II. COUNTING BOXES THE ECONOMICAL WAY

In the following we describe the basic ideas instrumen-
tal to improved box-counting strategies and give a de-
tailed formulation of the actual algorithm applied to the
examples presented in Sec. III. Our approach is a spinoff
of an extensive investigation of multifractal growth phe-
nomena as simulated and analyzed with the aid of paral-
lel computer networks (transputer cluster). '

Let ICE be a given point set consisting of the vectors
s(i), i =1, . . . , N. The components of these vectors are
denoted by s&(i), 5=1, . . . , d. Our task is to determine
the generalized box-counting dimensions Dtt(q) as
defined in Eq. (2). We first introduce the scales

e,„=max I max[ss(i} ]—min[ss( j)]j,
5 i J

e,„=min[([s(i) —s(j)((] . (5)
I,J

e,„ is used to confine our data set to the unit d cube Q.
This is achieved by proper choice of the origin and by
normalization of the resulting non-negative coordinates,

(4)

1.e.,
ss(i):ss(i)/( ,e„+—b ), (6)

where 6 is a small positive number guaranteeing that
ss(i) K [0, 1]. Note that this affine mapping does not alter
the dimensional properties of the point set in question.

Next we construct a sequence of rational decomposi-
tions of the unit hypercube, where the coarseness de-
creases roughly exponentially and is bounded from below
by e;„. Given an arbitrary positive integer M, let

k —=int(e;„~™),m =0, 1, . . . , M .

At the mth stage, Q is decomposed into (k ) d-cubic
boxes of edge e =1/k, which satisfies e;„&e «1.
The fact that M+1 grid sizes t e ] are nearly equidis-
tantly distributed on a logarithmic scale is very useful for
the statistical analysis of the box-counting results.

Now the boxes in the mth family could be labeled in
the usual way by the integer vector a EZ" with
0&a& &k . One of the crucial steps in our new ap-
proach is to map these boxes instead, in a one-to-one
manner, onto a linear list. This map can be chosen as

d

f(a)= g(k ) 'as . (8)
6=&

b(1) «b(2) «b(N) . (10)

All the necessary ingredients for calculating Dtt(q) from

Eqs. (2) and (3) are now obtained straightforwardly:
N(e ) is just the number of diFerent blocks of identical
elements in b(i), and the N„(e ) are given by the lengths

of these blocks. The actual addresses are irrelevant in
this context.

Introducing the "partition function, "

the generalized box-counting dimension Dtt(q) is approxi-
matically determined by the slope of lnZ (q) versus

inc . The accuracy of this estimate can be significantly

improved by employing a hierarchical cluster analysis'
that computes the particular subset of the M+1 pivotal
values Z (q), which achieves the best linear fitting. This
technique is also an important part of our strategy, be-
cause generally the subboxes will not necessarily be cen-
tered around points of the fractal.

Let us summarize our box-counting method by formu-

lating a specific realization in an algorithmic way.

Input: (i) Data matrix S with elements ss(i),
i =1, . . . , ¹

5= 1, . . . , d; where 0 «ss(i) ( 1.

(ii) Lower bound e;„for box partition.

(iii) Positive integer M controlling of pivotal

points.

(iv ) Moment parameter q A 1.

Output: Generalized fractal dimension Dtt(q).

(a } e~ 1;m ~0;r~(e,„)

(b) While 1/e & e;„do
(bl } k~int(e).

{b2) x ~—1nk.

(b3) Evaluate b(i)=lsd &ks 'int(k s&(i)) for

(b4) Sort list b(i)

(b5) j~2; a~b(1); ~nl; Z (q)~0.

(b6) While j «N do

Note that 0 f(a) (k )"—1.
What we really need to know are the pertinent box ad-

dresses b(i) of the points s(i) of our normalized data set
4'. These addresses are simply given by

b(i) =b—(m;i) =f(int(k s(i)))
d= g (k ) 'int(k ss(i)} .

5=1

The next important step is to reshuNe this linear list until
the resulting list b(i) displays ascending order, i.e.,
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(b6a) if b ( j)Aa, then Z (q)~Z (q)+(n IN)~;

a~b(j); n~l; else n~n+1 fi

(b6b) jr+ I od

(b7) y ~ln[(Z (q)+(n IN)~]I(q —1).

(bg) m~m +1.
(b9) e+—e r od.

(c) Classwise linear regression with random point selec-
tion for abcisses x and ordinates y to determine

Dg (q).
The special case q = 1 can be treated along the same lines.

The computer resources needed to run this algorithm
are easily estimated: The determination of the box ad-
dresses requires 0 (N) computations including Nd multi-
plications. As a matter of fact, most of the CPU time
consumed is used for sorting these addresses. Employing
the highly efficient Quick-sort inethod, it is possible, how-

ever, to limit this time and, as a consequence, the total
time required to O(N log2N). [Note that the deterrnina-

tion of e;„requires 0 (N ) steps, if its value is not known
beforehand from the data-generating procedure. But this
computation has to be performed only once anyway, in-

dependent of the number of pivotal points, and is reward-
ed by significantly enhanced precision for Ds(q)].

As for the memory demand, we come to a similar con-
clusion: Besides the input data array, only one further
list of length N is needed for storage of the box addresses,
and another return stack of length logzN for executing
the sorting algorithm.

This overall improved performance of our technique is
a solid basis for box-counting multifractal analysis of
phenomena even in high-dimensional space, where very
large data sets have to be handled.

III. TESTS AND APPLICATIONS

In the following we first test our method using various
simple Euclidean manifolds, like lines, planes, cubes, and
2D tori. After that, the technique is applied to certain
deterministic and stochastic fracta1 phenomena, respec-
tively: the Kiesswetter curve, a Newtonian Julia set, and

diffusion-limited aggregates in two- and three-
dimensional embedding space. The calculations have
been done both on an IBM/370 machine and with the aid
of a parallel computer network (transputer cluster). In
the latter case software parallelizing concepts like "farm-
ing"' have been used.

A. Standard objects

If the Euclidean test objects for our improved box-
counting algorithm —straight lines or planes, for
example —are generated pointwise on a regular d-
dimensional grid, then we will numerically recover their
exact topological dimensions. If, on the other hand, the
data set representing the manifold in question is generat-
ed randomly and off-lattice, one usually has a hard time
in determining its dimension by box counting. This fa-
miliar problem is well suited to put our method to the
test.

Therefore, the point sets characterizing lines, planes,
and cubes in E have been produced with the help of the
IMSL uniform random number generator.
The results for Ds(0) as obtained by running our algo-
rithm with M =60 are presented in Table I.

The convergence with growing N is very good for the
line, while it is somewhat slower for plane and cube. This
may also have to do with the random number generator;
nevertheless, the results are quite accurate for
N )5X10.

The point set representing a two-torus in E, i.e., a
"doughnut manifold, " has been produced quasistochasti-
cally by using two rationally independent winding num-
bers co, = 1 and co&= —,'(&5 —1). The performance of our
method is again very satisfactory (see Table I).

As the way our data sets are created simulates the
trivial measure on the Euclidean objects considered, we
have also computed Ds(3) in all cases. The results of this
further test are also listed in Table I and conform to the
analytical requirement Ds(q) =Ds(0) for all q ER.

Our box-counting algorithm has been applied to torus
manifolds also in a different context: A very appealing
approach to the analysis of seemingly irregular time
series is provided by the reconstruction technique pro-
posed by Packard et al. ' and Takens, ' which reveals

TABLE I. Numerical determination of generalized dimensions D&(0) and D&(3) for the trivial measure on Euclidean objects
(e,„=0.5, e,„=0.05; all standard deviations ~ 0.02).

Number of
points X

1000
2000
5000

10000
20 000
30 000
60000
90000

Line

0.991
1.000
1.000
1.000
1.000
1.000
1.000

Area

1.808
1.929
1.973
1.996
1.999
2.000
2.000

D (0)
Cube

2.657
2.759
2.881
2.854
2.888
2.928
2.931
2.978

Torus

1.61
1.80
1.924
1.948
1.97
1.985
1.999
2.01

Line

0.961
0.984
0.990
0.997
0.998
0.998
0.998

Area

1 ~ 562
1.703
1.821
1.941
1.943
1.959
1.978

Dq(3)
Cube

2.166
2.438
2.546
2.665
2.713
2.777
2.794
2.832

Torus

1.750
1.793
1.863
1.909
1.941
1.998
1.991
1.998

Topological
dimension
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whether a deterministic (strange) attractor in pseu-
dospace is controlling the variation of the signal in time.
The evaluation of the fractal dimensions of such an at-
tractor is again very difticult, especially when high-
dimensional embedding pseudospace is required (for de-
tails, see Ref. 2).

Standard box-counting techniques are rather ineffective
even in case of simple quasiperiodic time series generated
by superposition of signals with frequencies co~ and co&, re-
spectively. The corresponding "attractor" is simply a
two-torus. Our improved method has been applied to
various artificial quasiperiodic time series by Teuber
et al. in order to obtain standards for dimensional
analysis of real time series encountered in acoustical
chaos. Regarding the computation of the correlation di-
mension Dz(2), this technique has also been compared
with the Grassber ger-Procaccia algorithm: For the
above-mentioned two-torus and N =90000 the latter al-
gorithm yields D~(2) =2.08, while our box-counting
technique finds the value 2.01.

TABLE II. Box-counting dimension Dz(0) of Kiesswetter
curve (e,„=0.25, e,„=0.01; standard deviation 0.015).

Improved Standard
box counting box counting (Ref. 22)

Analytical
result

16 384
65 536

1.435
1.461

1.39 1.5

rithm in combination with a classwise linear regression
analysis based on random point selection. ' The results
are compared in Table II.

Next we report on the application of the improved
box-counting algorithm, to a complicated multifractal,
namely, the "natural" measure on the Julia set associated
with the Cayley problem:

Let

F(z)=z 1, zF—C(: .

The roots of F are

B. Deterministic fractals

i (2m/3)k k 0zk —e (15)

The first nonstandard tests object for our method are
the so-called Kiesswetter curves of degree k F5. ' Such
a curve is the graph of the function F'"'(x), which is
defined and bounded on [0,1] and satisfies

F'"' —=f„s=0, 1, . . . , k .
s

(12)

The f, are arbitrary parameters for s = 1, . . . , k —1,
while one fixes fo =0 and fk =1. Dilational invariance is
enforced by the condition

F' '(x)=f;+(f;+, f, )F(kx i—), —

i (i +1)
k' k

(13)

where i =0, 1, . . . , (k —1).
Choosing k =4 and f, = —0.5, fr=0, f3=0.5, one

produces a special realization, which has D (s)0=1. 5

(Ref. 21) and is depicted in Fig. l.
This curve has recently been used by Dubuc et a/. for

an assessment of box-counting methods. The numerical
estimate for Ds(0) obtained by them with standard tech-
niques can be significantly improved by our new algo-

Denote by A (z„) the basin of attraction of z„with
respect to the Newtonian iterated map defined by F,
namely,

N(z) =z —, = —', z+F(z), 1

F'(z) (16)

J =a~(z, )=ax(z, )=ax(z, ) .

Let I denote the inverse orbit of 0 under N:

I =lzeClN'(z)=0, IEl~(l .

Then it can be shown that

X=I(closure of I) .

(17)

(18)

Equation (18) induces a method for producing iteratively
a dense subset of J. As a matter of fact, this technique

The Julia set J is a strange repellor of N and constitutes
the simultaneous boundary of the basins of attractions of
the zk, i.e.,

1.0

O

0.0—

—1.0
I

0.0 0.2
I

0.4
X

I

0.6
I

0.8 1.0

O
CQ

l I

—2. 0 —1.0
I

0.0

Re(z)

I

1.0

FIG. 1. The Kiesswetter curve of degree 4 produced by the
parameter choice described in the text.

FIG. 2. Inverse-orbit generation of the Newtonian Julia set
associated with Cayley's problem.
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20000
133 326
333 308
666 614

1 000000

Dq(0)

1.334
1.393
1.399
1.416
1.420

Dq(1)

1.209
1.232
1.209
1.234
1.228

D, (2)

1.128
1.151
1.128
1.153
1.132

TABLE III. Numerical evaluation of selected generalized di-

mensions for the nontrival measure p defined on the Julia set J
(e,„=0.396, e,„=0.0049; all standard deviations 0.025).

U'
cn

l

V"

10—

0—

—5
l I I

—1 0 1 2 3 4 5 6 7 8

simultaneously defines a measure p on the Julia set. p
can be shown to represent the unique measure with maxi-
mal entropy. Figure 2 gives an impression of the mul-
tifractal emerging by iteration.

Using large samples of points generated by the
inverse-orbit method, we have analyzed the dimensional
properties of p with our box-counting algorithm. The re-
sults for Dz(0), Dz(1), and Dz(2) as shown in Table III
are in good agreement with the analytical approximation
by Nauenberg and Schellnhuber based on a forward man-
ifold iteration scheme. The numerical analysis of Julia-
set measures may be further improved by combining our
method with the strategies proposed by Saupe.

C. Multifractal properties of DLA clusters

Some years ago Witten and Sander introduced a very
successful model for diffusion-limited aggregation,
which is easily implemented on a computer and displays
interesting features. Extensive studies have revealed that
the aggregates grown according to the rules of this model
are random fractals; for recent reviews see Refs. 4 and 28.

We have numerically generated and analyzed DLA
clusters consisting of approximately 5X10 particles in
two- and three-dimensional embedding space. Using the
efficient computational technique described above, we
find Dz(0)=1.65 and Dz(0)=2. 3 for d =2 and 3, re-
spectively. These results differ slightly but definitely from
the familiar values obtained for the mass-scaling dimen-
sion, namely, D =1.70 for d =2 and D =2.51 for
d=3

FIG. 3. Solid lines: improved box-counting results for
modified generalized dimensions (q —1)D&(q), characterizing
the multifractal growth probability measure of DLA clusters for
d =2 and d =3, respectively. Dashed lines: Linear approxima-
tions according to Ref. 29.

It is well known by now that the growth-site probabili-
ty distribution [p, I, ~ „ofDLA clusters is a multifractal
measure. We denote by A the perimeter of the aggregate
and by p; the probability that site i becomes part of the
cluster in the next time step. Knowledge of this measure,
which is completely characterized by the infinite hierar-
chy of generalized fractal dimensions Dz(q), q ER, is
crucial to the understanding of the growth phenomenon
under consideration.

We have used our box-counting algorithm for comput-
ing Dz(q), in particular, on the interval q K[0,8] and
compared the results with recently published values ob-
tained by different methods. ' The growth-zone data
sample was generated by launching random-walking test
particles, which may collide with the quenched aggre-
gate. The collision record directly yields the desired
probability measure.

The growth-probability results for DLA clusters in
two- and three-dimensional embedding space are shown
in Table IV and Figs. 3 and 4, respectively. Our numeri-
cal values regarding d =2 are in good agreement with
singular analytical results stating that the entropy dimen-

TABLE IV. Selected generalized dimensions D&(q) for the
multifractal growth probability measure of DLA for d =2, 3
(size of cluster: 5X10 particles; number of tracer particles:
10 ). (e,„=706, e,„=12.9; all standard deviations ~ than
0.02).

D, (q)

1.5—

—1

0
1

2
3
4
8

d=2

1.352
1.012
0.902
0.849
0.849
0.567

d=3

2.696
2.191
1.950
1.812
1.725
1.669
1.470

0.5—

I I I [ [ I

0 0.5 1 1.5 2 2. 5 3 3.5 4

FIG. 4. Box-counting determination of spectrum of scaling
indices f (a) for d =2 and 3, respectively.
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sion Dtt(1) has to be precisely 1 for any connected object
in E (Ref. 31) (see Table IV) and that the lower bound-

ary of the support of f (a) satisfies a;„=Ds'""'"(0)—1

(Ref. 32) (see Fig. 4).
From Fig. 4 one can see that we find for the entity

(q —1)D&(q) in the regime q ~2 a quasilinear behavior,
similar to the one reported by Halsey et al. ; in the in-
terval 0 q ~ 2 we are able to provide for an independent
confirmation of the results of Armitrano et a/. , who
find nonlinear functional dependence by using an electro-
static analogon and solving numerically the Laplace
equation by standard Green's techniques.

We are not aware of any previous box-counting deter-
minations of the multifractal growth probability measure
of 3D DLA. However, interesting analytical approxima-
tions were presented quite recently by Wang et al. ,

who employ a kinetic renormalization group approach.
These authors find, for example, Dtt(l)=2. 21, a result
that differs somewhat from the value 2 predicted on gen-
eral grounds. Our numerical result for Dtt(1) (see Table
IV) fits much better.

IV. CONCLUDING REMARKS

In the present paper we have demonstrated that box-
counting analysis of multifractal phenomena is quite gen-
erally possible if efficient computational strategies are em-
ployed. The costs of the particular algorithm presented
here depends quasilinearly on the size of the input data
set. This high performance is achieved by a philosophy
similar to the one underlying the definition of Lebesgue
integration: Instead of searching the almost everywhere
empty Euclidean space for sample points, we set out with
the data and determine their coordinates. This means
that our technique is range oriented as opposed to the
previous domain-oriented ones. Applications of the im-
proved algorithm to random multifractals have produced
several novel results.

After completion of this work we came across a recent
paper by Liebovitch and Toth, who have independently
developed a similar box-counting method for the compu-
tation of the capacity dimension. In fact, the basic idea
instrumental to efficient box counting is rather evident,
but its full potential has to be explored now.
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