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Family of exact solutions for the Coulomb potential perturbed by a polynomial in r
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A method based on supersymmetric quantum mechanics is given for obtaining exact solutions of
the potential V(r)=a/r+p&r+p2r'+p3r'+p4r where a and the p's are parameters, provided
certain relations are satisfied between the parameters. Detailed results are given for three specific
cases. The potential in question gives rise to some very interesting shapes (double-well, etc.). The
applicability of the shifted 1/X expansion method to such potential shapes is examined by compar-
ing eigenenergies obtained by this method with the exact ones obtained from supersymmetric con-
siderations. It is found that in certain situations, the shifted 1/N expansion method may give poor
or erroneous results. Applicability of the proposed method to potentials involving higher powers of
r is also discussed.

I. INTRODUCTION

The Coulomb potential perturbed by a term or terms
involving various powers of r occurs in several physical
contexts and such potentials have been investigated by a
number of workers. The potential

may be considered to correspond to a spherical quadratic
Zeeman effect and has been examined. ' The ion-sphere
model used in plasma-physics problems also has the
same potential form. A generalization of the above two
potentials,

aV(r)= —+p„r"
r

has also been investigated.
Gupta and Khare suggested

a
V(r) =—+p, r +p2r (4)

as a quark confining potential on the basis of the PJ
splittings of charmonium levels. This potential or its spe-
cial cases have been studied by several authors. Po-
tentials of the form

Z Qo

V(r) = — g Vt, (A.r)",
r A=o

where A. is the screening parameter, have also been inves-

aV(r)= —+p r, a(0
r

where a and p, are parameters, corresponds to a spheri-
cal Stark effect in hydrogen. This potential also occurs in
the context of quarkonium. and similar bound-state prob-
lems in particle physics, and has been studied by a num-
ber of works with a variety of techniques. ' The po-
tential

aV(r)= —+p r2

tigated. '

Recently Dutra has obtained an exact solution for the
potential

aV(r)= —+p~r+p2r +p3r +p r
r

(6)

in which x refers to either the one- or the three-
dimensional variable. Numerical results have been ob-
tained for a tenth-degree even-power polynomial poten-
tial (%=6, a=0).

There have been a number of investigations on even-
power polynomial potentials. References may be found
in Adhikari, Dutt, and Varshni An additional recent
reference is that of Kaushal.

In the present paper we give a general method using
supersymmetric quantum tnechanics (SUSYQM) for ob-
taining a family of exact solutions for the potential (6)
subject to certain relations between the parameters. We
may note here that a special case of the potential (6),
namely the Coulomb potential (p, =p2=p3=p4=0) has
been treated by SUSYQM by other workers. Khare
and Sukhatme have produced a family of phase
equivalent potentials to the Coulomb potential, some of
which have shapes that bear a similarity to some of the
shapes produced by Eq. (6). Here we are interested in the
case when p, , p2, p3, and p4 are not equal to zero. De-
pending on the values of the parameters, the potential (6)
gives rise to a variety of interesting shapes (e.g., double-
well, etc.). The fact that we are able to obtain an exact
eigenenergy for one of the levels for such potential shapes

where a and the p's are parameters, proved two of the pa-
rameters depend on the other three parameters through
certain relations.

Adhikari, Dutt, and Varshni have considered a more
general potential

2N

V(x)= g b„zx" +alx+l(1 + i)lx, b2tv 2 &0,

42 184 1990 The American Physical Society



42 FAMILY OF EXACT SOLUTIONS FOR THE COULOMB. . . 185

provides us with an opportunity to examine the applica-
bility of the shifted 1/N expansion method to such
potential shapes. The shifted 1/N expansion method has
proved to be quite successful for a variety of potentials
with simple shapes. It is of obvious interest to examine
how well it does for more complicated shapes. The plan
of the paper is as follows. In Sec. II we present a general
method of obtaining exact solutions for the potential (6}
and we illustrate it by three cases. In Sec. III we apply
the shifted 1/N expansion to this potential. The numeri-

cal results are presented and discussed in Sec. IV. In Sec.
V it is shown that the proposed method can also be ex-

tended for potentials which have terms in higher powers
of r. Throughout the paper, we shall use atomic units in

which Zm =A'=e= l.

II. EXACT SOLUTIONS FOR THE POTENTIAL (6)
FROM SUSYQM

where

+ V+(x),

( )
2

)
dW(x)

(9)

W(x} is called the superpotential and Q, Q the super-
charges, whose explicit forms are given below:

In one dimension the Hamiltonian of SUSYQM is
given by

H+ 0
Hs IQt Q

(12)

If supersymmetry is unbroken the ground-state energy is
zero and the ground-state wave functions are of the form

P+(x}
0

0

(x)

depending on the normalizability of P+(x) or P (x).
Now if lq&) is a ground state then

Qlq &=Q'lq &=0. (14)

From (10}and (11) it follows that

g(x) =exp 2 f W(t)dt (15)

Now we consider the potential (6). The effective potential
corresponding to (6) can be written as

V' (r)= 1(l +1) a+—+p1r +p2r +p3r +p4r1 (16)

and the Schrodinger equation, as

d g+ l(1+1) a+ +p1r +p2r
dr r

+p3r +p4r E'$=—0 .

Following the standard method of constructing exact
solutions of the Schrodinger equation from supersym-
metric considerations, ' we take the superpotential in
the following form:

0 0
Q =(p+iW) (10)

b 2g r "' h;W=a+ —+cr+dr + g + gr ( 1+g,r2, .
) 1+h;r

0 1

Q =(p iW)—0 0

The relations obeyed by Q, Q, and H are the following:

[H,Q]=[H, Q ]=0,
Q2 (Qt)2 0

The eigenstates of H are

V' (r) E= W + W' —E, , — (19)

where E, denotes the supersymmetric energy, we have,
from Eq. (18), after some manipulations,

(18)

While n2 can have any positive integral value, n, is re-
stricted to integral values up to and including 4 as each g,
puts a constraint on the parameters a,p, , . . . . Writing

b (b —1) 2ab 4V' (r)+E, E= +— +r(2ac+2bd+2d)+r (c +2ad)+2cdr +d r +4a gr r i =1 1+gi r

l g. I l h,
+4b g +4n, c 4c g —+4dn, r 4d g —+Za g

;=1 1+g;r; 1 1+g,-r; 1 1+g,.r~,.
1

1+h, r

2b
"2 "2 h' 2 d/h,+ g h; 2b g +2—cn2 2c g +Zdn2r —2d g —+2 g—

1
1+h;r .

1
1+h;r .

1 h; .
1

1+h;r
nl g.g.

JWl

1

1+g r
1

1+g; r
hih, h, h,+XX

1 h,. —h. 1+h,.r 1+h.r
J+l

nl 2
1

, =, (g;+h) )
X

g, h r+h. g; h g,

1+g.r~ 1+hJ r

nl 2gi+a +2bc+c+ g 1+g;r
(20)
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Now if we put the expression for V' (r) from (16) in
the left-hand side of Eq. (20), and equate each power of r
and the coefficients of 1/(1+g;r ), 1/(1+h;r), and
rl(1+g;r), we get

and

P3
p2 =c +2ad =

4p4

a+p4
(I + 1)

(25)

b =1+1,
c +2ad =p2,
2cd =p3

4

pi =2ac+d(4n, +2n2+21+4) .

(21a) The energy is given by

(21b) E = (a—+2bc+c} . (26)

(21c)

(21d)

(21e)

This is the result obtained by Dutra. To show the
equivalence, we identify his p with 21+—,, and our a, p„
p2, p~, and p4 with Dutra's —2e, 2A, , to, 2a, and 2P, re-
spectively. Then from Eqs. (24) and (25), we have

is normalizable.
The constants a, g;, and h; are found from the follow-

ing constraint equations:
n

CX

2(1 + 1 )
(22a)

In Eq. (21d), the negative sign has been taken to ensure
that

exp —f W(t)dt

and

=tr'+'exp(ar+cr l2+dr l3)

—&(p+ &/2)/2ex CO Q

2v PP 4(2P)

N Q
8e = ——

3 2 (2p+1),
2P ( 2P )3/2

2 3

8A, = — —2&2P(2p +5),

(27)

(28)

g;h.
4ag; —4d+2 =0, i =1, 2, . . ., n,

g, +h
(22b) a, v'2P

2v'PP 3
(29)

2

4bg; —4c —4 g +2+ +2g;=0,g!gJ h g;

{+') g' gJ' J g'+hJ

l 1y 2y ~ ~ ~ y n

and

(22c}

These results are identical to those obtained by Dutra.
Case II. We take n&=1 and n2=0. There will be

three constraints. If we choose 1, a, and p4 arbitrarily,
then p3, p &, and p2 are given by

pi =(1+1)(4!+6)p4/a,
h h;

2ah —2bh —2c + + g =0,
h. (A )

h h.

j=l, 2, . . . , n2. (22d)

Finally,

E E, = — a +—2bc+(4n, +2n2+1)c —g2 2d

j hj

(23)

Since there are 6+2n, +n2 equations and 4+n, +n2
variables (namely a, b, c, d, g;, and hj ) to solve, there will
be 2+ n

&
restraints on the parameters 1, a, p I, p2, p3, and

p4. Hence our early assertion that n, cannot be greater
than 4. We give below some specific examples for obtain-
ing exact solutions.

Case I. We take n, =n2=0. There will be two con-
straints on the parameters. If we take 1, a, p3, and p4 as
arbitrary, then we have

—Qp4(2!+ 8),
2(l + 1)+p4

a+p4
(I + 1)

p&=

P3P2=
4p4

Also we have

and

—(21 +7)
4(1+1) 2+p4

where

g, = —2(1+ I )+p4/a .

2
CK1 P3P

1/i=(1+g, r )r'+'exp
2(l + 1} 4+p

p4" 3

(30)

(31)

a
2(l + 1 )

pi =2ac +2M +2d
(24)

Case III. We take n&=0 and n2=1. There are two
constraints. If we select I, a, p3, and p4 as independent
parameters, then p, and p2 are given by

ap3 —(21+4)+p4,
2(1+1)+p4 and

p, =-2ac+d(21 +6),
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p2 =c +2ad .

Also, we get

E = (—a +2bc+2c —2dlhi),
and

(32)

Other solutions with larger values of n, and n2 can simi-
larly be found.

III. SHIFTED 1/N EXPANSION

f=r'+'(1+hir)exp(ar +cr l2+dr /3), (33)

a
2(I + 1 )

2ah& —2bh
&

—2c+ =0 .2 2d

(34)

(35)

where b, c, and d are obtained from (21a}, (21c}, and
(21d), and a and h, are determined from

Imbo, Pagnarnenta, and Sukhatme ' have described the
method for obtaining the energy eigenvalues in the shift-
ed 1/N expansion formalism. The necessary final expres-
sions for obtaining the eigenenergies for the potential (6)
are given below.

In the shifted 1/N method, one works with an effective
potential, the position of the minimum, ro, of which in
our case is determined from

a —3p &
r —8p2r —15p3r —24p4r

(21+I)+(2n+I)
3

=[2r( a+pir —+2pzr +3P3r +4p4r )]'~
a —p, r —2p2r —3p3r —4p4r

where n„ is the radial quantum number. %e also have

k =2r( a+pir +—2p2r3+3P34 +4p&r ),
and the energy is given by

k 1 1 a+Pi" +per +P3" +P4r p"' p' ' 1E=
2 3 4 5 +-2+-3+0 -4

ro 4 2 a pi r 2p—zr 3—p3r 4—p4r —k 2 k k

The quantities P' "and P' ' appearing in the corrections to the leading order of the energy expansion are

P' "=
—,
' ( 1 —a )( 3 —a ) + ( 1+2n „)Ez+3( 1+2n„+2n „)E~——['E f+6( 1+2n, )E,E3+ ( 11+30n „+30n „)E3],1

P' '= (1+2n„)82+ 3(1+2n, +2n„)8&+5(3+8n„+6n„+4n„)86

co '[(1—+2n„)E 2+ 12(1+2n„+2n„)E2E~+2(21+59n„+51n„+34n„)E 4+ 2E,S,

+6( 1+2n„)Ei53+30( 1+2n„+2n „)Ei85+6( I+2n„)E38i+2( 11+30n, +30n„)E383

+ 10( 13+40n„+ 42n„+ 28n„)E355]

+co [4E ~Ez+36(1+2n„}E iE2E+38(11+30n„+30n, }E2E3+24(1+2n„)E ~Ez

+8(31+78n, +78n„)E,E3e~+12(57+189n„+225n, +150n„)E3E4]

—co [SE,E3+ 108(1+2n„)E,E 3+48(11+30n„+30n„)EiE3+30(31+109n, +141n„+94n„)E3],

(36)

(37)

(38)

(39)

(40)

in which

E =e /Qr' ' 5 =5 /co' '
1 J

a —3p &
r —8p2r —15p3r —24p4r

a —p &
r —2p2r —3p3r —4p4r

a =2 —
( 2n„+ 1 }co,

5, = ——', 52= —(1—a)(3 —a)/2,

53= ——'5~=2', = ——'a~=2(2 —a) 7

a —2p &
r —4p2r —5p3r —4p4r

F
a —p &

r —2p2r —3p3r —4p4r

3a —Sp &
r —10p2r —15p3r —22p4r

4 a —p, r —2p2r —3p3r —4p4r

2a —3p, r —6p2 r —9p3 r —12p4r
5 = ——

a —p ) r —2p2r —3p3r —4p4r

5a —7p, r —14p2r —21p3r —28p4r

4 a —p, r —2p2r —3p3r —4p4r

IV. RESULTS AND DISCUSSION

Calculations were carried out for the three cases and
the results are shown in Tables I—III. For ease of
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TABLE I. Comparison of the eigenvalues calculated from the shifted 1/N expansion with the exact supersymmetric values for case

Set
No.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

—1
—1
—1
—1
—1
—1

—1
—5

—5
—5

—5
—5
—5
—5

—0.2
—0.2
—0.2
—0.2
—1.0
—1.0
—1.0
—1.0

1.0
1.0
1.0
1.0

—1.0
—1.0
—1.0
—1.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

P4

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.5
0.5
0.5
0.5

p&

—1.581 14
—2.055 48
—2.635 23
—3.241 33
—2.84605
—2.687 94
—3.056 87
—3.557 56

0.31623
—1.106 80
—2.002 78
—2.766 99
—9.17061
—5.850 21
—5.165 05
—5.138 70
14.54648
6.008 33
2.740 64
0.790 57
4.242 64

—0.707 11
—3.299 83
—5.303 30

pz

0.41623
0.258 11
0.205 41
0.17906
2.81623
2.658 11
2.605 41
2.579 06
2.81623
2.658 11
2.605 41
2.579 06
4.081 14
3.290 57
3.027 05
2.895 28

11.581 14
10.790 57
10.52705
10.395 28
5.535 53
3.767 77
3.178 51
2.883 88

E (shifted
1/N expansion)

n„=O

—1.154 71
—1.638 74
—2.240 25
—2.861 33

—121.623 25
—7.975 46

4.51243
7.845 17

11.040 64
14.214 77

—11.143 19
—9.473 67

—11.767 19
—14.62423

3.255 20
14.255 18
21.443 29
28.070 52

—1.998 77
5.516 39
9.207 70

12.338 33

E
(SUSY)

—1.19868
—1.643 64
—2.241 37
—2.861 67
—4.99342
—7.968 19

—11.095 75
—14.245 87

4.493 42
7.843 19

11.040 19
14.214 62

—10.993 42
—9.468 19

—11.762 42
—14.620 87

3.236 83
14.248 89
21.441 50
28.069 87

—2.007 36
5.508 57
9.205 05

12.337 30

identification, each data set has been assigned a number
given in column 1 of each table. In each table, the in-
dependent parameters are listed first, followed by depen-
dent parameters. For three of the data sets, no ro value
could be determined in the shifted liN method, and for
these sets, there is no entry in the energy column. We

discuss each case one by one.
Case I (Table I). It will be noticed that for all data sets

for which E {shifted liN expansion) could be calculated,
there is a satisfactory agreement with the exact super-
symmetric value, except for one. This exception is data
set No. 5. Here it turns out that the energy series [Eq.

TABLE II. Comparison of the eigenvalues calculated from the shifted 1/N expansion with the exact supersymmetric values for
case II. Asterisk denotes large discrepancy with E (SUSY).

Set
No.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

—1
—1

—1
—1
—1
—1
—1
—1

—10
—10
—10
—10
—10
—10
—10
—10

p4

0.1

0.1

0.1

0.1

1.0
1.0
1.0
1.0
0.1

0.1

0.1

0.1

1.0
1.0
1.0
1.0

Pl

—3.478 51
—4.743 42
—6.008 33
—7.273 24

—11.00000
—15.00000
—19.00000
—23.00000
—3.478 51
—4.743 42
—6.008 33
—7.273 24

—11.00000
—15.00000
—19.00000
—23.00000

p2

1.216 23
10.158 11
44.205 41

129.679 06
10.00000

100.500 00
441.333 33

1296.250 00
3.171 28
1.681 14
1.495 09
2.086 57

10.09000
6.00000
7.743 33

15.46000

p3

—0.60
—2.00
—4.20
—7.20
—6.00

—20.00
—42.00
—72.00
—0.06
—0.20
—0.42
—0.72
—0.60
—2.00
—4.20
—7.20

E (shifted
1/N expansion)

n„=O

—6.91343
8.517 20*

38.861 69
94.294 97

—21.277 98
37.350 13*

133.51909*
309.517 25*

—25.663 67
—9.131 29

—10.056 89
—16.361 60
—27.093 83
—15.148 01
—25.872 40

E
(SUSY)

—6.890 78
—28.523 00
—73.076 39

—148.01022
—21.25000
—90.062 50

—231.027 78
—468.015 62
—25.66408
—9.096 05

—10.082 64
—16.361 96
—27.10000
—15.25000
—25.877 78
—48.362 50
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(38)] is divergent, the contributions from the P"' and P'2'

terms being very large. The shape of this potential is
shown in Fig. 1. Besides the well at r=0, it will be no-
ticed that there is another well.

Case II (Table II). Except for those six cases which
are marked with an asterisk, the calculated values by the
shifted l/N expansion are in good agreement with the ex-
act values. We then consider the six discrepant cases.
The supersymmetric method does not necessarily always
give the lowest level for a given l. If this were the source
of discrepancy, then the shifted l/N expansion value
should lie lower than the supersymmetric (SUSY) value,
but the opposite is true in all the six cases. Thus this pos-

sibility has to be ruled out. The shape of the potential for
data set No. 26 is shown in Fig. 2. There are seen to be
two wells of di8'erent depths, the second one being the
deeper of the two. To find out exactly what is happening,
numerical integration of the Schrodinger equation was
resorted to for calculating the eigenvalues for data set
No. 26. Calculations were carried out only for the l value
that occurs in the data set, i.e., l=1. The results are
shown in Table IV. n= l indicates the lowest level for a
given l. It will be noticed that the SUSY calculation
gives the lowest level but the shifted l/N calculation cor-
responds to the n = 8 level. It appears that this is the first
level with l= 1 in the first well, the lower lying seven oth-

TABLE III. Comparison of the eigenvalues calculated from the shifted 1/N expansion with the exact supersymmetric values for
case III. Asterisk denotes large discrepancy with E (SUSY).

Set
No.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

0
1

2
3
0
1

2
3
0
0
0
1

1

1

2
2
2
3
3
3
0
1

2
3
0
0
0
1

1

1

2
2
2
3
3
3
0
1

2
3

—1
—1
—1

P3

—0.2
—0.2
—0.2
—0.2
—1.0
—1.0
—1.0
—1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

—1.0
—1.0
—1.0
—1.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

p4

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.5
0.5
0.5
0.5

Pl

—1.882 16
—2.420 36
—3.027 14
—3.65046
—2.838 26
—2.712 14
—3.097 61
—3.61066

1.633 03
—3.793 68

0.421 40
—0.05062
—4.426 10
—1.004 57
—1.221 75
—4.945 91
—1.869 79
—2.238 54
—5.471 04
—2.567 82
—8.787 27
—5.793 59
—5.162 61
—5.163 50
18.31468
0.908 76

14.612 94
10.258 08

—2.808 90
6.043 21
6.713 81

—4.474 72
2.767 85
4.421 31

—5.552 82
0.815 28

—2.161 91
—5.13690
—7.144 35
—8.843 45

pr

0.084 80
—0.009 46
—0.035 13
—0.044 27

2.688 18
2.536 46
2.487 07
2.463 19
3.20608
2.120 74
2.963 75
2.995 84
2.120 75
2.805 05
2.888 10
2.143 27
2.758 50
2.811 24
2.164 74
2.745 38
3.877 98
3.152 75
2.90007
2.773 75

12.021 20
10.280 61
11.651 03
11.278 79
9.972 09

10.857 30
10.987 61
9.868 76

10.593 01
10.821 60
9.824 19

10.461 00
3.040 37
2.259 98
1.963 36
1.820 92

E (shifted
1/N expansion)

n„=0
—2.774 82
—3.871 27
—4.830 20
—5.721 52
—8.049 06

—11.352 99
—14.664 84
—17.959 81

5.651 32
0.832 11
4.675 57
9.270 83
3.591 37
8.11504

12.439 16
6.445 21

11.450 76
15.427 71
9.362 74

14.837 20
—11.017 95
—12.074 94
—14.868 22
—18.010 87

4.708 84
—2.369 32

3.291 94
17.234 51
7.699 41

14.31086
25.155 29
14.430 36
21.51944
32.159 84
20.756 27
28.167 69

—5.607 63
0.570 12
3.479 11
6.061 15

E (shifted
1/N expansion)

n, =1
—0.142 09
—0.695 14
—1.211 44
—1.733 35
—5.01645
—7.893 91

—10.936 59
—14.011 96

15.921 21
8.369 60

14.323 57
18.888 19
11.520 93
17.350 90
22.013 95
14.805 97
20.806 27
25.085 91
18.091 49
24.397 19

—10.022 97*
—9.298 73

—11.555 36
—14.351 64

30.970 85
16.965 02
28.142 18
36.271 02
22.875 60
32.105 16
42.559 60
29.116 14
37.957 19
48.957 04
35.449 19
44.195 42

8.485 07*
11.529 51
14.508 47
17.488 15

E
(SUSY)

—0.374 83'
—0.748 66'
—1.228 80'
—1.739 46'
—4.87044'
—7.783 21'

—10.850 66'
—13.943 79'

5.633 29
8.121 23'
4.656 65
9.268 94

11.452 75'
8.11307

12.438 74
14.777 66'
11.450 32
15.427 57
18.076 97'
14.837 06

—10.683 86'
—9.230 78'

—11.480 25'
—14.288 55'

4.689 27
15.922 10'
3.273 47

17.228 38
22.622 71'
14.304 56
25.153 57
29.025 07'
21.517 65
32.15921
35.408 19'
28.16705

7.331 44'
11.192 15'
14.373 13'
17.421 84'

'Indicates an excited state (n„= 1).
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such potential shapes also, the shifted 1/N expansion can
give inaccurate results.

V. EXTENSION TO POTENTIALS
WITH HIGHER POWERS OF r

In this section we wish to show that the method that
we have used in Sec. II can also be used for potentials
which involve higher powers of r. The highest power of r
has to be even. Suppose we include terms in powers of r
and r . Then the effective potential can be written as

V' (r)= +—+p, r+p~r +p3r3,a l(1 +1) a
r

+p4r +psr +p6r (41)

As an illustration, we shall obtain the exact solution for
the simplest case, i.e., n, =0 and nz =0.

We write the superpotential W as

b8'=a+ —+cr +dr +er
r

(42)

FIG. 3. Shape of the potential for data set No. 41.

would depend on the potential parameters.
Set No. 61. The discrepancy is due to the shape of this

potential which is similar to that shown in Fig. 3.
Sets Los. 66 and 77. The shape of the set No. 66 poten-

tial is shown in Fig. 4. The shape of the set No. 77 poten-
tial is similar to that of Set No. 66. It appears that for

20

Of the eight parameters (including I) in Eq. (41) only five
are free. We assume that I, a, p4, ps, and p6 are the in-

dependent parameters. Then, following the method of
Sec. II, we get the following relations:

a
2(1 + 1 )

pse= —Qp, , d=
2e

and

c =(p4 —p, /4e )/2e .

15—

10—

0

The parameters p „pz, and p3 are derived to be

p& =2ac+2bd +2d,

p, =c'+2ad +3e +2bc,

and

p3 =2ae +2cd .

And finally,

E = (a +2bc+c—),

—10—

and
—r l2--r /6 —r l4

—15—
VI. CONCLUSIONS

—20
0.5

FIG. 4. Shape of the potential for data set No. 66.

1.5

We have developed a method for obtaining a family of
exact solutions for the potential (6). The method can also
be used for potentials which involve higher powers of r.
A comparison of eigenenergies obtained from the shifted
1/N expansion method shows that if the potential has
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more than one well, the latter method can give poor or
erroneous results or it may give incorrect radial quantum
number for a level. Thus if one is dealing with such po-
tentials, caution is necessary in using the shifted 1/X ex-
pansion method.
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