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Family of exact solutions for the Coulomb potential perturbed by a polynomial in r
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A method based on supersymmetric quantum mechanics is given for obtaining exact solutions of
the potential V(r)=a/r+p,r +p,r’+psri+p,r* where a and the p’s are parameters, provided
certain relations are satisfied between the parameters. Detailed results are given for three specific
cases. The potential in question gives rise to some very interesting shapes (double-well, etc.). The
applicability of the shifted 1/N expansion method to such potential shapes is examined by compar-
ing eigenenergies obtained by this method with the exact ones obtained from supersymmetric con-
siderations. It is found that in certain situations, the shifted 1/N expansion method may give poor
or erroneous results. Applicability of the proposed method to potentials involving higher powers of

r is also discussed.

I. INTRODUCTION

The Coulomb potential perturbed by a term or terms
involving various powers of r occurs in several physical
contexts and such potentials have been investigated by a
number of workers. The potential

ww=%47¢,a<o (1

where a and p, are parameters, corresponds to a spheri-
cal Stark effect in hydrogen. This potential also occurs in
the context of quarkonium and similar bound-state prob-
lems in particle physics, and has been studied by a num-
ber of works with a variety of techniques.!' 2 The po-
tential

mﬁ=%+mﬂ 2)

may be considered to correspond to a spherical quadratic
Zeeman effect and has been examined.?! The ion-sphere
model used in plasma-physics problems?? ~2* also has the
same potential form. A generalization of the above two
potentials,

vin=2<

p +p,r" (3)

has also been investigated.?® ™2
Gupta and Khare” suggested

V(r)=%+p1r+p2r2 @)

as a quark confining potential on the basis of the P,
splittings of charmonium levels. This potential or its spe-
cial cases have been studied by several authors. >~ Po-
tentials of the form

Z S Varr, (5)

Vir)=——
' K=o

where A is the screening parameter, have also been inves-
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tigated.*! 4
Recently Dutra* has obtained an exact solution for the
potential

|R

V(r)=—+4p\r +por’+psri+p,r*, (6)

’
where a and the p’s are parameters, proved two of the pa-
rameters depend on the other three parameters through
certain relations.

Adhikari, Dutt, and Varshni*’ have considered a more
general potential

N
Vix)=3 b, x" *+a/x +1(1+1)/x% byy_,>0,

n=3

in which x refers to either the one- or the three-
dimensional variable. Numerical results have been ob-
tained for a tenth-degree even-power polynomial poten-
tial (N=6, a=0).

There have been a number of investigations on even-
power polynomial potentials. References may be found
in Adhikari, Dutt, and Varshni** An additional recent
reference is that of Kaushal. %

In the present paper we give a general method using
supersymmetric quantum mechanics (SUSYQM) for ob-
taining a family of exact solutions for the potential (6)
subject to certain relations between the parameters. We
may note here that a special case of the potential (6),
namely the Coulomb potential (p, =p,=p;=p,=0) has
been treated by SUSYQM by other workers.*’ % Khare
and Sukhatme® have produced a family of phase
equivalent potentials to the Coulomb potential, some of
which have shapes that bear a similarity to some of the
shapes produced by Eq. (6). Here we are interested in the
case when p,, p,, p;, and p, are not equal to zero. De-
pending on the values of the parameters, the potential (6)
gives rise to a variety of interesting shapes (e.g., double-
well, etc.). The fact that we are able to obtain an exact
eigenenergy for one of the levels for such potential shapes

184 ©1990 The American Physical Society



42

provides us with an opportumty to examine the applica-
bility of the shifted 1/N expansion method**~>* to such
potential shapes. The shifted 1/N expansion method has
proved to be quite successful for a variety of potentials
with simple shapes. It is of obvious interest to examine
how well it does for more complicated shapes. The plan
of the paper is as follows. In Sec. II we present a general
method of obtaining exact solutions for the potential (6)
and we illustrate it by three cases. In Sec. III we apply
the shifted 1/N expansion to this potential. The numeri-
cal results are presented and discussed in Sec. IV. In Sec.
V it is shown that the proposed method can also be ex-
tended for potentials which have terms in higher powers
of r. Throughout the paper, we shall use atomic units in
which 2m =fi=e=1.

II. EXACT SOLUTIONS FOR THE POTENTIAL (6)
FROM SUSYQM

In one dimension the Hamiltonian of SUSYQM is
given by

H, 0
HS={0",0}= o | )
where
d2
Hy=——5+V.(x), ®)
Vo (x)=wxz ¥ x) ©)

dx

W (x) is called the superpotential and Q,QT the super-
charges, whose explicit forms are given below:

00
Q=(p+iWw)

{ o (10)

0
p—iW)

t—

The relations obeyed by Q, QT, and H¥ are the following:
[H*,0]1=[H%Q"1=0,
Q 2 ( Q t )2 =0 .

The eigenstates of H are
J
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¢ (x)
o (x)

If supersymmetry is unbroken the ground-state energy is
zero and the ground-state wave functions are of the form

% (x)
0

¢"(x)= (12)

0

¢° (x) (13)

depending on the normalizability of ¢%(x) or ¢°(x).
Now if |@) is a ground state then

Olp)=0')=0.
From (10) and (11) it follows that

9(x)=exp [j:fo(t)dt] .

(14)

(15)

Now we consider the potential (6). The effective potential
corresponding to (6) can be written as

vefi(r)= l(l+1) +2 +p1r +p,r? +pyr3+p,rt, (16)
and the Schrodinger equation, as
di¢+ 1(1+1)+ +p1r+p2r
+psri+prt—E|y=0. (17)

Following the standard method of constructing exact
solutions of the Schrdodinger equation from supersym-
metric considerations,*>*® we take the superpotential in
the following form:

n

2g;r o+ h;
El 1+hr
(18)

While n, can have any positive integral value, n, is re-
stricted to integral values up to and including 4 as each g;
puts a constraint on the parameters a,p;,. .. . Writing

vel(r)—-E=W>+W'—E, , (19)

W= a+b+cr+dr2+ 2
=1 1+g1

where E; denotes the supersymmetric energy, we have,
from Eq. (18), after some manipulations,

my

— r
Vel +E,—E=212"1 1 280 4\ 500 £ 2bd +2d)+r¥c +2ad) + 2edr +d P +4a S lf‘ .
r i=1 8ir
d 8i 4 1 h,
+4b '21 Tl +4n,c —4c '21 +gr 5 t4dn,r —4d 21 I+gr 5 t2a 21 1hr
1= ] 1= l 1 1=
2b m 2 " 1 1 n d/h
2 h;—2b 2 +2cn,—2c +2dn,r—2d Y —+2
< 1+h 2 2, 1+h;r 2 21 h; 2 1+h;r
44 2‘ g 8:8; 11 ML hzh; h; _ h;
i=1j=18"8&; 1+8j’2 1+gr? i=1j=1 hi—h; | 1+hir  1+hr
JFi JFi
nyony 2h r+hig. h? 20,
1 glh;r +hig; 2, , g;
+2 - +a*+2bc +c + (20)
i§11§; (g +h}) 1+g;r’ 1+hr lgl 1+g,r?



186 ROYCHOUDHURY, VARSHNI, AND SENGUPTA 42

Now if we put the expression for V*%(r) from (16) in
the left-hand side of Eq. (20), and equate each power of
and the coefficients of 1/(1+g;r?), 1/(1+h;r), and
r/(1+g;r), we get

b=I+1, (21a)
c*+2ad =p,, (21b)
2cd =p; , (21¢)
d=—Vp,, (21d)
pi1=2ac +d(4n,+2n,+21 +4) . (21e)

In Eq. (21d), the negative sign has been taken to ensure
that

exp [—fo(t)dt]

is normalizable.
The constants a, g;, and h; are found from the follow-
ing constraint equations:

a
t X =50 22
¢ ,§1h‘ 20+1) (22a)

gizhj
4agi_4d +2 2 =0, i=12, ..., n, (22b)
gith;
; hig.
4hg—dc—4 3 88 423 B 1og=0,
(#i) 8 g] j g,+hl
l=11 2) y n] (220)
and
2h
2ah;—2bh?—2¢ + 24 + =0,
/ J h,. ,éj) h;—h;
j=12, ..., n,. (22d
Finally,
= 2 2d
E—E ,=— |a*+2bc +(4n,+2n2+1)c—27
i
(23)

Since there are 6+2n,+n, equations and 4+n, +n,
variables (namely a, b, ¢, d, g;, and h ;) to solve, there will
be 2+n, restraints on the parameters /, a, p;, p,, p3, and
p4. Hence our early assertion that n; cannot be greater
than 4. We give below some specific examples for obtain-
ing exact solutions.

Case 1. We take n, =n,=0. There will be two con-
straints on the parameters. If we take /, a, p;, and p, as
arbitrary, then we have

- a
20+1)°

pi1=2ac +2bd +2d

aps
=—————Q+4Vp, ,
21+1V s !

(24)

and
P3 a\/E
=c2+ — . 25
P 2ed = T 23)
The energy is given by
=—(a’+2bc +c) . (26)

This is the result obtained by Dutra.** To show the
equivalence, we identify his p with 2/ +3, and our a, p,,
P»» D3, and p, with Dutra’s —2e, 2A, ©?, 2a, and 2B, re-
spectively. Then from Egs. (24) and (25), we have

2 2
8e= |2 ——% __|(2p+1), 27
= V35 " pr (2p+1) 27
=200 _ @ ) am0n 45 28)
B B?
and

v=r'"lexplar +cr?/2+dr3/3)

=plpt1/2)2 exp o’ _ o?
2V2B  4(2B)?
__a 2_@ 3
2‘/53’. 3 r (29)

These results are identical to those obtained by Dutra.

Case 1I. We take n;=1 and n,=0. There will be
three constraints. If we choose /, a, and p, arbitrarily,
then p;, p,, and p, are given by

py=U+1)4l +6)p,/ax ,

ap,

p=————————Vp,(2I +8),
T e, P
_’1_“‘/1’4
P, T U+
Also we have
E= o’ (21 +7)—— (30)
4(1 +1)? \/p4

and

bt Vi
4v'p, 3 ’

—_ + I+1 ar .
p=(1+g,ri)rMlexp 20+1)

(31

where

g =—20+1)Vp,/a .

Case III. We take n;=0 and n,=1. There are two
constraints. If we select /, a, p;, and p, as independent
parameters, then p, and p, are given by

p1=2ac +d (21 +6) ,

and



py=c*+2ad .
Also, we get

E=—(a*+2bc +2c—2d/h,) , (32)
and

Y=r!"Y(1+h r)explar +cr/2+dr’/3), (33)

where b, ¢, and d are obtained from (21a), (21c¢), and
(21d), and a and h are determined from

_ a
a+hy =57 (34)

2ah,—2bh}—2c +i—d=o. 35)
1

a—3p,rt—8p,r3—15p,rt—24p,r°
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Other solutions with larger values of n, and n, can simi-
larly be found.

III. SHIFTED 1/N EXPANSION

Imbo, Pagnamenta, and Sukhatme®! have described the
method for obtaining the energy eigenvalues in the shift-
ed 1/N expansion formalism. The necessary final expres-
sions for obtaining the eigenenergies for the potential (6)
are given below.

In the shifted 1/N method, one works with an effective
potential, the position of the minimum, ry, of which in
our case is determined from

172
21 +1)+(2n +1) P —2pr —3pyr —apr? ] =[2r(—a+p,;r?+2p,r*+3p,ri+dp,r3)]'?, (36)
where n, is the radial quantum number. We also have
k2 =2r(—a+p,r*+2p,r3+3p,4*+4p,r®) , 37
and the energy is given by
ro a—pr°—2p,r°—3p;r°—A4p,r k k k
The quantities 8!’ and B'?) appearing in the corrections to the leading order of the energy expansion are
”-_—%(1—a)(3—a)+(1+2n,)€2+3(1+2n,+2n3)€4-%[€%+6(1+2n,7€{€3+(11+3On,+30n3)€§] , (39)
BP=(14+2n,)8,+3(1+2n,+2n2)8,+5(3+8n,+6n2+4n>)5,
—o [(14+2n,)83+12(142n,+2n2)E,8,+2(21+ 591, +51n2+34n} e 14+ 22,5,
+6(1+2n,)%,8;+30(1+2n,+2n2)E,855+6(1+2n,)8;5,+2(11+30n, +30n2%,35,
+10(13+40n, +42n2+28n2)8,8,]
+ w242 %, +36(1+2n, )E,E,8; +8(114+30n, +30n2)E,5 3 +24(1+2n, 8 %2,
+8(31+78n, +78n2)& 8e,+ 12(57+ 1891, + 22502+ 150n 2 )& %, ]
— w0 [8E 32, +108(1+2n, ) 222+ 48(11+30n, +30n2)E,E 3+30(31+ 1097, + 141n2+94n ) 4], (40)

in which
— /2 R = j/2
j_Ej/wj/, 81_81/60'] Py

_ a—3p,r’—8p,r*—15p,r*—24p,r> 172

=

a—pr?=2p,r’*=3psrt—ap,r’
a=2—2n,+1)o ,
8, =—18,=—(1—a)(3—a)/2,

832 —"'2—64=281= _%€2=2(2—'a) >

1 |a—2p,r*—4p,r3—5psri—dp,r®
63: —_—

2

a—p1r2—2p2r3—3p3r4-—4p4r5

. _1 3a—5p,rt—10p,r3—15p,r*—22p,r’

‘4 a—p,rt—2p,r*—3pyrt—ap,r’ ’
5 __1 2a—3p1r2—6p2r3——9p3r4~12p4r5

¥ 2| a—p,r?—2p,r’—3p,rt—ap,r’ ’
5 _1 Sa—Tp,rt—14p,r*—21p,r*—28p,r>

© 4 a—prt=2p,r’=3p;yri—ap,r’

IV. RESULTS AND DISCUSSION

Calculations were carried out for the three cases and
the results are shown in Tables I-III. For ease of
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TABLE 1. Comparison of the eigenvalues calculated from the shifted 1/N expansion with the exact supersymmetric values for case

I

E (shifted
Set 1/N expansion) E
No. 1 a P Da D1 P2 n,=0 (SUSY)
1 0 -1 —-0.2 0.1 —1.58114 041623 —1.15471 —1.198 68
2 1 -1 —0.2 0.1 —2.05548 0.258 11 —1.63874 —1.643 64
3 2 -1 —0.2 0.1 —2.63523 0.205 41 —2.24025 —2.24137
4 3 -1 —-0.2 0.1 —3.24133 0.179 06 —2.86133 —2.86167
5 0 -1 -1.0 0.1 —2.84605 2.81623 —121.62325 —4.99342
6 . 1 —1 -1.0 0.1 —2.68794 2.65811 —7.97546 —7.968 19
7 2 -1 —-1.0 0.1 —3.056 87 2.60541 —11.09575
8 3 -1 —-1.0 0.1 —3.55756 2.57906 —14.24587
9 0 —1 1.0 0.1 0.31623 2.81623 4.51243 449342
10 1 —1 1.0 0.1 —1.106 80 2.65811 7.84517 7.843 19
11 2 -1 1.0 0.1 —2.00278 2.60541 11.040 64 11.040 19
12 3 —1 1.0 0.1 —2.766 99 2.579 06 14.21477 14.214 62
13 0 -5 -1.0 0.1 —9.17061 4.081 14 —11.14319 —10.993 42
14 1 -5 —-1.0 0.1 —5.85021 3.29057 —9.473 67 —9.468 19
15 2 -5 —1.0 0.1 —5.16505 3.02705 —11.767 19 —11.76242
16 3 -5 -1.0 0.1 —5.13870 2.89528 —14.624 23 —14.62087
17 0 -5 2.0 0.1 14.546 48 11.581 14 3.25520 3.23683
18 1 -5 2.0 0.1 6.008 33 10.790 57 14.25518 14.248 89
19 2 -5 2.0 0.1 2.740 64 10.52705 21.44329 21.44150
20 3 -5 2.0 0.1 0.79057 10.39528 28.07052 28.069 87
21 0 -5 2.0 0.5 4.242 64 5.53553 —1.998 77 —2.007 36
22 1 -5 2.0 0.5 —0.707 11 3.76777 5.51639 5.508 57
23 2 -5 2.0 0.5 —3.29983 3.178 51 9.20770 9.20505
24 3 -5 2.0 0.5 —5.303 30 2.883 88 12.338 33 12.337 30

identification, each data set has been assigned a number
given in column 1 of each table. In each table, the in-
dependent parameters are listed first, followed by depen-
dent parameters. For three of the data sets, no r, value
could be determined in the shifted 1/N method, and for
these sets, there is no entry in the energy column. We

discuss each case one by one.

Case I (Table I). It will be noticed that for all data sets
for which E (shifted 1/N expansion) could be calculated,
there is a satisfactory agreement with the exact super-
symmetric value, except for one. This exception is data
set No. 5. Here it turns out that the energy series [Eq.

TABLE II. Comparison of the eigenvalues calculated from the shifted 1/N expansion with the exact supersymmetric values for

case II. Asterisk denotes large discrepancy with E (SUSY).

E (shifted

Set 1/N expansion) E

No. 1 a Ds P D2 D3 n,=0 (SUSY)
25 0 -1 0.1 —3.47851 1.21623 —0.60 —6.91343 —6.89078
26 1 -1 0.1 —4.74342 10.158 11 —2.00 8.51720* —28.52300
27 2 —1 0.1 —6.008 33 44.20541 —4.20 38.861 69* —73.076 39
28 3 -1 0.1 —7.27324 129.679 06 —17.20 94.29497* —148.01022
29 0 -1 1.0 —11.00000 10.000 00 —6.00 —21.27798 —21.25000
30 1 -1 1.0 —15.00000 100.500 00 —20.00 37.35013* —90.062 50
31 2 -1 1.0 —19.000 00 441.33333 —42.00 133.51909* —231.02778
32 3 —1 1.0 —23.00000 1296.250 00 —72.00 309.51725* —468.015 62
33 0 —10 0.1 —3.47851 3.17128 —0.06 —25.663 67 —25.664 08
34 1 —10 0.1 —4.74342 1.681 14 —0.20 —9.13129 —9.096 05
35 2 —10 0.1 —6.008 33 1.49509 —0.42 —10.056 89 —10.082 64
36 3 —10 0.1 —7.27324 2.086 57 —0.72 —16.361 60 —16.36196
37 0 —10 1.0 —11.00000 10.090 00 —0.60 —27.093 83 —27.10000
38 1 —10 1.0 —15.00000 6.00000 —2.00 —15.14801 —15.25000
39 2 —10 1.0 —19.00000 7.74333 —4.20 —25.87240 —25.87778
40 3 —10 1.0 —23.00000 15.460 00 —7.20 —48.362 50
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(38)] is divergent, the contributions from the 8!’ and 8%
terms being very large. The shape of this potential is
shown in Fig. 1. Besides the well at »=0, it will be no-
ticed that there is another well.

Case II (Table II). Except for those six cases which
are marked with an asterisk, the calculated values by the
shifted 1/N expansion are in good agreement with the ex-
act values. We then consider the six discrepant cases.
The supersymmetric method does not necessarily always
give the lowest level for a given /. If this were the source
of discrepancy, then the shifted 1/N expansion value
should lie lower than the supersymmetric (SUSY) value,
but the opposite is true in all the six cases. Thus this pos-

sibility has to be ruled out. The shape of the potential for
data set No. 26 is shown in Fig. 2. There are seen to be
two wells of different depths, the second one being the
deeper of the two. To find out exactly what is happening,
numerical integration of the Schrodinger equation was
resorted to for calculating the eigenvalues for data set
No. 26. Calculations were carried out only for the / value
that occurs in the data set, i.e., /[=1. The results are
shown in Table IV. n=1 indicates the lowest level for a
given [. It will be noticed that the SUSY calculation
gives the lowest level but the shifted 1/N calculation cor-
responds to the n=28 level. It appears that this is the first
level with /=1 in the first well, the lower lying seven oth-

TABLE III. Comparison of the eigenvalues calculated from the shifted 1/N expansion with the exact supersymmetric values for

case III. Asterisk denotes large discrepancy with E (SUSY).

E (shifted E (shifted

Set 1/N expansion) 1/N expansion) E

No. 1 a D3 Ds D1 n,=0 n,=1 (SUSY)
41 0 -1 —0.2 0.1 —1.88216 0.084 80 —2.77482 —0.14209* —0.37483*
42 1 -1 —0.2 0.1 —2.42036 —0.009 46 —3.87127 —0.695 14 —0.748 66°
43 2 -1 —0.2 0.1 —3.027 14 —0.03513 —4.83020 —1.21144 —1.228 80°
44 3 -1 —0.2 0.1 —3.65046 —0.044 27 —5.72152 —1.73335 —1.73946°
45 0 -1 -1.0 0.1 —2.83826 2.68818 —8.049 06 —5.01645 —4.87044°
46 1 -1 —1.0 0.1 —2.712 14 2.53646 —11.35299 —7.89391 —17.78321°
47 2 -1 -1.0 0.1 —3.09761 2.48707 —14.664 84 —10.936 59 —10.850 66"
48 3 -1 —1.0 0.1 —3.61066 246319 —17.959 81 —14.01196 —13.94379*
49 0 -1 1.0 0.1 1.63303 3.20608 5.65132 15.92121 5.63329
50 0 —1 1.0 0.1 —3.793 68 2.12074 0.83211 8.369 60 8.12123*
51 0 -1 1.0 0.1 0.42140 2.96375 4.67557 14.323 57 4.656 65
52 1 -1 1.0 0.1 —0.050 62 2.995 84 9.27083 18.888 19 9.268 94
53 1 -1 1.0 0.1 —4.426 10 2.12075 3.59137 11.52093 11.45275*
54 1 -1 1.0 0.1 —1.004 57 2.80505 8.11504 17.35090 8.11307
55 2 -1 1.0 0.1 —1.22175 2.888 10 12.439 16 22.01395 12.438 74
56 2 -1 1.0 0.1 —4.94591 2.14327 6.44521 14.80597 14.777 66*
57 2 —1 1.0 0.1 —1.86979 2.758 50 11.45076 20.806 27 11.450 32
58 3 -1 1.0 0.1 —2.23854 2.81124 15.42771 25.08591 15.42757
59 3 -1 1.0 0.1 —5.47104 2.16474 9.36274 18.09149 18.076 97*
60 3 -1 1.0 0.1 —2.567 82 2.74538 14.83720 24.39719 14.83706
61 0 -5 —1.0 0.1 —8.78727 3.87798 —11.01795 —10.02297* —10.683 86*
62 1 =5 —1.0 0.1 —5.793 59 3.15275 —12.074 94 —9.29873 —9.23078%
63 2 =5 —-1.0 0.1 —5.162 61 2.90007 —14.868 22 —11.55536 —11.48025°
64 3 =5 —1.0 0.1 —5.163 50 2.77375 —18.01087 —14.351 64 —14.288 55°
65 0 -5 2.0 0.1 18.314 68 12.02120 4.708 84 30.97085 4.68927
66 0 =5 2.0 0.1 0.908 76 10.28061 —2.36932 16.96502* 15.922 10*
67 0 =5 2.0 0.1 14.612 94 11.65103 3.29194 28.142 18 3.27347
68 1 =5 2.0 0.1 10.258 08 11.27879 17.23451 36.27102 17.228 38
69 1 -5 2.0 0.1 —2.80890 9.97209 7.699 41 22.875 60 22.62271°
70 1 =5 2.0 0.1 6.04321 10.857 30 14.31086 32.105 16 14.304 56
71 2 -5 2.0 0.1 6.713 81 10.987 61 25.15529 42.559 60 25.15357
72 2 =5 2.0 0.1 —4.47472 9.868 76 14.430 36 29.116 14 29.02507°
73 2 -5 2.0 0.1 2.767 85 10.59301 21.51944 37.957 19 21.51765
74 3 -5 2.0 0.1 4.42131 10.821 60 32.159 84 48.95704 32.15921
75 3 =5 20 0.1 —5.55282 9.824 19 20.756 27 35.44919 35.408 19*
76 3 =5 20 0.1 0.81528 10.461 00 28.167 69 44.19542 28.16705
77 0 =5 2.0 0.5 —2.16191 3.04037 —5.607 63 8.48507* 7.33144%
78 1 -5 2.0 0.5 —5.13690 2.25998 0.57012 11.529 51 11.192 15*
79 2 -5 2.0 0.5 —7.144 35 1.963 36 3.47911 14.508 47 14.37313*
80 3 —5 2.0 0.5 —8.843 45 1.82092 6.061 15 17.488 15 17.421 84°

#Indicates an excited state (n, =1).
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V()

FIG. 1. Shape of the potential for data set No. 5. Both V(r)
and r are in atomic units.

er levels all belong to the second well. We searched for a
possible second r, value satisfying condition (36), but the
result was negative. It would appear that the shifted 1/N
expansion method ignores the existence of the second
well. The situation concerning the other five sets, name-
ly, Nos. 27, 28, 30, 31, and 32, is similar. All consist of

50

40

30

20+

—10

—-20

-30

0 4 8 12
r

FIG. 2. Shape of the potential for data set No. 26. Both V(r)
and r are in atomic units.

TABLE IV. Energy eigenvalues for data set No. 26 potential
obtained by numerical integration of the Schrodinger equation.
All values are for /=1.

E

BN

—28.253
—22.119
—15.832
—9.6683
—3.6361
2.2559
7.9972
8.5160
13.575

O 00 N O\ W AW =

double-well potentials similar to the one shown in Fig. 2,
and the reason of the discrepancy is similar to that for set
No. 26.

It is known that for such double minimum potentials,
even with numerical methods, it is sometimes difficult to
obtain accurate eigenvalues for lower levels.’’ "> The
fact that supersymmetric considerations can be used to
obtain an exact value, though only for a single level, can
be used as a benchmark to assess the accuracy of a nu-
merical integration method and/or to fine tune a comput-
er program which employs such a method.

Case 1II (Table I1I). Equations (34) and (35) give rise
to a cubic equation in ;. Consequently, sometimes there
is one real root and sometimes there are three. In Table
II1, column 2, when there is the same [ value in three
consecutive lines, the three lines correspond to the three
real roots for #;. Whenever h, <0, the SUSY wave func-
tion [see Eq. (33)] has a node and hence the SUSY eigen-
value is that of the excited state n,=1. Such cases are
marked with a superscript a in the last column of Table
III. Hence shifted 1/N expansion values were calculated
for n, =1 also and are shown in column 9. A comparison
of columns 8 and 9 with 10 shows that in most of the
cases the shifted 1/N expansion value agrees with the
SUSY value. Generally speaking, the agreement of the
shifted 1/N expansion values with the SUSY values is not
as good as in Tables I and II and in a few cases it is poor
or very poor. Such cases are marked by an asterisk in
Table IIT and discussed below.

Set No. 41. There is a very large discrepancy between
the shifted 1/N expansion value (rn,=1) and the SUSY
value. The shape of this potential is shown in Fig. 3. En-
ergy levels were also determined by the numerical in-
tegration of the Schrodinger equation and the eigenvalues
for the first two levels are —2.8011 and —0.3748. Thus
we find that the shifted 1/N expansion gives reasonable
value for the first level, but fails completely for the
second. This has to be attributed to the shape of the po-
tential. We have seen earlier that for set 5 also, which
has a shape similar to set 41, the shifted 1/N expansion
failed for the first level. It would be reasonable to infer
that for potentials having shapes of the type shown in
Figs. 1 and 3, the shifted 1/N expansion is liable to fail
for one or more levels. Which level would be affected
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FIG. 3. Shape of the potential for data set No. 41.

would depend on the potential parameters.

Set No. 61. The discrepancy is due to the shape of this
potential which is similar to that shown in Fig. 3.

Sets Nos. 66 and 77. The shape of the set No. 66 poten-
tial is shown in Fig. 4. The shape of the set No. 77 poten-
tial is similar to that of Set No. 66. It appears that for

20

-5

—-10 4

—15

-20 T T

r

FIG. 4. Shape of the potential for data set No. 66.

such potential shapes also, the shifted 1/N expansion can
give inaccurate results.

V. EXTENSION TO POTENTIALS
WITH HIGHER POWERS OF r

In this section we wish to show that the method that
we have used in Sec. II can also be used for potentials
which involve higher powers of r. The highest power of »
has to be even. Suppose we include terms in powers of r°
and r® Then the effective potential can be written as

Veff(r)z l(l+1) +L:_+p1r+P2r2+p3r3

2
+p4r4+p5r5+p6r6 . (41)

As an illustration, we shall obtain the exact solution for
the simplest case, i.e., n; =0 and n, =0.
We write the superpotential W as

W =a +—b—+cr+dr2+er3 . (42)
r

Of the eight parameters (including /) in Eq. (41) only five
are free. We assume that /, a, p,, ps, and pg are the in-
dependent parameters. Then, following the method of
Sec. II, we get the following relations:

a
:+ _——
b=+l e=20"1)
— e og=Ps
e=—Vpe d 7o
and

c=(p,—pi/de?)/2e .
The parameters p,, p,, and p; are derived to be

pi1=2ac +2bd +2d ,

p2=c2+211d +3e +2bc ,
and

p3=2ae +2cd .
And finally,

E=—(a?+2bc +c),

and

22y Y8
v,b=re re/2-—-r /6 r/4.

VI. CONCLUSIONS

We have developed a method for obtaining a family of
exact solutions for the potential (6). The method can also
be used for potentials which involve higher powers of r.
A comparison of eigenenergies obtained from the shifted
1/N expansion method shows that if the potential has
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more than one well, the latter method can give poor or
erroneous results or it may give incorrect radial quantum
number for a level. Thus if one is dealing with such po-
tentials, caution is necessary in using the shifted 1/N ex-
pansion method.
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