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Stopping power of an electron gas for a slow antiproton
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The screening of a slow antiproton in an electron gas is discussed as an analogy of dielectric
response formulation. A simple parametric form of the dielectric function is proposed that leads to
analytic expressions for the effective potential and induced hole density. The parameter is fixed via

the cusp condition for the total electron density at the position of the probe charge. The stopping
power is calculated by making use of the transport cross section. The results are in fair agreement
with those given by a recent self-consistent calculation.

A question that recently has raised much interest in
the field of charged-particle interaction with matter is
that of antiproton stopping power. ' The availability of
low-energy antiparticles gives a real challenge for
theoretical considerations. In the slowing-down process
the projectile interacts with the constituents of the target.
The intrinsic difFiculty of the problem resides in the
many-body character of the interaction.

The theoretical calculation presupposes a model for the
stopping material. In the electron-gas model the elec-
trons respond collectively to the perturbing potential.
Because of the antiproton-electron scattering there is a
time delay in the individual electron motion. %hen these
motions are averaged, there is a smaller electron density
near the antiparticle than elsewhere, and this is the
screening hole. When the velocity of the projectile u is
small compared with the Fermi velocity uF of the elec-
trons, the relevant excitations responsible for the energy
dissipation are electron-hole pairs. The amount of phase
space available for the creation of these pairs is deter-
mined by kinematical constraints. It is therefore in-
dependent of the details of the interaction between the
probe charge and the system. These statements allow us
to use the friction force formulation of the stopping
power. '

For low velocity of a massive projectile the energy loss
per unit path length can be written as '

dE
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where no=uF/3m is the density of the background elec-
tron gas and o.„is the momentum-transfer cross section.
(We use atomic units throughout this work. )

Equation (1) is based on the adiabatic picture, i.e., the
momentum transfer to the projectile per second is taken
to aet as a time-independent force. This picture is ex-
pected to be valid if the momentum transfer per collision
is very small compared to the momentum of the probe
charge. In terms of the phase shifts 61 generated by a
statically screened spherically symmetric potential one

can write for the cross section

oc

Z = —g (21+1)5,(UF)
I=0

(3)

and for antiprotons Z = —1.
Here we propose a simple model calculation for the in-

duced hole density b,n(r) and effective scattering poten-
tial V(r). We use the following form for a parametric
dielectric function

2
1

e(q ) =1+
q 1+X3(q /2U~ )

where q+„=4uF/~ is the Thomas-Fermi expression and
k will be fixed below. By choosing this particular form
we can reproduce, apart from the long-range Friedel os-
cillation, the high-density results in a very natural
manner. The bare Coulomb potential —Z/r of the an-
tiproton is screened" according to

V(q)= —Z
q e(q)

4~o„(vF)= i g (1+1)sin [5i(UF) —5t+i(UF)] . (2)
ur (=0

The problem of the low-velocity stopping is then reduced
to the determination of the effective scattering potential.
The electron gas is repelled by the antiproton and a de-
pletion hole is created. The electron density around a
repulsive impurity may be reduced at any point only by
an amount no and the range of the induced hole is at least
r, defined by r, =(3/4trno)'

In a recent paper the screening and stopping problem
of an antiproton have been discussed within the frame-
work of density-functional formalism. In this scheme the
theory of potential scattering can be applied directly.
The self-consistency condition of this formalism is the
Friedel sum rule, which relates the scattering phase
shifts to the total impurity charge Z by the formula
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TABLE I. Calculated values of the cusp parameter A, , the induced hole density at the origin b n(0),
and the stopping power (dE/dR )v

' for Z= —1. The values predicted by the self-consistent calcula-
tion (Ref. 8) are listed for comparison. See the text for the details.

This work
—An(0) (dE/dR )v —An(0)

Ref. 8

(dE/dR )v

0.5
1

1.5
2
3
4

1.790
2.610
3.452
4.304
6.025
7.758

0.8431
0.1473
0.0502
0.0229
0.0074
0.0033

0.372
0.242
0.173
0.131
0.084
0.059

1.1581
0.1947
0.0641
0.0283
0.0087
0.0037

0.355
0.220
0.154
0.114
0.070
0.048

The induced hole density is then calculated from the
Poisson equation to be

hn(r)=Z jd q
e'q'1, , e(q) —1

(2~)'
(6)

The free parameter A, is determined by making use of
the cusp condition. This condition for the total electron
density n(r) =no+An(r) at the position of an impurity
with charge Z reads' '

n'(r )

n(r)
r=0

2Zp,

Consequently, A, tends to unity in the very-high-density
limit (no » ~hn

~
). This value of A, represents the lower

bound for the antiproton case. Furthermore, for this
density range the Friedel sum rule is satisfied exactly' '
by the present model, independently of A, . Note that
A. =l leads to unphysical results for r, &0.8 yielding
~hn(0)

~

& no The n.umerical results we shall present will

show that the correction to the linear response (A, = 1) is
actually very large even for Z = —1. Via the cusp condi-
tion we take into account the strong Coulomb interaction
between the antiproton and electrons. In other words the
nonlinearity in the response of the electron density to the
impurity charge Z enters into our treatment through the
parameter A=A(Z, r, ). , Th, e effective potential and in-

duced hole density is given by

where p denotes the reduced mass of the electron-
impurity (two-body) system. It is easy to show that in
our model calculation (p= 1 )

1bn'(r=0)= 2Zn ——.

For completeness we note that from Eqs. (5) and (6) to-
gether with Eq. (4) one can obtain analytic expressions
for arbitrary values of A, . Our special forms are valid for
A, & muF/12.

We investigate the capability of our parametric formu-
lation in the density range 0.5 ~ r, ~4. Table I contains
the calculated values of A. , b, n( 0) and (dE/dR )u

' as a
function of the density parameter r, at Z= —1. The
phase shifts have been calculated numerically by a high-
accuracy variational method. ' ' For comparison we
also include the values of hn (0) and the stopping power
predicted by the self-consistent calculation. Despite the
simplicity of the model, the results are in good agreement
with those obtained by more elaborated calculation.
Consequently, it seems that the essential physics is treat-
ed properly by the cusp condition.

It is instructive to calculate the stopping power for
different values of the "antiparticle" charge. In Fig. 1 we
plot the reduced stopping power Q =(dE/dR )(vZ )

' as
a function of Z for a particular value of the density pa-

0.20

—arV(r)= ——e ' cos(pr)+ sin(pr)
r 2aP

2no e
—ar

hn(r)=Z sin(Pr) .
A,a r

(8)

(9)

0.10—

0.2 0.5 0.8

=a(aZ, r, ) = ( cu/v'A. + vF /3A, )
'

P=P(Z, r, )=(co /&A. —uF/3A, )' (10b)

where co =(4m.no)'~ is the classical plasma frequency.

In these expressions the unknown quantities are defined
by

FIG. 1. Reduced stopping power Q=(dE/dR)(uZ') ' as a
function of the "antiparticle" charge Z. The density parameter
is r, =2. The solid curve corresponds to the present scheme.
The dashed curve is obtained from Eq. (11). See text for further
details.
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rameter (r, =2). The solid line corresponds to the

present scheme with numerical calculation for the phase
shifts. It is worth mentioning that we can describe this
curve by a simple relation

Q =Q [1+0.67Za(Z, 2)],
where Q =0.224 is the first-order Born (or linear-
response) result at Z =0. Equation (11) might be regard-
ed as a description of the non/inear version of the Barkas
effect. ' The dashed curve of Fig. 1 is obtained by set-
ting A, = 1 in Eqs. (10a) and (11). The deviation between
the two curves is significant, except for a very restricted
range of Z. Therefore, a simple higher-order-
perturbation interpretation of the nonlinearity for the
linear scattering potential has a limited validity. This
statement coincides with the conclusion of detailed calcu-
lations for positive "particles". '

We finish our consideration with an energy investiga-

a 2 +p2

20.'
(12)

in our parametrization scheme. In the low-density limit
(r, ~ 0D ) the quantities a and p are equal and given by
the relation a=p=( ,')' —Ir, Th. us the result resembles

to the total potential energy of a fixed electron in a
Wigner lattice. "
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