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Hyperspherical coordinates are used to study properties of Coulombic three-body systems of arbi-
trary masses. Consider a system ABA, which consists of two identical particles A and a third parti-
cle B, each with one unit of charge. We examine the evolution of the approximate quantum num-

bers that are used for classifying bound and resonance states of the system as the mass ratio
A. = m „/mz changes from the atomic limit (X~O as in H ) to the diatomic molecular limit (A. &&1

as in H, +). It is shown that for states which exhibit rovibrational behaviors in the atomic limit
(X~O), a single set of approximate quantum numbers can be used to describe three-body systems of
any I, s. For states that display independent-particle behavior in the atomic limit, such as singly ex-
cited states, it is shown that these states display rovibrational behaviors only in the large-A. limit.
The evolution of the spectroscopy of the three-body systems from the shell model of atoms to the
rovibrational model of molecules is thus analyzed. Calculations of potential curves in hyperspheri-
cal coordinates were carried out for Ps and d+p d+ that serve as the intermediate steps for the
study of the evolution of the approximate quantum numbers from H to H2+.

I. INTRODUCTION

Since the birth of nonrelativistic quantum mechanics,
the "languages, " or the approximate quantum numbers
for describing atomic systems, are distinctly different
from those used for describing molecules. For atoms
such as He, the motion of the nucleus can be neglected
and the two electrons are described by the independent-
electron model (such as the Hartree-Fock approxima-
tion). In this model, the motion of each electron is
governed by a central potential that is due to the
Coulomb attraction of the nucleus and the averaged
screening due to the other electron. In other words, the
two electrons in the atom are moving more or less in-
dependently of each other and there is little "correlation"
between them. In the case of rnolecules, the basic model
is the Born-Oppenheimer (BO) approximation, as
exemplified by the treatment of the three-body system
H&+. Within the BO approximation, one takes advan-
tage of the large difference between the masses of protons
and electrons, and approximates the wave functions as
products consisting of one part describing the rotation
and vibration of the two protons as a whole, and another
part describing the motion of the electron at each fixed
internuclear separation.

The success of the independent-electron approximation
for describing atomic systems and the BO approximation
for molecular systems proves the basic soundness of each
model in its own region of applications. Deviations from
each model can often be treated in some form of pertur-
bation theories. However, in the last few decades, it has
been shown' ' that the independent-electron model fails
to describe doubly excited states of atoms. In fact, since
the early work of Herrick and collaborators ' showing
that the energy levels of intrashell doubly excited states
of H and He exhibit a supermultiplet structure, there
have been many theoretical studies' aiming at the

qualitative as well as semiquantitative understanding of
these states. Kellman and Herrick ' showed that the in-
trashell doubly excited states spectra of He could be
identified with the rotation and the doubly degenerate
bending modes of a symmetric linear triatomic ASA
molecule, where the lighter atom A plays the role of an
electron and the heavier atom B plays the role of the nu-
cleus. The collective, moleculelike model was substan-
tiated further by Berry and co-workers ' ' by examin-
ing the conditional probability distributions of the wave
functions in coordinate space and the expectation values
of the momentum correlation (p, p~), and by projecting
two-electron wave functions into rotor-vibrator func-
tions.

Doubly excited states have also been studied by
Lin ' ' and others ' in hyperspherical coordinates.
Using the adiabatic approximation, it was shown that
each potential curve can be labeled with the quantum
numbers K and T introduced by Herrick and Sinanoglu
(see also Refs. 20 and 31), together with an additional
quantum number A which is similar to the + and-
quantum numbers of Cooper, Fano, and Prats. In the
hyperspherical approach, both intrashell and intershell
states are studied together. it was shown ' that some
intershell states do not display rovibrator characters of
an ABA molecule. These states, which have been desig-
nated with A =0, are similar to singly excited states of
atoms or to the local modes of a molecule. It was pointed
out that these A =0 states are not well described by the
molecular quantum numbers. Thus the introduction of
the A quantum number helps to separate two groups of
doubly excited states of atoms: one group which displays
rovibrational molecular modes (A =+1) and another
( A =0) which does not.

Another perspective of doubly excited states was taken
by Feagin and Briggs. ' ' ' ' They treated doubly ex-
cited states in a manner similar to the BO expansion of
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H2+ by taking the interelectronic distance as the adiabat-

ic parameter. The potential curves thus obtained24

resemble the hyperspherical potential curves qualitatively
and thus the K and T quantum numbers of Herrick and
Sinanoglu can be identified with the molecular orbital
(MO) quantum numbers of H2+. The relations of the

quantum numbers in these different models are summa-

rized in Appendix A.
Despite the equivalence of the quantum numbers used

by these models, the accuracy of each model as a first-
order description of doubly excited states of atoms
remains unclear. Kellman and Herrick ' deduced the
linear triatomic molecular model based on the calculated
intrashell doubly excited states spectra of He. In particu-
lar, the rotor structure for each bending vibrational mode
is indeed very striking. However, as studied by
Watanabe and Lin, the origin of the rotor structure is
not from the kinetic energy as in a triatomic molecule.
Instead it was due to the Coulomb repulsion between the
two electrons. The truncation of each rotor series in dou-
bly excited states of helium also reflects the effect of the
shell structure in atoms. Is the rovibrational energy-level
structure of doubly excited states essential for a molecu-
lar description? Doubly excited states of Be-like ions
have been shown to have no rotor structure, ' and the
discussion of the molecular behavior for alkaline-earth
atoms has never referred to the energy levels except for
the very limited cases involving valence states. ' Yet in

many respects, such as the electron density distribu-
tions, the momentum correlation (p& pz) (Refs. 13 and
14) and the autoionization widths ' of these atoms are all
very similar to those of He-like ions. Similarly, the dia-
tomic molecular picture of Feagin and Briggs fails to
point out features of doubly excited states such as the
truncation of each rotor series, the rotational contraction
along the series, and it fails to include the nonmolecular
A =0 states. Furthermore, the rotor structure in H2+
can be attributed to the kinetic-energy operator, while in
intrashell doubly excited states it was mostly due to the
Coulomb interactions between the particles.

The relevance of the linear triatomic and diatomic
molecular models to the description of doubly excited
states of atoms can be explored further from the funda-
mental interaction level. In the case of helium there are
two electrons and one nucleus interacting via Coulomb
forces, while in Hz+ there are two protons and one elec-
tron interacting via Coulomb forces. In the linear ABA
triatomic molecule where the masses of the atoms are
comparable, each pair interacts via a Morse or a harmon-
ic potential. Thus, in the triatomic molecular description
the pair interaction potential does not play a significant
role in the interpretation of the molecular behavior of
atoms. On the other hand, in the diatomic picture, the
mass of the two identical particles relative to the mass of
the other does not play any role in the interpretation of
the molecular behavior of atoms. Thus, from a quantita-
tive viewpoint, one needs to identify what features of the
Hamiltonian in each molecular model enter the descrip-
tion of doubly excited states.

In this paper we only attempted to examine how the
masses enter into the description of doubly excited states

of atoms. To isolate the effect of varying the relative
masses, we consider a three-body system of the form
ABA, each with one unit of charge. We investigate how
the approximate quantum numbers used for describing an
atomic system can be reconciled with the quantum num-
bers for describing a molecule. To do so, it is desirable
that a single theoretical method be developed that can be
used to calculate accurately the properties of any three-
body Coulomb systems. The evolution of the approxi-
mate quantum numbers can then be examined as a func-
tion of the mass ratio A, = m„ /m~, which ranges from the
atomic limit (X ~0) to the molecular limit (A, )&1).
Meanwhile, this method can be used to calculate proper-
ties of specific Coulomb systems such as Ps (Refs.
37—39) and rnuonic molecular ions, including d+p d+
and d p t (we will use dpd and dpt, respectively, to
denote these ions in the rest of this article), which are of
interest in the study of muon-catalyzed fusion.

We use mass-weighted hyperspherical coordinates to
study Coulombic three-body systems of arbitrary mass.
The theoretical method and computational procedure
were described in a previous publication. ' We will out-
line the methods again in Sec. II and indicate the
modifications used in this article. The results are dis-
cussed in two sections. In Sec. III we discuss potential
curves which converge to the ground state of the two-
body system, i.e., of AB. The increase of the number of
bound states with the increase of mass ratio A, is inter-
preted in terms of the increasing attractiveness of the po-
tential curves as k increases.

To arrive at a complete analysis of the approximate
quantum numbers for describing Coulombic three-body

systems, one must also examine potential curves which
converge to the excited states of the two-body system.
This is addressed in Sec. IV. In Sec. IV A we first review
briefly the classification scheme of doubly excited states
of atoms by Lin and by others. The connection between
the K, T, and A quantum numbers for describing the ro-
vibrational motions of the two electrons with the rotation
and vibration of molecules is discussed in Sec. IVB. In
Sec. IV C we display the potential curves for 'S', 'P', P',
and 'D' symmetries for H, Ps, and d pd that converge
to the hydrogenic X =2 limit. The limitations of the ro-
tor structure and T doubling (or A doubling) which are
characteristic of molecules are examined, respectively, in
Sec. IVD and IVE. A summary and conclusions are
given in Sec. V.

II. HYPERSPHERICAL COORDINATE METHOD
FOR THREE-BODY PROBLEMS

The hyperspherical coordinates used to describe three-
body systems have been discussed previously. ' In this
section we will outline only the essentials to indicate how
the calculations are carried out. Starting with the three
particles in the center-of-mass frame, three sets of Jacobi
coordinates t p', ,p',

) (i =a, /3, y ) can be defined, as shown
in Fig. 1. Since we are concerned with three-body sys-
tems of the type A AB, we note that the o.-set coordinates
are similar to those used for molecules where p, is the in-
ternuclear vector and pz is the electronic coordinate. On
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(a)

2

(b) (c) We solve the Schrodinger equation in hyperspherical
coordinates using the adiabatic approximation with the
hyperradius as the adiabatic parameter. Such an approx-
imation has been used in the study of two-electron sys-
tems' ' ' and in reactive scatterings. We expand

0 = gF„(R)4,,(R;Q),

a set P set y set where the channel function N, (R;Q) satisfies

FIG. 1. Jacobi coordinate for three-particle systems. Parti-
cles 1 and 2 are identical particles.

A (Q) + W(R, Q} 4,,(R;Q)= U, (R)C&,,(R;Q) .
R

(6)

(lb)

where p'~ and pz are the reduced mass associated with p',
and p2, respectively. For each set i', we define a hyper-
spherical radius R and a hyperangle P (the superscript i
has been suppressed),

R =( +(
tang=(2/g, .

(2a)

(2b)

In terms of hyperspherical coordinates, the kinetic-
energy operator is rewritten as

a s aT —— +—
2p &R2 R BR

A (Q)
R

where 0 denotes the five hyperangles, and A is the grand
angular momentum operator

1 d . 2 2 d
A = — sin icos P

sin icos P dP

cos P sin P

The eigenvalues and eigenfunctions of A are well known.
The advantage of the mass-weighted hyperspherical coor-
dinates is that the hyperradius R is the same for all three
sets of Jacobi coordinates, while the eigenfunctions of the
A (Q) operator have simple transformation properties.
Recall that A~(Q )=A (Q~)=A (Q~), thus the eigen-
functions for each set of Jacobi coordinates can be ob-
tained from the other through an orthogonal transforma-
tion.

the other hand, the P- and y-set coordinates are closer to
those describing atomic systems. Note that if the mass of
the nucleus is treated as infinite, then p~= —r, and

p2 =r2, where r, and r2 are the positions of the two elec-p

trons measured from the nucleus. In this limit the P-set
and y-set Jacobi coordinates coincide. The advantage of
Jacobi coordinates is that there is no cross term of the
type V, V2 in the kinetic-energy operator, and that the
Schrodinger equation reduces to the two-body dissocia-
tion limit with the correct reduced mass.

Starting with each set of Jacobi coordinates we define
mass-weighted vectors

(la)

(R;QO) = 1
gl)l~q( ~4)+I)I2LM(kl&(2)

(8)

where the coordinates are in the p set and Pi & I M is the
1 2

The potential energy V has been scaled in (6) in the form
of W(R, Q)=2@V(R,Q). From the hyperspherical po-
tential curves U„(R) the hyperradial equation can be
solved to obtain F,, (R) and its eigenenergy. Our goal in
this paper is to present U, (R) as a function of the mass
ratio A, and to find a set of approximate quantum num-
bers to designate each channel v. In principle, a more de-
tailed analysis for the channel index can be obtained by
examining the channel wave functions 4„(R;Q). This
task is to be undertaken in the future. Furthermore, the
potential curves U, , (R) thus obtained are BO curves since
the diagonal coupling terms ( 4„(R;Q ) d /
dR ~4„(R;Q)) are not included in the curves to be
presented below. To obtain accurate energies, the diago-
nal coupling terms have to be calculated. This has been
done for the two-electron system' ' ' and for Ps
(Ref. 44) when accurate energies are to be calculated.

Each quantum eigenstate of the three-body system is
characterized by a set of quantum numbers. Since we do
not include spin interactions, the good quantum numbers
are the total orbital (L) and spin (S) angular momentum
quantum numbers, and the parity ~ of the system. Fol-
lowing the convention of atoms, the total spin S includes
the spins of the two identical particles only. This
definition allows us to include the exchange symmetry of
the two identical particles conveniently in the wave func-
tions.

Our major computational work is in the solution of Eq.
(6). We solve this equation by the eigenfunction expan-
sion method with the basis function given by

I~+s
4(R, Q)=4(R;Q~)+( —1) ' 4(R;Qr), (7)

where we have L=l~&+1~&. Equation (7) includes the
proper (anti-} symmetrization of the spatial wave function
and is applicable to both fermions and bosons systems.
The basis functions in the /3 set and y set have the same
functional form. In the previous work, ' analytical func-
tions that reduce to hydrogenic wave functions in the
limit of large R were used as the basis functions. In this
work, we adopt different basis functions. We first assume
that 1& and lz are good quantum numbers such that the
basis functions can be expressed as
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two-particle coupled orbital angular momentum function.
The basis functions g& I (R;P~) at each R are obtained

by solving the resulting ordinary differential equation ob-
tained from (6) for each fixed (l&, lz). Admixture of
different pairs of (I, , lz ) is carried out by using (7) as basis
functions in the rediagonalization of (6). Calculations of
matrix elements using this approach were addressed ear-
lier. '

The use of P- and y-set functions allows us to calculate
U, (R) using a small number of (I„lz ) pairs in the expan-
sion since l, refers to a bound state of the AB system
which has small I, for the low-lying states. The 12 is
governed by the triangular relation among 1, , 12 and L.
The number of basis functions within each (I &, lz ) is also
small since prediagonalization has already been carried
out in obtaining the basis function. For example, if we
are interested in the lowest potential curve for each L, S,
and m, we need only up to five basis functions [of (I tlzq )]
for the cases considered here. For potential curves which
converge to the N =2 limit at large R, we need about 15
basis functions. Note that the convergence with respect
to the ( I t, lz ) expansion for the low-lying potential curves
is relatively fast. For atomic systems it has been
shown ' that for potential curves converging to the Nl
limit, inclusion of I &

=min(l t, Iz ) =N is enough to
achieve good convergence. For larger A, , a few more
(I„lz) pairs are needed. As 1, approaches the value

( =1837.0) for Hz+, our calculation becomes unreliable.
A better approach to such a "molecular" system is to ex-
pand the wave function in the body frame. On the other
hand, if the wave functions are expressed in the body
frame, the structure of the differential equations for
different L's are much more complicated. For the pur-
pose of the classification of Coulombic three-body sys-
tems here, the present method is much more convenient
since the calculations for different L's can be easily car-
ried out without many changes in the code.

III. THREE-BODY BOUND STATES

Before presenting the computational results, we first
comment that in all of the calculations presented here, we
use tu=1 [see Eq. (3)]. Furthermore, the mass of the
lighter particle in the system is always set equal to unity.
For example, the mass of muon in dpd is equal to unity,
while the mass of the deuteron is equal to md/m„
=17.7516. The potential curves thus calculated con-
verge to p~~/N Ry in the asymptotic limit (R ~~ ),
where p„z is the reduced mass of m ~ and mz. In order
to facilitate the comparison, we renormalize the potential
curves so that each curve converges asymptotically to—(1/N ) Ry.

A. Potential curves for the 'S' ground-state channels

In Fig. 2 we show the 'S' potential curves for a num-
ber of three-body systems, including a fictitious system
with A, =3. We note that as the mass ration k increases,
the attractive potential well becomes broader, and we ex-
pect that the number of bound states increases slowly.
Calculations show that there is only one bound state in

-0 ~ 8-—

-& ~ 6

0 i0 15 20

FIG. 2. Hyperspherical potential curves vs the mass ratio A,

( = m „Imz ) for the Coulombic three-body systems A AB which
consists of two identical particles. The curves shown are for 'S'
symmetry which converge to the N = 1 hydrogenic dissociation
limit. All the curves show an attractive well for all the A, 's con-
sidered.

8. Potential curves for the lowest P' channels

We next consider the lowest potential curves for the
P' symmetry in Fig. 3. For H, the potential curve is

repulsive in the whole region of R and at large R it can be
approximated by —1.0+2/R . Such a repulsive poten-
tial curve does not support any bound states. For Ps
we witness that the potential curve begins to show a shal-
low attractive well. This well is not strong enough to
support any bound states, but it is manifested in the
much larger P'-wave phase shift in e +Ps elastic
scattering than in e +H scattering. In Fig. 4 we com-
pare the P' phase shifts for e +H (Ref. 48) and
e +Ps. We note that the latter phase shift is much

the L =0 case for H, Ps, and p pp, each corresponding
to the ground state of the respective system. For dttzd
and tpt, calculations show that there are two bound
states for 'S'. For H2+, calculations using the BO po-
tential showed that there are 18 vibrational bound states
associated with the 1so. curve for L =0. For L greater
than 36, there is no bound vibrational state.

The variation of the potential curves shown in Fig. 2
implies that the binding energy of the ground state in-
creases with I, for A, ~1. Such variations of the ground-
state energies with respect to the masses mz and m~
have been investigated in the literature. ' Most of
these studies were based on the variational approaches
using Hylleraas-type trial functions. It has been well es-
tablished that the total binding energy of the AAB sys-
tern scales almost linearly with the reduced mass p„~ of
the two-body ( A +B) system if the mass ratio A, ~ 1. The
increase in binding for A, & 1 can be explained in terms of
the increasing contributions from the mass polarization
term. We discuss this aspect in Appendix B.
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FIG. 3. Same as Fig. 2 except for 'P'. Note that the curves
are repulsive for small A, , but are attractive for large A, .

I
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larger rejecting the shallow attractive potential well
shown in Fig. 3.

As the mass ratio A, is increased, the potential curves
become even more attractive. For the ppp system, there
is one bound state '

(
—1.0424 Ry in the reduced units

used in the figure), and for d pd, it is known that there are
two bound states (

—1.0438 and —1.007414 Ry in re-
duced units). In the case of H2+, it is estimated that
there are 18 bound states within the BO approximation.
They are the rotationally excited (L = 1) vibrational
states of the molecules.

C. L dependence of the potential curves

In Fig. 5 we show the potential curves for 'S', P', 'D',
3 0F, etc. for H, Ps, and dpd. These curves are to be
compared with the H2+ potential curves within the
Born-Oppenheimer approximation which are given by
E,(R)+L(L+I)I2R ), where E,(R) is the electronic
energy of the 1scr orbital and p is the reduced mass of
the two protons. Such a comparison allows us to observe
the variation of potential curves with respect to L as the
mass ratio A, is varied. We note that in H, only the 'S'
curve is attractive. For e e+e, the 'S' curve is attrac-
tive, while the P' curve, as indicated earlier, shows a

FIG. 4. C. Comparison of P elastic scattering phase shifts for
e -H and e -Ps collisions at low energies. The larger positive
p ase shift for the latter system is interpreted as due to the
stronger effective potential for Ps in comparison with H
Data from Ref. 48 for H and from Ref. 49 for Ps

slight attractive well at medium R. However, the 'D'
curve and the higher-L curves are all repulsive. For ddt

1 e 3 0 1 e
p~

the S, P, and D curves all show attractive wells; the
first two are strong enough to support two bound states,
but the L =2 curve is only attractive enough to support
one bound state. The F' curve is slightly attractive and
all the higher-l curves are repulsive. These latter curves
do not support any bound states.

If the BO description is adequate, then the potential
curves for the LAO and L =0 states differ only by the ro-
tational kinetic energy. (This result does not hold if the
MO curves are calculated beyond the simple BO approxi-
mation; see Ref. 24.) This relation is not valid for H
and Ps . For example, in Fig. 6(a) we compare the cal-
culated P' potential curve (in solid line) with the curve
(in dashed lines) obtained by adding 2/R to the 'S'
curve. The two curves would be identical if the BO pic-
ture were exact. We note that there is a large discrepan-

-0 ' 8 -0 ' 8 —0 ~ 9--

-1 ~ 0-
—1.0-

-1.0-

-1 ~ 2-
-1.2-

-1 ' 6

R (a.u.)

10 10

R (a.u. )

15 20 0 10 15

R (a.u.)

20 25

FIG. 5. P
The lowe

Potential curves that converge to N = 1 hydrogenic threshold for H P d d d hor, s, an p s owing the rotational excitations.
e owest curve for each system is for L =0, with L increasing by one unit for each successive higher curve
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FIG. 6. Validity of the rotor structure for states below the X = 1 hydrogenic threshold in the dissociation limit. Shown in dashed
lines are the potential curves obtained by adding L (L + 1 j/R ' to the potential of the '5' symmetry, and in solid lines are the actually
calculated potential curves. If the rotor structure is valid, the two curves for each L should be identical. Potential curves for L =1 of
Ps and L =1 and 3 for dpd are compared.

cy in the two curves for Ps . The situation is markedly
different for dlud [Fig. 6(b)]. We compare the actually
calculated P' and F' curves with the two curves ob-
tained by adding L (L+1)/R (L =1 and 3, respective-
ly) to the 'S' curve. We note that in this case the two
pairs of curves are much closer to each other, implying
that the BO description is quite reasonable.

IV. DOUBLY EXCITED STATES
AND CLASSIFICATION

OF COULOMBIC THREE-BODY SYSTEMS

As noted in the Introduction, our goal is to examine
the approximate quantum numbers for classifying
Coulombic three-body systems (of the form AB A ) as the
relative masses are varied. We need to incorporate the
atomic limit (A, «1), such as H and He, as well as the
molecular limit (A, »1), such as H2+. The quantum
numbers used to describe the states in the two limits are
quite different. In the atomic limit, the traditional
Hartree-Fock model designates the two-electron states in
terms of n, I, N, and I' quantum numbers in addition to
the exact L, S, and vr quantum numbers. The n, l, N, and
I', which are approximate quantum numbers, define the
orbitals of the two electrons. In the other extreme
(A, »1), for example, H2+, within the BO approxima-
tion, the wave function is written as the product of the
rotational and vibrational wave functions of the nuclei
and the electronic wave functions, which are described in
terms of molecular orbitals. The motion of the molecule
as a whole is described by a set of quantum numbers,
such as the total rotational quantum number L, its pro-
jection along the internuclear axis, and the vibrational
quantum numbers U. For the electron, its motion is de-
scribed in terms of molecular orbitals, which are specified
in terms of the quantum numbers in the united-atom lim-
it or in the separated-atom limit.

One of the major goals in this study is to establish the
evolution of one set of quantum numbers to another as

the mass ratio A, is varied. We note that this is different
from the quantum numbers relating the united-atom limit
to those describing the separated atoms. In the latter
case, the internuclear separation is the parameter varied,
while in the present case it is the mass ratio k which is
being varied.

Obviously one cannot relate the quantum numbers in
the independent-electron model to those used for describ-
ing molecules. In the independent-electron model each
electron moves independently in a central field provided
by the nucleus and the screening of the other electrons,
while in molecules such as H + the two protons are
strongly coupled; they rotate together and vibrate around
the equilibrium separation with respect to each other.
The key to a possible unification for Coulombic three-
body problems has occurred only in the last decade with
the recognition that atoms in some cases do exhibit be-
havior similar to the rotations and vibrations of rnole-
cules. Such rovibrational behavior occurs only when
two or more electrons are excited simultaneously. Most
of the theoretical studies on this aspect have focused on
doubly excited states, ' ' although preliminary investi-
gations for triply excited states have also been carried out
recently. ' ' We first review the classification of doubly
excited states of atoms briefly in Sec. IV A and the dia-
tomic molecular description in Sec. IV B. The adiabatic
potential curves for H, Ps, and dpd that converge to
the N =2 hydrogenic threshold are presented in Sec.
IVC to display the variation of the curves with k. The
limitation of the rotor structure and the T doubling of
doubly excited states are examined in Sec. IV D and IV E,
respectively. We note that specific potential curves in hy-
perspherical coordinates have been calculated by a
different method far a number of cases for Ps (Refs. 44
and 52) and for dlud (Ref. 53) without the classification
scheme in mind.

A. Classification of doubly excited states of atoms

There is a relatively large volume of literature for
describing the rovibrational motion of doubly excited
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states of atoms today. However, it is also recog-
nized' ' that singly excited states and some doubly ex-
cited states of atoms do not display the rovibrational
motion characteristic of triatomic molecules. To incorp-
orate all possible states of a two-electron atom, we follow
Lin' and designate each state by „(K,T)~ + 'L ".
The L, S, and ~ are exact quantum numbers for the
Coulombic three-body systems considered here. The oth-
er quantum numbers I(, T, and A, as well as n and N, are
approximate quantum numbers. From the independent-
electron model viewpoint, (K, T)" replaces I and I'; the
superscript A is used to imply that A is not independent
of E and T. In this designation, n and N are to retain the
usual meaning in the independent-electron model, being
the principal quantum numbers of the outer and the inner
electrons, respectively.

In terms of this classification scheme, doubly excited
states are divided into two classes, one with A =+1 and
the other with A =0. States that are designated by
A =+1 exhibit properties similar to the rotation and vi-
bration of molecules. The quantum number K, which de-
scribes the angular correlation of the two electrons with
respect to the nucleus, is similar to the bending vibration-
al quantum number v of a triatomic molecule. In fact,
v =N —E —1. ' The quantum number T is the projec-
tion of L along the interelectronic axis, which is similar
to the projection of the rotational angular momentum
along the body frame of a molecule. From such a molec-
ular viewpoint, n describes the stretching vibrational ex-
citations, N describes the dissociation limit and corre-
sponds to the principal quantum number in the
separated-atom limit. The other class of states, designat-
ed by A =0, are similar to singly excited states where the
two electrons are more or less independent. They do not
behave like molecules and the quantum numbers K and T
serve only as indices for labeling the states.

According to this classification scheme, the spectrosco-
py of doubly excited states exhibits interesting features.
For states with A =0, it has been shown' that the ener-

gy levels display regular spectral features similar to those
seen for singly excited states. For each n, N, E, T, L, and
~, the energy level of the triplet state is always lower than
the singlet if n. =( —1) and opposite if m. =( —1)
For doubly excited states with A =+1, the spectral regu-
larity is characteristic of the rotor-vibrator spectra of
molecules. ' Within a given n, N, K, and T (similar to
a given stretching and bending vibrational mode), the en-

ergy levels of successive L's form a rotor series. In addi-
tion to the rotor structure, these doubly excited states
also display T doubling, which is similar to the A dou-
bling in molecules. The latter occurs for each pair of
near-degenerate states which have identical n, N, E, T
(%0), and L {but opposite S and opposite m). Extensive
discussions of the rovibrational behavior of doubly excit-
ed states of atoms have addressed in the literature. '
More careful examinations of the properties of doubly ex-
cited states of atoms reveals a number of differences from
the typical rovibrational behavior of molecules reflecting
the shell structure of atoms. Such differences will be ad-
dressed further in Secs. IV D and IV E below.

B. Classification of doubly excited states of atoms
using diatomic MO quantum numbers

Doubly excited states of atoms have been classified in
terms of diatomic molecular quantum numbers by Feagin
and Briggs. ' *' ' ' By treating the interelectronic axis
in atoms similar to the internuclear axis in H2 and as-

suming that the projection of L along the interelectronic
axis is a good quantum number as in the BO approxima-
tion, they showed that doubly excited states of atoms can
be classified using the same set of quantum numbers that
describes H2+. In this "diatomic" molecular picture
(which is different from the linear triatomic molecular
picture ), both K and T can be related to the molecular
quantum numbers of H2+. Recall that within the BO ap-
proximation, the electronic wave function is separable in
spherodial coordinates A, , p, and P. The number of nodes

Nz, N„, and m for each of the coordinates is fixed as the
internuclear distance is changed. Thus one can relate

N&, N„, and m to the united-atom quantum numbers n, I,
and m or to the separated-atom quantum numbers n „n2,
and m (which are the hydrogenic quantum numbers in

parabolic coordinates). The K, T, and A are related to
these by T= rnid, K =nz —n„and A =( —1) p, . In

Appendix A the quantum numbers and their relations
used in the different models of atoms are summarized.

Feagin and Briggs also labeled each MO with a gerade
(t =+1) or an ungerade (t = —1) symmetry quantum
number t. Since t =m( —1) where both m. and S are good
quantum numbers, t is also a good quantum number in-

dependent of the BO approximation. This is not to be
confused with the A quantum number defined in the
(K, T)" classification scheme where A is referring to the
symmetry of the wave function in the body frame under
the exchange of the two identical particles. A is an ap-
proximate quantum number while t is an exact quantum
number replacing m and S.

Within such a BO approximation the potential curves
for all three-body systems considered here can be scaled
from the BO curves of H2+. The resulting BO potential
curves show some resemblance to the potential curves
calculated in hyperspherical coordinates, although there
are important quantitative and qualitative differences. In
the treatment of Feagin and Briggs, the projection of L
along the interelectronic axis (quantum number T) is
treated as a good quantum number. In the hyperspheri-
cal approach, no such assumption was made. The
analysis of Watanabe and Lin of the wave functions cal-
culated in hyperspherical coordinates showed that T is
only an approximate quantum number. This accounts for
most of the qualititive differences between the BO ap-
proach and the hyperspherical approach of doubly excit-
ed states of atoms. The other difference is that the BO
approach does not give correct asymptotic potential
curves in the separated atom limit, although this can be
improved by solving the potential curves including the
second-order diagonal coupling term nonperturbative-

19,24
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C. Potential curves that converge to the hydrogenic
N =2 threshold for H, Ps, and d pd

In Figs. 7—10 we show the 'S', P', 'D', and 'P' poten-
tial curves of H, Ps, and ddt that converge to the hy-
drogenic N=2 limit. Similar to the potentials shown
earlier, all the curves in Figs. 7—10 are normalized so that
they all approach —0.25 Ry in the asymptotic limit. The
potential curves for H are labeled according to the
(K, T)" designations, while the ddt curves are labeled
with the H2+ molecular orbitals using the united-atom
molecular quantum numbers n, I, and ~m~. For Ps, we
choose to label the curves as in H since in many
respects Ps is similar to H

In Fig. 7 for 'S' there are two curves converging to the
hydrogenic N =2 limit; one has an attractive potential
well, the other is completely repulsive. The attractive
(1,0)+ curve corresponds to the bonding 3dtrg MO,
while the repulsive (

—1,0)+ corresponds to the 2sog or-
bital. Since L =0, the projection of L onto the axis of the
two identical particles is also a good quantum number,
i.e., T =0. As the mass ratio k increases, the lower po-
tential curve becomes shallower but much broader, ex-
tending to larger values of R. The increase in the range
of R of course is related to the fact that we use a mass-
weighted hyperradius. The repulsive curve remains
repulsive for all the A. considered. We note that this
curve is also repulsive for H2+ in the BO approximation.

In Fig. 8 we consider the three P' curves that con-
verge to the hydrogenic X =2 limit. For H and Ps
the three curves are labeled (1,0)+, (0, 1),and (

—1,0),
and for dpd they are labeled 3do"g 3d7Tg and 2scr, re-
spectively. Since L =1, the projection of L onto the axis
of the two identical particles can have T =0 and 1. As in
atoms, the use of A =0 is to indicate that Tis not a good
quantum number, meaning admixture from the T =0 and
1 components is quite large. The (1,0)+ curve indicates
that T=O is the dominant component, and A =+1
means that the wave function in the body frame is sym-
metric with respect to the interchange of the two identi-
cal particles. For the (0, 1) curve, T =1 is the dominant
component and the wave function in the body frame is
antisymmetric with respect to the interchange of the two
identical particles (A = —1). The symmetry properties
of the wave function with respect to the interchange of
the two identical particles are not explicitly given in the
MO designation. (In the BO approximation, the elec-
tronic potential curves for Hz+, HD+, and D2+ are all
identical. ) Note that the two (1,0)+ and ( —1,0) curves
(or 3dtr and 2so ) have the same K and T labels as in
'S'. In terms of the molecular picture, the (1,0)+ P'
curve is the rotational excited (L =1) curve of (1,0)+
'S', and both have the same 3dcr designation. For dpd,
the potential curves are designated using MO quantum
numbers and the two curves 2s o. and 3d m are allowed
to cross.

The presentation of diabatic curves in Fig. 8 for dpd
instead of the adiabatic curves actually calculated
deserves some discussions. This diabatic crossing of
curves is based on the expectation that the narrowly
avoided crossing will effectively become a real crossing in

the solution of the full problem. Diabatic crossing be-
tween the two curves also occurs if the projection of L
along the d-d axis is treated as a good quantum number
such that o. and m. curves can actually cross, as in the BO
approximation where the distance between two deuterons
is the adiabatic parameter. For Ps, we do not allow the
two corresponding curves (0, 1) and ( —1,0) to cross
since T, the projection of L along the interelectronic axis,
is only an approximate quantum number for the upper
curve ( A =0) and thus the noncrossing rule applies. If T
were assumed to be a good quantum number, as in Feagin
and Briggs, the two curves would also cross as in dpd.

In Fig. 9 we show the three (1,0)+, (0, 1), and
( —1,0) curves (or the 3dtr, 3dm, and 2so curves for
dpd) for 'D', which are similar to those for P'. The
designation of (0, 1) indicates that this curve does not
have the dominant T=1 component any more. This is
also refiected by the larger separation between the (0, 1)
and (

—1,0) curves in comparison with the two corre-
sponding curves in P'. On the other hand, the three
curves for dpd are very similar to those for P' except
that each curve is excited with one more unit of rotation-
al angular momentum.

In Fig. 10 we show the three 'P' curves that converge
to the hydrogenic %=2 threshold. The curves are la-
beled (0, 1)+, (1,0), and (

—1,0) for H and Ps, and
2pn„, 4fo„, and 3po„ for dpd. The designation of
(0, 1)+ and (1,0) indicates that T and A are approxi-
mate good quantum numbers for H and Ps and the
two curves are allowed to cross. Similarly for dpd the
2pn„and 4f t„rc ruevs are allowed to cross because they
belong to T = 1 and 0, respectively. For d pd, the 3p o „
labeling implies that T=O is a good quantum number.
On the other hand, the (

—1,0) labeling for H and Ps
implies that T=0 has a strong mixture with the T= 1

component.
From the above examples we conclude that the nature

of the approximate quantum numbers is used to decide
adiabatic or diabatic crossings in presenting hyperspheri-
cal potential curves, although adiabatic curves are actual-
ly calculated. In the MO picture, since T is assumed to
be a good quantum number, all the adiabatic curves
which have different T can cross. (For Hz+, crossing also
occurs for some curves with identical T within the BO
approximation. ) This explains the origin of the
differences between the MO curves of Feagin and
Briggs and the hyperspherical curves for atoms; see, for
example, Figs. 3 and 4 of Ref. 24.

D. Rotor structure

According to the (K, T)" classification scheme for H
the lowest states for each of the (1,0)2+ 'S', P', and 'D'
curves form a rotor series, while for molecules such as
H2+ the number of rotor states for each electronic curve
is quite large. For atoms (H and He) these are the only
three rotor states for the X =2 intrashell doubly excited
states, corresponding to 2s 'S', 2s2p P', and 2p 'D' in
the independent-particle designation. Thus for atoms the
number of states in a rotor series still refl?ects the shell
structure, while for molecules this is not the case. How
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panding the wave functions in mass-weighted hyper-
spherical coordinates we examined the evolution of the
approximate quantum numbers from those used for
describing atomic three-body systems to those for
describing molecular three-body systems. Specific calcu-
lations were carried out for hyperspherical potential
curves for H, Ps, and dpd for states which converge
to the N = 1 and 2 hydrogenic limits.

It is shown, as in Feagin and Briggs, that for the pur-
pose of labeling states of a three-body Coulombic system,
there is a one-to-one correspondence between the (K, T}"
scheme used for describing the atomic systems (A. «1),
the rovibrational quantum numbers (v, T) for a linear tri-
atomic molecule (A. =—1), and the molecular orbital quan-
tum numbers used in the H2+ limit (A, )&1). This one-
to-one relation is based on the assumption that the pro-
jection of the total orbital angular momentum along the
line joining the two identical particles is a good quantum
number. This assumption is valid in the diatomic molec-
ular limit such as in Hz within the Born-Oppenheimer
approximation, but deviations increase in general as A, de-
creases. For a certain class of states, however, these
molecular behaviors remain quite prominent even as
A, ~O (i.e., in the atomic limit). These states are the dou-
bly excited states labeled with A =+1 in the (K, T)"
classification scheme. For these states, one can use the
other two equivalent descriptions and the spectra of these
states do exhibit typical molecular characters such as ro-
tor structure and T doubling. On the other hand, the
(K, T)" classification scheme does emphasize that the
A =0 states do not display molecular behaviors in the

A, ~O limit. For these latter states, the K and T serve as
labels only since neither are approximate good quantum
numbers. However, they serve as the correct molecular
quantum numbers in the molecular limit, i.e., when
A, )&1. By examining the rotor structure of the potential
curves for Ps and d pd we show the gradual evolution of
the A =0 states to the molecular limit. We note that the
present hyperspherical approach does provide a method
for calculating all the states of a three-body Coulombic
system.

There remains at least one more relevant question in
the general characterizations of three-body systems. One
notes that the interpretation of doubly excited states of
atoms in terms of a linear triatomic molecule implies that
the rovibrational behavior of a three-body system is not
very sensitive to the interaction potentials in the system.
Thus it is desirable to study the rovibrational behaviors
of a three-body of arbitrary masses with different interac-
tion potentials. Since the present hyperspherical ap-
proach is not limited to Coulornbic potentials, such a
study is readily feasible. We comment that a similar
study for a model system of two particles on a spherical
surface has been carried out by Ezra and Berry.
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APPENDIX A: RELATION BETWEEN
THE DIFFERENT CLASSIFICATION SCHEMES

OF DOUBLY EXCITED STATES OF ATOMS

There are a number of classification schemes where ap-
proximate quantum numbers are used to designate dou-
bly excited states of atoms. In the classification scheme
of Lin, ' which adopted the E and T quantum numbers of
Herrick and Sinanoglu, and the + and —quantum
numbers of Cooper, Fano, and Prats, each doubly excit-
ed state is designated by „(K,T)Jv, in addition to the usu-
al L, S, and m quantum numbers. Subsequent works by
Herrick and co-workers and by Berry and co-
workers " ' demonstrated that the energy levels of in-
trashell (n =N) doubly excited states of atoms resemble
the rovibrator pattern of a linear triatomic molecule.
The relation between the E and T quantum numbers of
atoms and the vibrational angular momentum l„and
bending vibrational quantum number vz of a linear tria-
tomic molecule is

N —K —1+ vz,
(A1)

(I, is used here to avoid confusion with the I used for the
orbital angular momentum of the electron). There are a
number of differences in the spectra of doubly excited
states of atoms and the rovibrational spectra of a linear
triatomic molecules, as discussed by Kellman and Her-
rick and by Watanabe and Lin. The latter paper also
studied the "goodness" of the quantum numbers E and T
for doubly excited states by examining the wave functions
calculated in hyperspherical coordinates.

In the hyperspherical approach for two-electron atoms,
a Born-Oppenheimer-type approximation was used, with
the hyperradius R =(r, + r 2

)'~ as the adiabatic parame-
ter, and each potential curve (or channel) labeled by the
quantum numbers K, T, and A. The two-electron atoms
have also been treated by Feagin and Briggs' ' in a
manner similar to the Born-Oppenheimer approximation
(or more precisely, in the adiabatic approximation) for
Hz+, with the interelectronic distance as the adiabatic
parameter. The potential curves (including the rotational
energy ) obtained by Feagin and Briggs, each labeled by
the familiar quantum numbers of those used for Hz+,
resemble the hyperspherical potential curves. Therefore
there is.also a one-to-one correspondence between the
quantum numbers K, T, and A and those used for Hz+.

For Hz+, there are different sets of quantum numbers
used for describing the electronic states or the potential
curves. They are (a) the hydrogenic n, I, and ~m~ quan-
tum numbers of the united atom; (b) the Nz, N„, and
A= ~m ~

quantum numbers in the MO region; or (c) the
Stark n &, n 2, and

~

m
~

quantum numbers in the
separated-atom limit (see Ref. 54}. Their relations with
respect to K and Tare
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/m/=A=T,

K=n~ —ni (A2)

(n„ l2) n&—, n„even

[(n„—I )/2] n—z, n„odd

where 1 and hami are related to nz and n„by
n&=n —l —1, n„=l —

hami.

In the „(K,T)g designation of the doubly excited states
of atoms, we also emphasize the relation between intra-
shell and intershell states which have identical K, T, A,
and N (besides the usual L, S, and m). The quantum
number A, which is not independent of K and T, is given

by

(
—1) '+, K)L —NA='

0, K&L —1V.
(A3a)

(A3b)

K =(N —T —1),(N —T —3), . . . , —(N —T —1) .

(A4)

The A =+1 classification emphasizes the even or odd
character of the (r, —r2) stretching mode (r; is the dis-

tance of electron i from the nucleus), i.e., it stresses the
even or odd stretch of the molecular mode of the doubly
excited states of atoms. On the other hand, not all doubly
excited states display molecular modes. There are states,
designated by A =0, which belong to local modes and
their energy levels do not display rovibrational regularity.
Only states labeled by A =+1 exhibit rovibrational struc-
ture, or supermultiplet structure i,f the states are ordered
in the fashion of Herrick and co-workers. ' This desig-
nation also extends the supermultiplet structure to inter-
shell states if the states belong to A =+1.

Among the three different classification schemes dis-
cussed above, only the (K, T)" scheme allows for the
truncation of the rotational series explicitly. This is be-
cause K and T were obtained from a unitary transforma-
tion of the shell-model wave functions and the "remnant"
of the shell model is reflected by the constraint

Equation (A4), combined with (A3), determine the L's of
the truncated rotor series L =T, T+1, . . . , (K+N —1)
for each K, T, and N.

The introduction of A =0 in Eq. (A3) is to distinguish
the class of doubly excited states which do not display
any molecular modes. In fact, for states which have been
designated with A =0, a molecular interpretation of
these states is erroneous. It has been shown by Watanabe
and Lin that K and T are not approximate good quan-
tum numbers but only served as labels for the A =0
states.

There is another important difference in the hyper-
spherical approach and the diatomic molecular approach
of Feagin and Briggs. In the latter, the projection of L
along the interelectronic axis was treated as an exact
quantum number such that potential curves which have
different T have real crossing. Since T is a good quantum
number, according to (A3a), each potential curve of
Feagin and Briggs is labeled with A =+1; there are no
A =0 curves. In the hyperspherical approach T is not
treated as a good quantum number and the calculated po-
tential curves do not cross. If the dynamic consideration
is included, ' then the + and —hyperspherical poten-
tial curves are allowed to cross. One can say that the
A =0 states can be obtained from the works of Feagin
and Briggs if the Coriolis coupling and radial coupling
are included in the calculation, i.e., by further diagonaliz-
ing their MO curves. The A =0 states would correspond
to cases where the mixing of different T curves is large.
In the language of linear triatomic molecules, the A =0
states correspond to the local modes, which can be ob-
tained from the superposition of symmetric and antisym-
metric molecular modes. In the hyperspherical ap-
proach, both the molecular and local modes are obtained
directly from the calculation.

If one assumes that T (or A, or im
~

) is a good quantum
number, then the relation between the three sets of quan-
tum numbers are given in the table below (see Ref. 24
also ). The allowed values of L, S, and m along each row
are given; they correspond to the rotor series in the
large-A, limit. In the "atomic" (A. ~O) limit, the rotor
series is truncated. Members of such a truncated series
are indicated by underlines in the table. For T&0, the
T-doubling states are grouped in the parentheses. The
"string" of each truncted rotor series is much longer for
doubly excited states converging to the higher hydrogen-
ic excited states; see examples in Refs. 1, 7, and 8.
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TABLE I. Scaling of the ground-state binding energy (E, ) of three-body systems (3 AB) with respect
to the reduced mass p of particles 3 and B. The column under "norm" is the ratio of E, /p of each sys-
tem normalized to that for H . For the purpose of comparison, the mass of the proton in H„ is as-
sumed to be infinite. Data from Frolov, Ref. 45.

System

H
epe
a~K
e(3e)e
e(2e)e
pKK
eee

ppK
mKK

pp 7T

ppp
ddt
ttp
H2+

E, (a.u. )

0.527 75
0.525 054

111.3879
0.392 14
0.348 37

330.8119
0.262 005

334.5864
114.107 43
129.715 88
102.229 85
109.8237
112.9799

0.592 01

1.0
0.9952

212.932
0.75
0.6667

633.051
0.5

633.051
212.932
237.760
185.78
195.68
199.21

1.0

5.446X10 '
0.0048
0.2827
0.3333
0.5
0.5262
1.0
1.9004
3.5373
6.7227
8.8887

17.762
26.596

1836.2

norm

1.000
0.9997
0.9912
0.9907
0.9902
0.9902
0.9929
1.0015
1.0154
1.0338
1.0427
1.0635
1.0746
1.1218

APPENDIX B: REDUCED-MASS SCALING
OF GROUND-STATE ENERGIES

OF COULOMBIC THREE-BODY SYSTEMS

The Hamiltonian for the Coulombic three-body system
A AB can be expressed in terms of the two vectors r, and

r2 from B to each of the particles A,

m

1+m/M
1 2 1 2 1 1 1——V ——V ————+
2 2 f i l'2

j 2

m /M
(1+m /M)

=V('tH- +(V/M)pl'pal (B1)

where M =m& and 0„ is the Hamiltonian when the
mass of particle B is assumed to be infinite. The second
term in the expression above is the mass-polarization in-
teraction resulting from the correction of the motion of
the two A particles with respect to the center of mass of
the A AB system. If the mass-polarization term is small,
then the binding energy calculated from (Bl) is propor-
tional to the reduced mass p.

Mass polarization is small when the expectation value
of (p/M)(p, .pz) is small compared with the ground-
state energy. For A. =(m/M) ((1,p/M is small and the
scaling with respect to p is expected. Physically this is
understood since the center of mass is very close to parti-

cle B and thus the correction is small. This is not so ob-
vious for Ps where the three particles have identical
masses. The validity of p scaling must therefore rely on
the smallness of (p, p„). For all the three-body systems
where k ( 1 the momentum correlation is expected to be
small and thus the ground-state energy nearly scales with
p. As k increases, we note that the center of mass begins
to deviate further from B. In the molecular limit such as
in H2, the mass-polarization term is very large. This
can be understood from the nature of the bonding orbital.
Since the electron is required to have larger charge densi-
ty between the two protons, this implies that ri and r2 are
to remain on opposite directions most of the time, thus
the expectation value (p/M)(p, pz) is negative, which
results in tighter binding.

In Table I we check the validity of the p scaling for the
various Coulombic three-body systems. The ground-state
energies listed are adopted from the results of Frolov
(Ref. 45) who used Hylleraas-type basis functions in a
variational calculation. If the p scaling is exact, the last
column should be equal to 1. %e note that deviations
from 1 is very small for A, (1, no greater than 1% in all
the entries shown. As k becomes greater than unity, the
p scaling is no longer accurate. The ratio is greater than
1 meaning that the system is more tightly bound in com-
parison to H, which is in agreement with the interpreta-
tion of the mass-polarization term in the preceding para-
graph.
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