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Spontaneous emission by a system of W two-level atoms
in terms of the SU(2)-group representations
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We consider cooperative spontaneous emission by an assembly of N two-level atoms immersed in

a high-Q single-mode cavity, when s (s «N) atoms are initially excited. The atoms are noninteract-

ing with each other except via the action of the electromagnetic field. The eigenvalues of the system
and the time development of the mean energy of the atomic subsystem are presented in the form of
power series in the parameter e=(N —s/2+1/2) using the SU(2)-group-representation tech-
nique.

I. INTRODUCTION

The exactly solvable Jaynes-Cummings (JC) model of a
two-level atom coupled to a single-mode quantized radia-
tion field in a lossless cavity is the fundamental model in
quantum optics. Despite its simplicity it is able to
demonstrate a number of interesting phenomena such as
collapses and revivals, ' sub-Poissonian photon statistics,
and squeezing. The simplest generalization of the JC
model, leading to collective effects in light-matter interac-
tion, is the so-called Dicke model of a system of identical
two-level atoms coupled to a single quantized field mode
and located within a wavelength of each other.

The Hamiltonian for the latter model in the rotating-
wave approximation reads (A= 1):

H =Ho+ Vg,
N

Hp=coIa a +to g S3 '

j=l
N

Vg = y (S'j.'a+S J'at) .

Jn Eq. (1) at (a) is the photon creation (annihilation)
operator and [a,a ]= 1. The jth atom is described by the
well-known Pauli matrices Skj' (k =3, +, —). coI denotes
the frequency of the field mode while co is the atomic
transition frequency. The coupling coeScient g is the
same for all the atoms. It is implicit that the transition
dipoles are aligned with the mode polarization. In what
follows we assume exact resonance and choose the scale
in such a way that cof =co= l.

In general, excluding the cases where s =1,...., 8, it is
impossible for the model in question to obtain exact solu-
tions in a closed form. It has been numerically shown by
Walls and Barakat that when only a sinall number s of
atoms from the system of N atoms is initially excited
(s &(N), and photons are absent at t=0, the spectrum of
the Hamiltonian (1) is almost equidistant. This case was
discussed later in Refs. 5 and 6. The approximate solu-
tions for the expectation values of the Heisenberg opera-

tors in terms of the elliptic functions were presented. In
the present paper we consider the same situation, when s
initially excited atoms radiate spontaneously in the pres-
ence of a large number of N —s unexcited atoms. We
take the initial state of the system as symmetrical with
respect to the permutations of the atoms. %e present a
new solution to the problem. Our method consists of
construction of the perturbation theory with a small pa-
rameter e:

se= N ——+—'
2 2 (2)

The results obtained in this way are valid for an arbitrary
time t.

The method we proposed has the following attractive
features when compared to the elliptic solutions. ' First,
it offers the possibility of obtaining corrections to the
equidistant spectrum. Second, it leads to the very simple
forms of the solutions. Our method involves calculations
in the representations of the group SU(2). We present
here the approximate expressions for the eigenvalues and
eigenvectors of the Hamiltonian (1) as well as for the time
development of the expectation value of the atomic inver-
sion. We show that our analytical results remain in ex-
cellent agreement with those numerically obtained by
Walls and Barakat.

II. RESULTS

Let us recall that the excitation number operator JV'.

~m)=~s —m), ~m)I, 0 m&s . (3)

JV=a a+ g Sq~'
j=1

is an integral of motion. Hence we can only work in the
subspace labeled by its eigenvalue. As a consequence of
the initial condition the time evolution of the system is
restricted to the (s + 1)-dimensional subspace spanned by
the basis vectors
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Here, Im)f denotes the Pock state of the field while

Is —m ), is the normalized symmetric Dicke state of the
atomic subsystem with s —m atoms excited. The initial
condition corresponds to m =0.

The free part Ho of the Hamiltonian (1) leads to an
unimportant phase factor in the transition amplitudes.
In turn, the interaction term V can be written in the basis
(3) in a tridiagonal matrix form with the following non-
vanishing matrix elements:

X =X(O'+e2X(2'
P P P

5p (s —p)—(, ) (s —2p) (s —1)(s —2)
16 2

S

Ip)=Ip&'o)+e g Im&&mIp&'",
m=0

&mIp &'"= ——p —'
&p(s —p+1)a

&m —1I VgIm & =&mIVgIm —1&

=&m (s —m +1)(N —s+m) . (4)

Vg= (H' '+EH"'+E H' '+ ),1

v'e. (5)

where the nonvanishing matrix elements of the first three
terms in Eq. (5) are

&m —1IH' )Im)=&m(s —m+1), (6a)

Choosing the small parameter e according to Eq. (2) one
can expand the right-hand side of Eq. (4) in a power
series in e. Hence we have

1 s —1+—p — 3 (p+1)(s —p)a z+, .

The time evolution of the atomic inversion can be cal-
culated through the formula

E, (t)=&oIe'"'s e-' 'Io&, (10)

where S3 is the collective operator equal to QJ ) S3 '.

Expanding the initial vector IO) in the basis of the
eigenvectors Ip) of the Hamiltonian (1), in the zeroth-
order approximation we find that

' 1/2
(o) s 1E'0'(t) =—cos2Qt, Q=g N —+——
at 2 2

&m —1H Im)= —m—1 s+1 v'm (s —m +1),
2 2

'2
(6b)

The above quantity has a very simple form, similar to
that for the JC model. The collectivity of the system
leads, in this approximation, to the change of the time
scale only. In turn, in the first-order approximation we
arrive at

&m —1H Im)= ——m-(2j 1 s+1
&m (s —m +1),

8 2

(6c)

and, obviously, &mIH'"'Im —1)= &m —1IH'"'Im ).
It is easily seen from Eq. (6a) that the operator H' ' is

equal to the generator 2S„=S++S of the (s+1)-
dimensional irreducible representation of the group
SU(2). This gives immediately the eigenvalues and eigen-
vectors of H' '. In our energy scale we get

E'"(t)=—cos2Qt+ s(s —l)(1—cos4Qt) . (12)
16

In general, except the case s=1, we deal with the addi-
tional Rabi frequency 40 of the oscillations of the sys-
tem. The first-order approximation seems to be sufficient
for E„(t); if s «N, we can omit the higher-order terms
in e since e is then small as well. The special case takes
place for s= 1 (irrespective of N); all the approximations
tend to the same result:

H'"Ip)"'=a,"'Ip &'", a,'"=s —2p, O&p &s,

)T
Ip & =(a, , . . . . ,a„, . . .a, )

where o.k is defined by the formula

E„(t)= —,
) cos(2g&N t) .

We now consider the radiation rate I (t) defined by

I(t)= dE„(t)ldt . —

On insertion of Eq. (12) into Eq. (14}we get

(13)

(14)

k!p!
2'(s —k )!(s —p )!

1 /2
(
—2)'(s —j)!

J)(k P'(p —i}'—
I"'(t)=sQ sin2Qt — s (s —1)sin4Qt .

4
(15)

In particular, for s= 1 immediately from Eq. (15}or from
Eqs. (14) and (13) we arrive at

I'"(t), , =g &N sin(2g&N t), (16)
Using the properties of the matrix elements of the group
SU(2) (Ref. 7) one can calculate higher-order corrections
to the eigenvalues and eigenvectors. Due to our choice of
the form of the parameter e, the first-order approxima-
tion terms for the eigenvalues vanish, i.e., A, '"=0. In
turn, the eigenvalues and eigenvectors in the second- and
first-order approximations are, respectively,

in full agreement with the result of Seke. For short
times

I',„",„(t), , =2g'Nt

is X times the rate for one atom only, i.e., for the spon-
taneous emission from the JC model. Cummings and
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Dorri' also considered spontaneous emission from a sys-
tem for N two-level atoms with one atom initially excited
albeit for nonsymmetrical excitation, i.e., when the excit-
ed atom was distinguished from the others. In this case
we deal with the so-called effect of radiation trapping,
later dubbed by Cummings" "radiation suppression. "
For short times the radiation rate is then identical with
that for one atom only.

In the general case, from Eq. (15) for short times one
finds that

IIh,'„(t)=2g ts(N —s+1) . (18)

It is easily checked that the above function has its max-
imum for s =(N+1)/2. The radiation rate is then pro-
portional to (N + 1),namely,

I,'h,'„(t) = 'g t (N—+ 1) (19)

The system is thus in its superradiant state. Certainly,
for very large N the quantity (19) becomes proportional
to N So, t.he collective behavior of the system con-
sidered here is identical with the superradiant behavior of
an assembly of atoms in a low-Q cavity. '

III. DISCUSSION

The perturbation solutions for the time evolution of
the atomic inversion (or, equivalently, of the radiation
rate) and for the eigenvalues presented here hold for
s &&N. Walls and Barakat have derived computer solu-
tions for the same quantities. Although they considered
the cases for which the inequality s &&N is hardly
satisfied, it is tempting to compare the present analytical
results with those given in Ref. 4 in order to verify the
quality of our approximate solutions. From the point of
view of the approximations used in this paper, the best
case discussed by Walls and Barakat is N=48, s=24.
The appropriate eigenvalues are listed in Table I. The
agreement between A' '=(A, ' '+@~A,'2'}/v e and A"'
presented by Walls and Barakat" is intriguingly excellent.

+—[N —3(s —1)N+ —'(s —1) ]g t
3 4 (20)

From the result presented by Kumar and Mehta we
arrive at

In Table II the same quantities are compared for
N =s=24. At first glance, our solutions should seem to
be inapplicable to this case. However, inspection of
Table II shows that the agreement between A' ' and A'*'

is amazingly good except for the eigenvalues with the
small absolute magnitudes (p=9, 10,11,13,14,15).

It was noticed by Walls and Barakat that the spec-
trum of the eigenvalues tends to be equidistant as s de-
creases. In fact, the spectrum of the zeroth-order eigen-
values A' '=A, ' '/v'e is always equidistant irrespective of
the value of s/N Th.e eigenvalues A~

' contain the term
nonlinear in p which destroys this feature of the spec-
trum. If, however, s/N is sufficiently small, the nonlinear
contributions from p become negligible and the eigenval-
ues A' ' tend to those of A~ '.

In order to obtain the time evolution of E,',"(t) we had
to use the eigenvectors and eigenvalues in the first- and
zeroth-order approximations, respectively. In conse-
quence, the time behavior of E,',"(t) and I"'(t) is truly
periodic behavior irrespective of the magnitude of the ra-
tio s/N. However, the time dependence of the quantities
E„(t) and I(t), calculated within an accuracy of e, may
be aperiodic if s/N is not small enough. This is because
the spectrum of A' ' is not then equidistant. In such a
case one should expect beatings between the terms with
different frequencies, resulting in modulation of E„(t)
and I(t}. It also is in qualitative agreement with the nu-
merical predictions.

Let us compare now the solution (12) for E,',"(t}with
that elliptic obtained by Kumar and Mehta. In particu-
lar, expanding Eq. (12) in a power series in t, within an
accuracy of t we get

$E'"(t)= ——s(N —s+1)g tat

TABLE I. Eigenvalues for N=48 and s=24. The remaining
12 eigenvalues A~

' (k =0,2, 4) for 13~p &24 are readily ob-
tained through AJ'= —A24' ~. A ~0(1/v e)A~0', calculated
from Eq. (7). A~ '=(1/v e)(A~0'+e A~ ') calculated from Eq. (9).
A,'*', computer solutions from Ref. 4.

TABLE II. Eigenvalues for N =s=24. A~"'= —A24' ~ for
13 p 24. Notation for A,' ' and A,'*' is the same as in Table I.

0
1

2
3
4
5
6
7
8
9

10
11
12

A(0)
P

145.00
132.91
120.83
108.75
96.66
84.58
72.50
60.41
48.33
36.25
24.17
12.08
0

A(2)
P

146.72
133.77
121.02
108.43
96.00
83.70
71.52
59.44
47.45
35.53
23.66
11.82
0

A(+)
P

146.64
133.76
121.04
108.47
96.03
83.72
71.52
59.43
47.43
35.51
23.64
11.81
0

0
1

2
3
4
5
6
7
8
9

10
11
12

A(2)
P

93.44
82.07
71.64
62.06
53.24
45.10
37.56
30.52
23.91
17.63
11.61
5.76
0

A(+)

91.28
81.57
72.17
63.09
54.33
45.92
37.88
30.23
23.00
16.25
10.05
4.58
0
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E (t)= ——s N —s+1+ g t
s 1

at
4N

The exact solution has the form'

I, tt z(t) = —", Q sin2Qt ——,'Q sin4Qt . (A2)

+— N —3(s —')N—+2s +s 1 —3s
3 2 2

s 1 4s 44
g t

N 4
(21)

+—[N —3(s —1)N+2(s —1) ]g t . (22)
3

Inspection of the above three solutions shows that our re-
sult agrees better with the direct solution (22); the
difference is only in the term proportional to t .

To conclude brieffy, our approximate solutions seem to
be suitable for the description of the dynamics of the
spontaneous emission from a system of N two-level atoms
with s atoms initially excited even for the moderate
values of the ratio s/N; the agreement with the real be-
havior is particularly good for short times, which is easily
seen from Eqs. (20} and (22). For the sufficiently small
values of s/N the dynamics of the system is almost exact-
ly described for all times by Eqs. (12}and (15) and has the
truly periodic behavior.
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On the other hand, the direct solution of the Heisen-
berg equations of motion leads to the following form of
E„(t):

E„(t)=——s(N —s+1)g t
s

Xv (p+1)(p+2)(s —p —1)(s —p), (A4)

Cz = —„', [(s —2p) +5(s —2p)+5]

Xvp(p —1)(s —p+1)(s —p+2) .

From Eq. (10) at (9) and (A3), we find for s=2 (N arbi-
trary)

2
E' '(t) = —+ —'e + 1 ——cos2Qt

It is readily seen that the amplitudes of the oscillations
are a little greater in our approximate case.

The maximal value of e is e,„=1 . This value of E'

corresponds to the "special case" s= 1 (N arbitrary) dis-
cussed by us earlier in Sec. II. The next in turn highest
possible value of e is e= —'„which just corresponds to
s =N=2. In this case, obviously, we have to improve the
solution (15) taking into account the next approximation
in e, i.e., e . For this purpose we apply the second-order
approximations for the eigenvectors and eigenvalues. In
fact, however, the second-order approximation eigenval-
ues A~

' (p=0, 1,2) are equal to zero for s=2, which is
easily seen from Eq. (9). Hence the time evolution of the
system for s=2 remains periodic.

In general, the eigenvectors in the second-order ap-
proximation are found to be

~p&~p&(0)+/ p&(1)+p2~p&(2)
(A3)

ip &"'= A, ip &'"+B,ip +2 &"'+C, Ip
—2 &"',

A~= ——„',[p(s —2p+1) (s —p+1)
+ (p + 1)(s —2p —1) (s —p) ],

B = —„',[(s —2p) —5(s —2p)+5]

APPENDIX

As mentioned, the case s=2 (N arbitrary) is exactly
solvable. This solution was presented by us in Ref. 15.
Shumovsky, Fam Le Kien, and Aliskenderov' have
solved the particular case s =N=2. Having known this
result, it is interesting to compare it with our approxi-
mate solution (15), which for s =N=2 reads

I,"'N 2(t)=2Qsin2Qt —
—,'Qsin4Qt, Q=&3/2g .

E
1 ——cos40t,

8 2

e =1/(N —
—,
' ), Q =&(N —1/2)g (A5)

On inserting the atomic energy (A5) into (14), we get for
N=2

I,' 'z 2(t)= —", Q sin2Qt ——,'Q sin4Qt, Q=+3/2g,

(A6)

(A 1) in full agreement with the exact solution (A2).
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