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Dark-soliton dynamics and shock waves induced by the stimulated Raman efFect in optical fibers
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It is demonstrated that the dynamics of small-amplitude dark solitons in the presence of the
stimulated Raman effect in optical fibers may be described by the well-known Korteweg —de
Vries —Burgers equation. This approach allows us to explain analytically the temporal self-shift of
dark solutions due to self-induced Raman scattering and to predict oscillating shock waves in opti-
cal fibers.

I. INTRODUCTION

As is well known, optical pulses may propagate in
single-mode fibers without broadening in the form of
bright or dark solitons for which the nonlinear refractive
index exactly compensates the group-velocity dispersion
(GVD). ' Soliton propagation of bright pulses has been
verified in a number of elegant experiments performed in

the negative GVD region of the fiber spectrum, i.e., for
the wavelengths Ao) 1.3 pm in standard monomode sili-

ca fibers (see, e.g. , the pioneer paper by Mollenauer, Stol-
len and Gordon). Because of the difficulty of generating
appropriate dark pulses, experimental investigations of
dark solitons, predicted for the positive GVD by
Hasegawa and Tappert (see Ref. 1), have been started
only recently. In the experiments, dark solitons were
produced and observed on a broad bright pulse with a
rapid intensity dip stipulated by a driving pulse or utiliz-

ing a specially shaped antisymmetric input pulse of finite
extent. But as was demonstrated by numerical and
analytical studies, the finite duration of the background
pulse isn t the principal limitation for dark-soliton propa-
gation, and the generated dark pulses possess properties
similar to exact dark solitons for the cw background. Re-
cently, Weiner et al. reported also the discovery of tem-

poral and spectral self-shifts of dark solitons propagating
in single-mode fibers. The results have been discussed us-

ing numerical solutions of the modified nonlinear
Schrodinger (NLS) equation that includes the Raman
contribution to the nonlinear index.

The stimulated Raman effect produces a frequency
shift of bright optical solitons in single-mode optical
fibers. ' The effect was first observed by Mitschke and
Mollenauer and was explained analytically by Gordon. '

When incorporated into the NLS equation this effect ap-
pears (in the lowest approximation) as a high-order term
of the form u (

~
u~ ), (u being the dimensionless electric-

field amplitude) and produces a frequency shift in propor-
tion to the fourth power of the soliton amplitude and to
the distance of propagation. As a result, the stimulated
Raman effect leads to fission of bright-soliton bound
states. '

Bright optical solitons are two-parametric, and the Ra-
man effect does not result in changing amplitudes of the

solitons, but changes only their frequencies. Unlike
bright solitons, dark solitons are one-parametric, and the
infiuence of self-induced Raman scattering on their pa-
rarneters is more destructive. This paper aims to de-
scribe analytically the dynamics of dark solitons under
the Raman effect demonstrating that the NLS equation
with the Raman contribution to the nonlinear refractive
index may be transformed in the small-amplitude limit
into the well-known Korteweg —de Vries —Burgers equa-
tion. This approach allows us to explain analytically the

temporal self-shift of dark solitons due to the Raman
self-pumping. Moreover, we predict the steady-state dy-
namics of optical pulses in the form of shock waves in-

duced by the Raman effect.

II. CONNECTION BETWEEN SMALL-AMPLITUDE
DARK SOLITONS AND SOLITONS OF THE

KORTEWEG-DE VRIES EQUATION

(k —iv) +expz italo~u(x, t)=uo e1+expz

where

(2)

z =2 u v(t o—to —2kuox), A. =1—v (3)

The propagation of nonlinear pulses in optical fibers
with dispersion is well described by the conventional
NLS equation, which has the following scaled form (see,
e.g. , Ref. 1):

i —tr +2~u~ u =0,. t)u B u

Bx

where u(x, t) is the complex electric-field amplitude en-

velope in a reference frame moving with the pulse, o is
the sign of the GVD of the pulse. The solutions of the
equation divide into two different classes depending on
the sign of o.. In the case o = —1 (negative GVD) the
equation possesses stable bright-soliton solutions. ' At
o =+1 (positive GVD) the cw solution

~
u~ =uo =const is

stable and, as a result, Eq. (1) has soliton solutions in the
form of localized dark pulses propagating on the non-
linear cw background. The one-soliton dark pulse has
the form'
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and it corresponds to the boundary conditions
~
u

~ ~up at
t ~+~; the solution [(2) and (3)] has the single parame-
ter v (unlike a bright soliton}, which characterizes the sol-
iton intensity. For simplicity, we will consider to =0.

We distinguish two limiting cases of the dark soliton.
The fundamental dark soliton [Eqs. (2) and (3) at A, =O],

2lQ px
~ 2

u (x, t)=uo tanh(upt)e (4)

z =2vuo(t+2uox+uov x), (5b)

and its velocity is close to the velocity of linear excita-
tions of the background. We will demonstrate that the
dynamics of the latter solitons may be described by the
well-known Korteweg-de Vries (KdV} equation. The
connection between the NLS equation at o = + 1 and the
KdV equation allows us to study in a simple manner a
number of features related to the dark-soliton dynamics,
e.g., creation of dark solitons by an arbitrary input pulse
without a threshold, ' the temporal self-shift of dark soli-
tons, intermode attraction of dark solitons in two-m. ode
or birefringent optical fibers, ' etc.

To discuss the dark-soliton dynamics in the small-
amplitude limit, we look for a solution of Eq. (1) in the
form

2iu px +i P(x, t)
u (x, t) = [up+a (x, t)]e (6)

Substituting Eq. (6) into Eq. (1), we obtain two equations:

is the antisymmetric function of the time with phase shift
n and zero intensity at its center. Another limiting case
v &(1 corresponds to a small-amplitude dark soliton,
when the solution [(2) and (3)] may be presented in the
form

2 2 2iu px+iP(x, t)
~ 2

u (x, t) =[up —
—,'upv sech (z/2)]e

(5a)
P(x, t) = —2vl(1+ e'),
where

tions and to consider the nonlinear dynamics for both of
the velocities separately:

r=e(t —Cx), y =e x, (9)

where e is an arbitrary small parameter connected with
the soliton amplitude [cf. Eq. (5)]. Additionally, we will
find the solutions for the functions a(x, t) and P(x, t) in
the form of the formal perturbative series (asymptotic
series) in the same small-parameter e as the following:

a =e ao'+e a~+ ' ' ', P=ego+e P~+ (10)

Substituting (10) and (9) into Eq. (7), we obtain the set of
equations produced by coefficient at the different powers
of@,

Bao B Po
C +up =0,

Br

Ba, B'y, Ba, By,
C +up +2

(1 la)

Bao B Po
+ao =0, . . .

Bw

(1 lb)

and

Bko
uo C +4upao =0

a7.
(1 lc)

Equations (1 la) and (1 lc) lead to the relation

Wo
Br

Cao

uo
(12}

Using the expression

By, Bgp B ap
up C +4upa& —

up
7 y Brz

'2
By, By,

+Cap +uo +6upap=O, . . . . (11d)
c}~ a~

Ba B'y Ba By B'y
Bx Bt~ Bt Bt

BP B a BP
uo —4uoa + +a

ax

(7a)
Ba, BP,

C +uo
Br

defined by Eqs. (1lc) and (12), we may obtain from Eq.
(1 ld) the KdV equation

—(up+a)
at

—6upa =0 . (7b)

Bao Bao
2C +24u oao

8ao =0,
a73

(13)

In the linear limit and for 0 a/9t ((uoa, the linear exci-
tations of the cw background may be described by the
wave equation

which has the soliton solution in the form

2K
ap(r, y) = —(K /2uo )sech K 7 + (14)

~ —4u' ~ =0uo
gt2

supporting a wave motion with two velocities +~C~ (in
the t space), where

v being the KdV-soliton amplitude. Direct comparison
the solution (10), (12), (9), and (14) with (15) leads to the
simple relation between the dark-soliton parameters and
the formal perturbative parameter e (in principle, we may
put e= 1):

4u o ~ (8) vup :=6K (15)

Let us use new variables that allow us to divide the direc- which demonstrates that the dynamics of small-
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amplitude dark solitons (5) may be exactly described by
the KdV equation (13).

tion between y and x defined in Eq. (9), we obtain the re-

sulting equation in the form

III. DARK SOLITONS UNDER THE RAMAN EFFECT
2(x C 2 3

15
"' (18)

Let us use the same approach to describe analytically
the perturbation-induced dynamics of dark solitons. We
will describe the experimentally observed temporal self-
shift of dark solitons produced by the Raman self-

pumping.
The Raman contribution to the nonlinear refractive in-

dex may be described by the modified NLS equation in
which the nonlinearity is presented by the term

n, lul'~n, (1—a)lul'

+a f ' f(t —t')lu(t')l'dt'

where a is the fraction of the total (low frequency) non-
linearity with a delayed response, and f (t t') is th—e Ra-
man response function. ' The response function is the
Fourier transform of the complex third-order susceptibil-
ity, of which the imaginary part is the Raman gain
n z'a (Q) (see Ref. 18):

oof (t t')= —f—nz'tt(Q) sin[Q(t t')] dQ . —

Because the Raman response function of fused silica is
extremenly short, an approximate for the response func-
tion has been successfully used to model the Raman con-
tribution in the NLS equation by a local term. ' ' In
this approach the function u (t —s) (here s = t t') ca—n be
expanded in a Taylor series about t to yield the perturbed
NLS equation

. Bu
l

Bx

B u 2 B+2 uI u =au —(lul ),
Bt Bt

(16)

a being in proportion to the Raman gain parameter a.
Using the approach presented above, we may calculate

the contributions of the term au B/Bt( l
u

l ) in amplitude
equations of Section II. In particular, this term leads to
the contribution —2aup(Ba/Bt) on the right-hand side of
Eq. (7b}. The resulting first-order equation for the ampli-
tude ao has the form

which yields the evolution of the dark-soliton amplitude:

2
Vo

X ——CKQ

1+sgnC(x/xo) ' (19)

u(0, t)= 3 tanht exp( t /T ) . — (20)

This input pulse, an antisymmetric function of time with
zero intensity and an abrupt m phase shift at its center,
closely resembles the fundamental dark soliton (4). In the
case of the cw background [or T))1 in Eq. (20)] the
problem of the dark-soliton generation by the input pulse

Jut= u

(s)

where sgnC = + 1 for C )0 and sgnC = —1 for C (0.
The result (19) means that the evolution of the dark-

soliton parameters is connected with a direction of the
soliton motion. In such a situation, two dark solitons
with opposite velocities but equal amplitudes, which are
produced by a localized input pulse on a cw (or finite-
extent} background, ' will change their velocities and
amplitudes by different ways. The dark soliton propaga-
ting to the right (C )0, sgnC =+1) decreases its ampli-
tude and increases its velocity (in the t space). But the
dark soliton propagating to the left (C &0, sgnC = —1)
increases its amplitude and decreases its velocity (see Fig.
1). As a result, dark solitons moving to the right may
disappear due to the Raman effec on distances of order
of xp xp being defined by Eq. (19).

Let us also discuss the result (19) from the viewpoint of
the experimental data obtained in Ref. 8. The starting
pulse for those experiments and numerical calculations
was a tangent hyperbolic dark pulse on a Gaussian back-
ground pulse,

Bap Bao
2C +24uoap

By 1

B ao a 2B ao3 2

=2 Qo
B~' e '

BH
(17)

Equation (17) is the Korteweg —de Vries —Burgers equa-
tion arising in different branches of physics, mostly in hy-
drodynamics (see, e.g. , Ref. 19 and references therein).
The dynamics of the KdV soliton in the presence of the

8ao
small perturbation 2(a/e)up may be investigated by' a~'
the perturbation theory for solitons. ' According to the
approach, the evolution of the KdV soliton amplitude x
is described by the equation (see, e.g. , Ref. 19):

(b)

)u) = u

dK

dg

2C (a/e)~
15

Taking into account the expression (15) and the connec-

FIG. 1. Decay of an input pulse {dashed line) into two dark
solitons (solid line) without the Raman effect (a), and in the
presence of the self-induced Raman scattering (b).



1760 YURI S. KIVSHAR

(20) may be solved analytically for the NLS equation (see
Ref. 20). When A =N —P, where N & 1 is an integer and

0 &P(1 is an arbitrary number, the central pulse will al-
ways evolve into the fundamental soliton (4) with
uo=N —13, which we call the primary soliton. In addi-
tion, there are (N —1) soliton pairs, i.e., 2(N —1) secon-
dary gray solitons generated under the same constant
background uo =N —P with the parameters
v„=l n/(N——P), n =1,2, . . . , N —1, and propagating
with the opposite velocities (in the t space)
+2uo(1 —v„)' from the central fundamental (primary)
dark soliton (see figures in Ref. 20 where numerical simu-
lations for the case were made). The number of these
secondary dark-soliton pairs is defined by the background
intensity. In the experiments by Weiner et al. ' one or
two pairs were observed and they may be considered as
small-amplitude ones.

In the presence of the Raman self-pumping [aAO in
Eq. (16)] the generation of dark solitons from the input
pulse (20) is modified because the perturbation changes
the soliton parameters. For the small-amplitude (gray)
solitons the evolution of the soliton amplitude is de-
scribed by Eq. (19). According to Eq. (19), the solitons
propagating to the right decrease their amplitudes; at the
same time, the solitons propagating to the left increase
their amplitudes. After some distances x &xo [see Eq.
(19)] a pair of the gray solitons generated with opposite
velocities will be transformed into a single high-contrast
(left) gray soliton because its mate (right) soliton will
disappear. The central dark pulse that is transformed
into the primary dark soliton shifts also to later times and
is of lower contrast. The initial evolution of the funda-
mental dark soliton cannot be described by Eq. (19) be-
cause it was obtained in the small-amplitude limit, but its
shift is less [see Eq. (18) where the shift speed is propor-
tional to the soliton velocity]. As a result, the output op-
tical pulse must display significant asymmetry due to the
temporal self-shift and amplitude decreasing of dark soli-
tons. The effect is in substantial agreement with the ex-
perimental and numerical results, where it was observed
that the shifts are more evident for high-power input
pulses. The latter result may be also explained in the
framework of our approach, because the distance describ-
ing the effect of the self-shift of dark solitons xo is in-
versely proportional to the third power of the back-
ground intensity uo [see Eq. (19)].

IV. SHOCK WAVES INDUCED BY
THE RAMAN EFFECT

differentiation in respect to the new variable g=~ —Wy.
This equation describes the motion of a unit-mass parti-
cle in the effective potential U,a(u)=CWu —4u in the
presence of the friction force yv', y—=2auo. Straightfor-
ward analysis demonstrates the only regular solution to
Eq. (21) is the above-mentioned oscillating shock wave.
The amplitude of the shock wave u, is proportional to
the velocity W, u, =

—,'~ WsgnC~. The shape of the wave

depends on the relation between the wave parameters. In
the linear approximation (near the tails of the wave) we
may investigate its shape exactly. Substituting
u =

—,'CW+ f, f« 1, into the Korteweg —de
Vries —Burgers equation, we obtain the solution

f -exp(pg), where

2

p = —++ +2CW
2 4

' 1/2

As a result, the shock wave is monotonic one in the
dissipation-dominant case, when y & y,„=—8

~
CW~. In the

opposite case, when y & y„, i.e., for

a &a„=4~W~/uo, (22)

u ~uoexp(2iuox), t~ —oo,

u ~u, exp(2iu, x), t ~+ oo,

where the value ~uo
—u, ~

is a function of the velocity W.
To prove the assumption, one needs to use numerical
simulations.

the shock wave has an oscillating profile shown in Fig. 2.
In the case y «y, „ the oscillatory shock wave may be
considered as a bound state of a succession of the KdV
solitons (in our case dark solitons) (see Ref. 21). The total
number of the solitons (maximum points of the shape)
may be estimated in the framework of the perturbation
theory for the KdV soliton system ': N —v'

~
CW~ /y

=(~ W~/a uu)' -a,„/a&&1. The length of the oscilla-
tions is of the same order (see Ref. 21).

It is evident that more general solutions of the NLS
equation with the Raman term in the form of a shock
wave or a kink soliton may be looked for as follows:
u (x, t) =F(g)exp[i/(x, g)],)=t —Wx, with the asymp-
totics

As is well known, the Korteweg —de Vries —Burgers
equation (17) has, instead of unstable solitons, another
type of a steady-state moving solution in the form of a
shock wave with an oscillating structure (see, e.g. , Ref.
21). Looking for a solution ao(r —Wy) and imposing the
condition that ao( —oo ) is zero (i.e., ~

u
~
~u o), one obtains

the equation [we put e= 1 in Eq. (17)]

I"~
= "o

—2C8'v + 12v —v" =2nu ov ', (21)

where v =—uoao, and the prime stands for the
FIG. 2. Shape of the shock wave induced by the Raman

effect for the case CW & 0; u, = —'~ WsgnC~.
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V. CONCLUSIONS

In conclusion, we demonstrated that the dynamics of
small-amplitude optical excitations of the cw background
pulse in the presence of the self-induced Rarnan scatter-
ing may be effectively studied in the framework of the
Korteweg —de Vries —Burgers equation. The approach al-
lowed us to explain by a simple way the temporal self-
shift of dark solitons due to the Raman self-pumping.

The dark solitons are one-parametric ones and the
influence of the Rarnan effect on their dynamics is more
destructive than for the case of bright solitons. We
demonstrated also that under the self-induced Rarnan
scattering there is another type of solitonlike optical
pulses in the region of the positive GVD of the fibers.
These solitons are the shock waves propagating without
changing their shapes and velocities.
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