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Effect of atomic motion on Rydberg atoms undergoing two-photon transitions
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Amitabh Joshi
Multidisciplinary Research Section, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India

Suresh V. Lawande
Theoretical Physics Diuision, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India

(Received 12 March 1990)

The question of nonlinear transient effects similar to self-induced transparency and adiabatic fol-

lowing is examined for a moving Rydberg atom undergoing two-photon transition in a lossless cavi-

ty having spatial field distribution. Also, comparison is made with the case where an atom is under-

going one-photon transitions under similar conditions.

I. INTRODUCTION

Studies on Rydberg atoms have been developed so well
that they allow one to prepare a two-level atom very
strongly coupled to the radiation field so that the atomic
coupling with a single mode becomes the dominant pro-
cess in the system evolution. The exact solution of a sin-
gle two-level atom interacting with a single quantized
mode of the radiation field has been provided by the
Jaynes-Cummings model' (JCM). This model has been
proven to be of fundamental importance in understand-
ing many effects in atom-radiation interaction. New
effects that have been impossible to prove now fall in the
range of possible detection avenues. A few of them are
modification of the spontaneous emission rate of a single
atom in a resonant cavity, ' the oscillatory energy ex-
change between an isolated atom and the cavity mode,
and the disappearance and quantum revivals of an optical
nutation signal induced on a single atom by a resonant
field. After the advent of the superconducting cavi-
ties having a very high-quality factor Q, the investigation
of the interaction between a single atom and a single
mode of a radiation field has become experimentally feasi-
ble. The important experiments, among others, are
those that involve longer interaction times where quan-
tum revivals have been observed. Thus the JCM is very
useful in the understanding of basic matter-field interac-
tions and also plays an important role in laser and maser
theories.

Recently, JCM has been studied with a different theory
in which atomic motion and the effect of field structure of
the cavity mode were taken into account. ' Incidentally,
this provides a most elementary model for the interaction
of a single atom with an electromagnetic pulse. The re-
cent experiments ' are provided with an atomic beam
passing along the axis of the rectangular or cylindrical
cavity so that one can study the interaction of an atom
with different cavity field modes.

The standard JCM describes an atom interacting with
a constant electric field. It has been shown that when
mode structure is taken into account, the nonuniform

shape of the resonator mode gives rise to nonlinear tran-
sient effects in the atomic populations which are similar
to self-induced transparency (SIT) and adiabatic follow-
ing" (AF) respectively. These studies, however, are for
an atom undergoing a one-photon transition. ' In this
paper we examine these nonlinear transient effects arising
from the mode structure for a moving atom undergoing
two-photon transitions inside a lossless cavity.

II. THE MODEL

We assume that the atom undergoes a two-photon
transition of frequency 2w between the nondegenerate
states ~g) (the ground state with energy hw ) and ~e)
(the excited state having energy hw, ). The transitions are
mediated by a single intermediate level ~i ) (energy hw, .

and hw, & hw; )hw ). The frequencies of transitions

(g ) ~~i ) and ~i )~e) are w —5 and w+5 with the
coupling constants gl and gi, respectively. The Hamil-
tonian that describes the interaction between an effective
two-level atom of states ~g ) and ~e ) and the cavity mode
of frequency w can be written down as

H = riw, ~g &&gi+Rw, ~e&&e~+riwa a

+ata(p, [e)&e)+p, [g) &g~)

+g [(a )' g & & e/+a'/e & &gi] .

[The derivation of the above Hamiltonian and its validity
has been discussed in considerable detail elsewhere (see
Refs. 12 and 13). The main assumption behind its deriva-
tion is as follows: If the value of 5 is quite large com-
pared to the Rabi oscillation frequencies of ~g )~ ~i ) and
~i )~ ~e ), then the virtual state ~i ) can be eliminated
adiabatically. ] Here p, and p2 are the parameters
describing the intensity-dependent Stark shifts of the two
levels due to the virtual transitions to the intermediate
level ~i ); g is the two-photon coupling constant related to
g, , gz, and 5; and a (a ) are annihilation (creation) opera-
tors for the cavity field mode. We assume further that
the shape function of the cavity mode is f (z). We re-
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strict our studies for atomic motion along the z axis so
that only the z dependence of the mode function would be
necessary to consider. The atomic motion would be in-

corporated as follows

f(z)~f (vt), (2)

in which U denotes the atomic velocity. Hence, we can
define our cavity mode TE „ like

f (ut) =sin(p~ut /L) .

H = i''ws g & & g~+ iiiw,
~
e & & e ~ + iowa a

+a~a(P, (e &&e(+P, (g &&g()

+[f(z}]'[«'}'lg& & el+a'le & & gl] (4)

The wave function of the above system can be written in
the following way:

f(t)= pa„(t)~e, n &+b„(t)~g,n & .

Here p stands for the number of half-wavelengths of the
mode inside a cavity of length L. %'ith the inclusion of
the shape function of the cavity mode, the Hamiltonian
of Eq. (1}can be conveniently cast in the following form:

III. SOLUTION OF T%0-PHOTON
BLOCH-LIKE EQUATIONS

A. On-resonance solution

8„(t)=2gv'(n +1)(n +2)f dr[f (vr)]
0

(9)

For the sinusoidal field we obtain

L
sin(2mput /L )8„(t)=2gi (n+1)(n+2) t—

27TpU

The situation in which cavity eigenfrequency is on res-
onance with the atomic transition frequency is rather in-
teresting. Here 5=0 and we can solve exactly these
equations. Now the Bloch equations reduce to two cou-
pled equations:"

w„(t)=w„(0)cos8„(t),

u„(t)= —w„(0)sin8„(t),

u„(t)=0 .

The function 8„(t) can be interpreted as a tipping angle
for Bloch vector p„=(u„,u„,w„} and corresponds to the
area of the square of the field amplitude the atom passes
until the time t:

The dynamics of the system is determined for each value
of n by two coupled differential equations for the complex
amplitudes a„and b„+z. Alternatively, we define three
real quantities w„, u„, and U„as follows:

u„=2 Re(a„b„'+2 ),
u„=2 Im(a„b„'+2 ),

For simplicity we ignore Stark shifts and thus obtain a
discrete set of two-photon Bloch-like equations of motion
of the atom field system, due to the photon distribution in
the field,

—w„=2gv'(n +1)(n +2)sin (p~vt/L)v„,
d

—u„=Du„—2gv'(n +1)(n +2)sin (pm vt/L)w„,

—u = —EU
di

Here, 5=w, —
wb

—2w is the detuning. We assume that
the atom enters the cavity at time t=0 in the upper state

~
e & and we measure the population inversion at the tran-

sit time tz-=L/U when the atom leaves the cavity again
after passing p half-wavelengths of the electric field. In
the literature we find mention of the density-matrix equa-
tion of the quantum theory of laser with atomic
motion. ' ' We also find a considerable amount of dis-
cussion on two-photon Bloch equations in describing cer-
tain coherent effects such as photon echoes, optical nuta-
tion, adiabatic following, ' etc.

(10)

We now examine the mode structure effect when an
atom interacts with a mode with p & 1. At t=0 the atom
enters the cavity at one end and follows the spatial struc-
ture of the TE „mode and all the Bloch vectors p„be-
gin to rotate from the 8„=0position. The angle 8„by
which the vector p„(t) swings away from its initial posi-
tions p„(0) would always remain different for different n.
No rephasing of Bloch vectors takes place while it com-
pletes one full wavelength of the mode structure. This is
because "pulse area" [defined by Eq. (9)] does not vanish
now over a wavelength of the mode. Hence we do not
observe "spin or photon echo" effect, which is in contrast
to the situation where an atom is undergoing one-photon
transition and seeing the mode structure of the cavity. '

Another striking difference here in comparison to the
situation when the atom is undergoing one-photon transi-
tion is as follows: In the experiments that measure the
population inversion (W) at the exit of the cavity, one
does not distinguish any difference in 8 due to odd or
even p, which is in contrast to the one-photon transition
situation, where for even p one finds SIT-type behavior'
irrespective of initial field statistics. In our case the tip-
ping angle at time tz when the atom leaves the cavity is
given by (irrespective of whether p is odd or even)

8„(tr)=2gv'(n +1)(n +2)(L/v),

a situation that is somewhat similar to the normal JCM
where the electric field is considered to be uniform
throughout the length of the cavity.

However, an interesting situtation may arise when the
atomic velocity v is such that the tipping angle 8„(tr) for
some fixed value of n equals the integer multiple of 2~:
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0„(tr)=2vrq . (12)

B. Far off-resonance condition

We can solve the above equations (7) in the adiabatic-
following approximation under far off-resonance condi-

Now the Bloch vector p„undergoes q Rabi oscillations
inside the cavity and leaves it in the same position it en-
tered. In other words, p„(tT)=p„(0). This behavior of
the Bloch vector resembles the SIT of 2mq pulses in the
theory of pulse propagation. However, the definition of
pulse area is different here [see Eq. (9)]. Incidentally this
behavior is analogous to the one-photon transition case. '

Suppose the input field is in the superposition of number
states. Then a set of Bloch vectors p„will be having all
different tipping angles 9„(tT) For. a fixed atomic veloci-
ty it is not possible to satisfy the condition (12) for all
values of n simultaneously so that atomic inversion at the
cavity exit is always different from the inversion at the
cavity entrance. The only exception would be the num-
ber state where there is only one Bloch vector.

tions. With the analogy of Bloch vector precessing about
the "torque" vector, we can explicitly write down the
form of torque vector as

Q„(t,b)= [2gM(n +1)(n +2)sin (pout/L), 0,hj, (13)

For large detunings and under the condition

a/g»2(n }

(6/g)gL/pmu »1 . (15)

Hence, p„ is precessing rapidly about Q„and adiabatical-
ly following this vector. We can write the solution of the
equations under the adiabatic-following approximation:

( ( n } is the average photon number in the field), we find
that the Bloch vector p„changes on the time scale 6 ' as
compared to the torque vector Q„, which changes on the
time scale L/pmu. Therefore, if Q„changes its direction
very slowly compared to p„, then

w„(t) =w„(0)
(b +[2g&(n +1)(n +2)sin (pmut/L)] I'~

Under the off-resonance condition, we find behavior of
the Bloch vector motion is completely different from the
on-resonance condition. During the first quarter of the
wavelength, all the vectors Q„and p„change their initial
value to some new value. In the second quarter of the
wavelength, field strength decreases and torque vector 0„
reverse their motion and after completion of half-
wavelength all arrive again simultaneously at their initial

values. The same motion repeatedly occurs in the subse-
quent half-period. So we find the rephasing of Bloch vec-
tor taking place analogous to the case of an atom under-
going a one-photon transition with mode structure in-
cluded. However, rephasing does not take place in the
standard JCM as it is due to the mode structure.

Thus for those experiments that measure atomic inver-
sion behind the cavity, it is only relevant that the torque
point at the cavity exit in the same direction as at the

l ~ 4

0 ~ 8

-0.4,

-0 ~ 4.

-25 ' 0
I

—15 ~ 0 -5 ' 0 5 0 i 5. 0 25 ~ 0

FIG. 1. Atomic version 8' at the cavity exit vs cavity detun-
ing 5 for a fixed transit time tT =orig. Curve A is for a TE „~
mode with p= 1 and curve B is for standard JCM. In both cases
the field is initially in the coherent state with mean ( n ) = 10.

—i ~ f)

-25 ~ 0
I
—15 0 5 0 i5 0

FIG. 2. The same as Fig. 1 but curve A is for p=2.

25 0
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FIG. 3. Atomic version Mat the cavity exit vs transit time tT
for a fixed detuning 5=5g. Curve A is solution of Eq. (7) for
p=1 cavity eigenmode and curve B is for standard JCM. In
both cases the field is initially in the coherent state with mean
(n)=10.

cavity entrance:

Q„(rr, b, )=Q„(0,5) . (17)

Exact numerical integration of Eqs. (7) is shown in
Figs. 1 and 2 for p= 1 (i.e., p odd) and p=2 (p even), re-
spectively, along with normal JCM results. The quantity
depicted in these plots is the inversion ( W = g„w„) of
an effective two-level atom undergoing two-photon tran-
sition after passing the cavity. We have plotted this
quantity keeping its importance in the current experi-
ments. In both figures we assume the cavity is sustaining
a coherent-state field with (n ) =10. We show in these
figures the dependence of the inversion on the cavity de-
tuning for a fixed atomic velocity U =gL la. We do not
find any transparency of even modes (p even) when b, =0
in contrast to the case when the atom is undergoing one-
photon transition. ' So the behavior of an atom undergo-
ing two-photon transition at exact resonance 5=0 is
similar to the standard JCM result. However, at the off-
resonance condition, the mode structure leads to strong
deviations from the standard JCM. As soon as detuning
is large enough to satisfy condition (15), the inversion adi-

In the limit of very large detuning and large transit
times we find all Bloch vectors p„remain unchanged in
their direction during transit through the cavity. In oth-
er words, they exit in the same direction as at the en-
trance. So the atom leaves the cavity in the same state in
which it entered, whether or not the cavity mode has an
even or odd number p of half-wavelengths.

C. Numerical results

abatically follows the field profile inside the cavity. The
normal JCM still predicts oscillatory behavior for large
detuning. However, oscillations are compact as com-
pared to the one-photon case.

In Fig. 3 we have plotted inversion with respect to the
transit time tT =I./v for a fixed large detuning 6=5g, in
order to show the discrepancy for large detuning between
normal JCM and JCM with mode structure. We observe
here that for very fast atoms (tT «vrlg) the torque I1,„
changes rapidly and mode structure effects give some os-
cillatory behavior. However, as soon as transit time tT is
large enough to satisfy the condition for adiabatic follow-
ing, the population of the upper level is no longer affected
by the passage through the cavity. The standard JCM
still predicts collapses and revivals in the population in-
version (which are compact and complete) because torque
vector Q„changes steplike at the cavity entrance and exit
so that the Bloch vector p„can no longer follow it adia-
batically.

IV. CONCLUSIONS

With the help of JCM we have studied nonlinear tran-
sient effects that are due to atomic motion and mode
structure of the field for an atom undergoing two-photon
transitions. The striking features of our investigations
have been compared with the normal JCM model of
two-photon transition. We find at far off-resonance the
rephasing occurs at every node of the field —an effect
which is clearly due to the mode structure of the field. A
necessary condition for the rephasing due to adiabatic
following is, however, that the field change continuously
and at a rate that is small compared to the detuning.

Also, a very important difference between the situation
where the atom is undergoing one-photon transition and
the situation where it is undergoing two-photon transi-
tion has been brought out. On exact resonance it is the
pulse area that determines the dynamics of the system.
For the one-photon case we find the pulse area vanishes
whenever the field completes one wavelength; hence we
observe self-induced-transparency (SIT)-like behavior ir-
respective of the initial-field statistics. However, in the
two-photon case the area under the square of the field
amplitude never vanishes so we do not come across SIT
except for some number state.

In current experiments where population inversion of
the exit of the cavity is an accessible quantity, these re-
sults may be useful to discern between the type of transi-
tion undergone in the atom under the on-resonance con-
dition.
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