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Influence of pump-phase fluctuations on the squeezing in a degenerate parametric oscillator
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The fluctuations in the phase of the pump in a degenerate optical parametric oscillator are
modeled by a classical phase-diffusion process, and their influence on squeezing is studied. To this

end, appropriate quadrature variables, relative to the instantaneous phase of the pump, are intro-
duced. The squeezing is calculated both inside and outside the cavity. In both cases it is found to
be degraded by the phase fluctuations, which may be understood in terms of the time lag in the
response of the system to an instantaneous change in the pump phase. This effect might account for
a small part of the residual noise present in current experiments. Correlation functions for the field

of the oscillator for finite pump linewidth are derived and discussed.

I. INTRODUCTION

Parametric processes are of great interest in quantum
optics because they make it possible to generate light
beams that exhibit very strong, often nonclassical, corre-
lations. Such correlations are of interest in themselves, as
evidence for the quantum nature of light but they also
offer the hope that they might lead to improvements in
the sensitivity of a variety of measurement techniques
where the noise common to both beams could be sub-
tracted from the final output. This sensitivity beyond the
standard shot-noise limit (of which conventional "squeez-
ing" is the best-known example) has been demonstrated
experimentally by several groups using different arrange-
ments; the use of parametric oscillators to generate
squeezed light, in particular, has been reviewed by Wu
et al. '

Essential to the parametric process is a strong pump
beam, and the important question of how the fluctuations
in the pump affect the output of the amplifier has been
addressed before though only, it appears, in the con-
text of a traveling-wave amplifier. Although pulsed
squeezed light has recently been generated in a traveling-
wave configuration, the experiments which have pro-
duced the largest noise reduction have made use of a
cavity to build up the light intensity. The influence of
pump fluctuations in such an optical parametric oscilla-
tor (OPO) does not, however, appear to have been con-
sidered in the literature; this is the object of the present
paper.

In general, two kinds of questions may be asked re-
garding this problem. In the first place, one naturally
wants to know to what extent the fluctuations of the
pump reduce the nonclassical correlations (e.g., squeez-
ing) in the light generated by the OPO. Second, for appli-
cations where the coherence properties of the generated
light are important, one is led to ask in which way the
finite linewidth of the pump, arising from fluctuations,
affects the spectrum of the generated light. The two

questions are of course related, since the degree of
squeezing of the output beam can be defined in terms of
its correlation functions. ' '" Both shall be answered here,
at least as far as second-order coherence is concerned.

We shall restrict ourselves here to phase fluctuations of
the pump, which is typically an intense laser beam with
well-stabilized amplitude but whose phase drifts in a way
that may be approximated by a Wiener-Levy diffusion
process. This phase diffusion clearly causes the squeezing
of the output light to have only a transient nature when it
is defined relative to a hypothetical, fixed reference phase;
since, in time, the phase of the pump, which determines
which quadrature is amplified or deamplified, will sweep
all over a (0,2~) interval. As a result, we shall not find

any squeezing under stationary conditions —i.e., over a
sufficiently long time interval —if we define our quadra-
tures relative to such a fixed, external phase. But, of
course, this is not the only possible definition, nor is this,
operationally, the way squeezing is detected; rather than
making the squeezed light interfere with an external, in-

dependent source, it is typically made to interfere with a
beam whose phase fluctuations are correlated to those of
the pump, so that, if the phase of the pump is B(t),
squeezing is observed for quadratures defined relative to a
time-dependent phase 8(t)/2 (ultimately, a random vari-
able in our model). When squeezing is defined in this
way, a stationary process results leading to a well-defined
quantum-noise reduction, as we shall see below.

This paper is organized as follows: In Sec. II, the basic
equations are introduced and the statements in the
preceding paragraph are given mathematical shape. In
Sec. III the intracavity squeezing is discussed, and in Sec.
IV the correlations for the field are derived and, from
them, the spectrum of squeezing of the output field. A
summary of our conclusions may be found in Sec. V.

II. FIELD-EVOLUTION EQUATIONS

Our basic model is an extension of that of Wodkiewicz
and Zubairy to a cavity situation. Thus we have the
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Heisenberg equations of motion for the annihilation and
creation operators for the intracavity field mode

dx = —yx+Ky+ G),dt
(8a)

da
dt

da =~e' a —~ a +Ft(t),
dt 2

(la)

(lb)

dt
= —y'y+2~(x +z) —i 8y+G e2

dz = —yz+Ky —Zi Oz+ G*, e
dt

(Sb)

(8c)

(F(t)F(t'))=(F (t)F (t'))=0,
(F(t)F (t'))=y5(t —t') .

(2a)

(2b)

The phase 8(t) of the pump is taken to undergo a
%iener-Levy diffusion process, with diffusion constant D:

where ~ is the parametric gain, 8(t) is the phase of the
pump field (a classical random variable, see below), y is
the intensity loss rate of the cavity (1/y is the cavity
"photon lifetime" ), and F(t) is a Langevin operator to ac-
count for the cavity losses (see, e.g. , Ref. 10):

where

x =(a'),
y

—=

(aalu+a'a

)e

z —( a i'2
)e 2i 8—

and

Gi =—(aF+Fa ),
G2=—(Fa +F a+aF +a F) .

(9a)

(9b)

(9c)

(loa)

(lob)

(8(t)) =0,
(8(t)8(t') ) =2D5(t t'), —

from which follows

(3a)

(3b)

The quantum-noise contributions of G& and Gz may be
evaluated as follows. %rite

a(t)=a(t —e)+ f a(t')dt'
t —E

( e
—i8(t) )

—(8(0) Dt—
(4)

'4'o t '&oa2=(ae ' —a e ')/2i (6b)

and inquire about their variances

This leads to a Lorentzian spectrum for the pump, whose
linewidth (half-width at half maximum) is D (in radians
per second). Note that the angle brackets in (2) denote a
quantum-mechanical expectation value whereas in (3) and
(4) they denote an average over the classical stochastic
process which describes the phase diffusion. In the equa-
tions to follow, a single set of angle brackets will denote
only the quantum-mechanical expectation value; when
the different realizations of 8(t) are also averaged over,
double angle brackets will be used, as in ((a(t) )).

Consider first the quantum expectation value (a(t))
for a given realization of 8(t). From Eqs. (1) and (2),

—(a(t)) =me ' '"(a(t))' —+(a(t)) .
dt 2

If the cavity field builds up from vacuum, (a(0)) =0,
and Eq. (5) is solved by (a(t)) =0 for all t.

Suppose we wanted to investigate the squeezing in the
intracavity field for quadratures defined relative to a fixed
reference phase (I)0. We would define operators

'&o t '&o
a) =(ae +a e )/2,

G,:—0,

G —= + =y.2 2 2
(13)

Introducing the vector x=(x,y, z)' (t here stands for
transpose) and the matrices

—y K 0
2K P 2K

0 K —y

0 0 0

(14a)

then substitute this expression into (10a) and (10b), with
a(t') given by Eq. (la) evaluated at the time t'. The ex-
pectation values of the type (F(t)a (t —e) ) vanish, since
the noise F at time t and the field a at an earlier time are
uncorrelated, and (F(t) ) =0. The products of the type

f (F(t)a (t'))Ct'
t —e

vanish also, since (F(t)a (t') ) is zero except at the point
t = t' where it is finite, as will be seen presently. Only the
products

f (F(t)F (t') )dt'=y f 5(t t')dt'=y/2 — (12)
t —e t —e

survive, because of the 5 function. These products occur
only in the terms ( Fa ) and ( aF ) in (10b), with the re-
sult

(ba, 2 ) =
—,'((aa +a a )+2 Re(a e ) )

M, =o —l 0
0 0 —2

(14b)

[we have used (a (t) ) =0]. We can use (1) to write equa-
tions of motion for (a ) [ignore for now the constant
reference phase p0, and remember that we are not yet
taking an average over 8(t)]. We find the following
closed set of equations:

dx = [M() +i 8(t)M, ]x+ Ae (15)

where the vector A is

we find that the system (8) may then be written, in com-
pact notation,
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2.0

A= y
0

(16)
1.5—

0.50

Equation (15) is a stochastic differential equation. If
we are interested in the average of x over an ensemble of
realizations of the fluctuating phase 8(t), we find that we
need only solve the following equation: 0.5—

0.25

—(x) =(M() DM—
) )(x)+ Ae 'e (17)

a result which is proved in the Appendix. Recall that the
vector (x) is

0.0
0.0 10.0 20.0 30.0 40.0

0.00
50.0

(& a ' »
(x&= ((ata+aat)e ")

((a")e "')
(18)

FIG. 1. Growth in time, from vacuum, of the expectation
value ((a')) (solid line, axis on the left) and the intracavity
squeezing ((ha', (t) )) relative to a fixed reference phase (dashed
line, axis on right), for the parameters D =0.01y, 2x =0.9y.

Hence the solution of (17) would give us one of the quan-
tities which we need to calculate the squeezing, namely
((a )). [See Eq. (7).] More precisely, we would use it to
calculate ((b,a, 2 )), the variances averaged over an en-
semble of possible realizations of the pump phase 8(t)

It is not surprising to find that ((a (t) )) goes to zero as
t~00, because of the diffusion of the pump phase.
Indeed, all the eigenvalues of M0 —DM, have a negative
real part, and the inhomogeneous term in (17) decays as
exp( Dt). Th—us the general solution to (17) can be writ-
ten as a superposition of a term that decays as exp( Dt)—
plus three other decaying exponentials. This means that
after a long time has passed, because of the diffusion of
the phase 8(t), the generated light can have any phase
with equal probability, and so the ensemble average of
a (t) is equal to zero. Then, by Eq. (7), ((b,a, 2 )) be-
comes equal to (1+2((n )))/4 (where n is the photon
number), so that no squeezing is seen.

This conclusion was to be expected from the general
considerations presented in the Introduction. Pictorially,
we can think of the field inside the cavity as an "error el-
lipse" (see, for example, Fig. 1 of Ref. 8 and the discus-
sion therein) whose orientation relative to the axes de-
pends on the pump phase: in time, due to the pump-
phase diffusion, the ellipse will rotate randomly about the
origin, yielding, on the average, a large error circle for
the intracavity field. As long as D (&2~,y, y —2~, we
may expect the solution to Eq. (17) to exhibit, first, a
growth of coherence (that is, of the expectation value
((a ))), over a time scale 1/(y —2a. ), as the "vacuum er-
ror circle" becomes squeezed into an ellipse; then, over a
time scale 1/D, a slow decay of ((a )), as the ellipse's
orientation is randomized.

Figure 1, which shows the solution of the system (17}
for ((a )), plotted for D =0.01y and 2)r=0.9y, bears
this expectation out. On the other hand, it is interesting
to look at the actual amount of intracavity squeezing, i.e.,
((b,az(t))), for this case. This is shown as the dashed
line in Fig. 1, which has been calculated from the solu-
tions to (17) and (24), below. One finds that the squeezing
never becomes very large and actually disappears long be-
fore ((a )) goes to zero. This is clearly because the
reduction of ( ha 2 ) depends crucially on a very precise

) (aeis(t)/2+at —i8(t)/2)a, —
—, ae (19a)

(aeie(t)/2 ate —i8(t)/2)
Q2 — . 8 e

2L
(19b)

We may then define the intracavity squeezing in terms
of

«(~a') )'&& =-'((a'a+aa')+2Re&&e""a'&&) (20)

whereas the spectrum of squeezing outside the cavity
must be defined in terms of the correlation functions

C ( 1 ) = « e 8( t + tw) /2e i 8( t ) /2a ( t +r )a ( t ) ))

C t (r)=((e '8"+'/ e'8("/2at(t+/}a(t)))
a a

(21a)

(21b}

S+(tt))=4y I costar(C t (r}+C„(r)}dr (22)

in this simple case where, as we shall see below, the
Fourier transform of C„ is real (symmetric spectrum).
The quantities (20) and (22) are calculated next.

III. INTRACAVITY SQUEEZING

In this section the intracavity squeezing, according to
the generalized expression (20), will be calculated. This

cancellation between the first and the second term in Eq.
(7), and the diffusion of the pump phase, i.e., the random
rotation of the squeezed error ellipse, spoils this cancella-
tion very quickly.

While this conclusion holds for squeezing relative to
anyPxed phase )I)o, the physically meaningful quadratures
are those referred to the instantaneous phase 8( t ) /2, as
discussed in the Introduction, since, in the end, in the ex-
periments the squeezed light is made to interfere with a
beam whose phase fluctuations are correlated to those of
the pump in precisely this way (see, e.g. , Ref. 5). The in-
terference term between the "local oscillator, " which
goes as exp[ i 8(t)/2—], and the "signal, " which goes as
a, will be a linear combination of a exp[i8(t)/2] and
a exp[ i 8(t)/—2] Therefor. e the "quadratures" of in-
terest are
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quantity is in general of little more than academic in-

terest, since it would be hard to measure it directly. Still,
it is interesting to compare this case to the theories with
no pump-phase diffusion (e.g., Refs. 10 and 12).

We may obtain an equation of motion for the quantity
e' a very simply from (8). Indeed, introducing the vec-
tor x' =e' x [with x,y, z given in (9)] we obtain

0.50

0.25—
dx =[Mo+iB(t)M', ]x'+ A
dt

(23)

with the same Mo and A as in (15), whereas M', is now

—1 0 0
M)= 0 0 0

0 0 —1

When the result proved in the Appendix [Eqs.
(Al) —(A5)] is used again to derive an equation for (x'),
we find

—(x'&=M'(x')+ Ad
dt

where now

( eiea 2)

&aa "+a a &

(
—(8 t2)

(24)

(25a)

M'i =
—y —D

2K

0
2Ky

—y —D
(25b)

It is easy to solve for the full time dependence, but we
really need be concerned only with the steady state (SS)
which the system approaches as t ~ ao. The solution to
(24) with the left-hand side equal to zero is

(&e "a')&„=&(e "a' »ss=
y —4K +yD

(& aa t+ a ta &)„= ( +D)
y

—4K +yD

(26a)

(26b)

and the quadrature which shows noise reduction, az,
yields, according to Eq. (20),

,2
)&

1 1+D /y —2icly
4 1+Djy —(2i~ly)

(27)

We recall here that in the theory without pump-phase
diffusion the threshold for self-oscillation (parametric
gain equals loss} is the point 2ii=y, and as this limit is
approached from below ( ha, )~ ~ while ( b.a 2 )~—,',
corresponding to a noise reduction by a factor of 2. This
limit is easily obtained from (27) when D =0 [((a

&
)) is

given by an expression identical to (27) except with the
opposite sign for a]. When DAO, instead, Eq. (27) de-
pends on 2K/y as shown in Fig. 2.

Several features of Fig. 2 are of interest. First, the lim-
it D =0 (no phase diffusion) is seen to be a singular one.
For any other value of D, the noise in the quadrature a z

diverges as the threshold of oscillation is approached
from below (just as the noise in a', does, both when D =0
and when DAO). This is easily understood from the

0.00
0.0

I
I

0.5

2'/y

(

1.0

FIG. 2. The steady-state squeezing inside the cavity, defined
relative to the pump's phase, as a function of 2a./y (parametric
gain/losses) for different values of D/y. Dashed line: D =y;
solid line: D =0.1y; dash-dotted line: D =0.01y. Note the in-
crease in the threshold for oscillation with D /y and the absence
of squeezing at 2~= y for all DAO.

=1—&D/y (28}

where the approximation holds for D ((y. In this limit,
Eq. (28) gives, when substituted back in (27),

«~a )&.,„=,'(I+&Diy) . -(29)

Equation (29) shows the effect of phase fluctuations of
the pump on the average noise reduction for the intracav-
ity field in steady state, for the OPO below threshold, in

model of a squeezed ellipse undergoing random rotations.
As threshold is approached, the noise along one of the
axes approaches infinity. Any amount of phase diffusion,
by tilting the ellipse slightly, couples an amount of noise
into the other quadrature equal to the projection of this
"unsqueezed" noise by the tilt angle, and this projection
approaches infinity as threshold is approached, for any
finite tilt angle, i.e., for any finite phase diffusion. This is
so even though the quadratures a

&
and a z are constantly

being redefined by the instantaneous pump phase, be-
cause there is a time lag in the response of the system (the
cavity field) to an instantaneous change in the pump
phase. This time lag, in fact, is particularly important
near threshold, where the fluctuations in the unsqueezed
quadrature become essentially undamped; it is this effect
which is responsible for the reduction of the squeezing
observed in Fig. 2.

Figure 2 also shows that the threshold of oscillation it-
self is raised somewhat when DAO. At the point 2t~=y
no noise reduction occurs: for any DAO, ((ha& )) =—,

'

(its vacuum value) when 2tr=y.
The maximum noise reduction (minimum of (( b,az )) )

occurs somewhat below threshold. In fact, it is easy to
calculate that (( b,a 2 )) is minimum when

2 ]/2
2K D D D=1+—— —+
y y y y
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the limit when D ((y. (For larger values of D, refer to
Fig. 2.)

IV. THE OUTPUT FIELD

A. Noise reduction in the output field

The realization' that the output field could exhibit a
different quantum-noise reduction than the intracavity
field led' to the concept of a "spectrum of squeezing" for
the output field, where the noise in a small frequency

interval (detector bandwidth) was seen to be reduced
through a correlation between pairs of modes' symmetri-
cally placed about the cavity resonance. To calculate
such a spectrum of squeezing [given for our system by
Eq. (22)] we need to compute the correlation functions of
the mixed output field plus reference beam with relative
phase 9(t)/2, given by Eqs. (21).

Once again, we can use the equations of motion (1) to
obtain equations for C y, C„. Consider, for instance,
C„. We have, taking derivatives with respect to ~,

() i t38(t +r) (3a(t+r)[ei8(t+r)/2ei8(t)/2g (r + )g (r)]- ei8(t +r)/2ei8(t)/2a
(& +&)a (&)+ei8(t +r)/2 i8(t)/2 a (t) .

ar

Use now (1) in (30) and take the quantum expectation value of the resulting expression. As long as r & 0,

(F(r+r)a(r)& =0

so we have

(30)

(31)

a (ei8(t+r)/2ei8(t)I2g (r +r)a (r) & i y (eigt+r)i2eigt)I2a(& +r)a(&) & + t(( 8
—i@t+r)I2eigt)12at(r +r)a(&) &

.ae
'T 2 Br

(32a)

Similarly

(8 i8(t+—r)/2ei8(t)/2a t(t + 7 )a (r) &
=——i —y (I 8 i8(t+r)/2e'8(')/2a t(t +r)a (r)

7 2 'ar

+&( e t 8( t +r ) /2 e i 8( t )/2 g ( & +&}a ( r ) & (32b)

When the ensemble average over the realizations of
8(t) is taken, as in the Appendix, this leads to a system

Caa

B1

D+—C +~C t4 aa aa (33a)

Cy
a7.

+—C y +~C„,D
(33b)

which does not depend explicitly on t. This may be easily
solved to express C„and C g as functions of ~ and of
their values at v=0+. Noting that, from the definition
(21), these values are trivially related to the components
of the vector (25a), we may ensure the time independence
(stationarity) of C„and C t by choosing for their values

at r =0 the steady-state values given by Eqs. (26):

C t (r) =— [(y+2a)e"' (y ——2a)e "']
4 y' —4&'+yD

—( y /2+ D/4)re (35a}

C„(r)=— [(y+2tr)e "+(y 2a)e —"']1 2K

4 y —4]c +yD
—(y /2+ D/4)rXe (35b)

(1—2tr/y )2'/y
[1+D/y (2 tr/y) —](1+D/2y+2)r/y)

This result may be compared to the correlation functions
without phase diffusion presented, for instance, in Ref.
15.

From Eqs. (35) and the definition (22) it is easy now to
calculate the spectrum of squeezing S ((8):

C..(0)= ((e"a'»„=
y —4~ +yD

C ( (0)= (( a a » ss
=

—,
t

( (( a a +aa » ss
—1)

(34a)

x
1+4to /(y+D/2+2')

(36)

y~y+»
2 y

—4v +yD

Then the solution to (33) is ( v. & 0)

(34b}

for the quadrature which shows noise reduction [i.e., the
minus sign has been chosen in Eq. (20)]. For the other
quadrature, the sign of ~ would be reversed everywhere in
Eq. (36).

Equation (36) shows that the spectrum of squeezing is
still Lorentzian, as it is for D =0, only somewhat
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broadened. For a given value of D, the maximum noise
reduction still occurs at line center, where

(1—2a/y)2a/y
[I+D/y (2—tc/y') ](I +D/2y +2x/y)

(37)

only now S (0) is not maximum when 21~=y, as it
would be if D =0; indeed we find (just as for the intracav-
ity field) no squeezing at all when 2z=y [i.e., S (0)=0].
Thus, as for the intracavity field, the limit D =0 is a
singular one.

Figure 3 shows the total noise reduction at co=0, given
by I+S (0) (where 1 is the shot-noise level) plotted as a
function of 2~/y for different values of D /y. Again we
find the noise in both quadratures to diverge as the new
threshold, 2a /y =(1+D /y )', is approached from
below. This time, however, one can show that maximum
squeezing (minimum noise) occurs for

2K

min

D-1—
r

1/3 2/3
1 D+—2.y.

1 D+—
6 y

(38)

2/3

[1+S (0)]
3 D

min 4
(39)

Equation (39) expresses the degradation of the squeez-
ing in the output field due to a finite pump linewidth D.

when D/y «1. This is a different value (and a different
dependence on D/7) from (28), which is the value of
2a/y which maximizes the squeezing in the intracavity
field. The terms of order D/y are necessary if (38) is to
be substituted in (37) to evaluate the maximum noise
reduction:

In the ideal case, D =0, perfect squeezing, corresponding
to S (0)= —1, is achieved at resonance when the thresh-
old 2m =@ is approached.

Note again the different dependence on D for the intra-
cavity field [Eq. (29)] and the output field, Eq. (39). Of
course, what one calls squeezing inside and outside the
cavity are actually rather different physical quantities to
begin with. A discussion of their relationship for general
quantum optical systems has recently been presented in
Ref. 16.

How serious a limitation is (39), in practice? The ex-
periments in Ref. 5 reported a pump linewidth of about
0.1 MHz. Taking the value y=10 MHz as typical, we
find D/y =10 and so, from Eq. (39), a minimum value
of 1+S (0)=0.04, a factor of 3 or so below the inferred
value of 1+S (0) for the experiment. Thus pump-phase
fluctuations might amount to a significant fraction of the
residual noise in the squeezed quadrature.

B. Minimum-uncertainty states

An interesting place to look for the effects of pump-
phase diffusion is in the relation (1+S+ )(1+S )=1,
obeyed by a minimum-uncertainty state, and, according
to the theory, by the OPO below threshold when D =0.
This relation has been verified in the experiments report-
ed in Ref. 5 with good accuracy. Our Fig. 4 plots 1+5+
versus 1+S,as given by Eq. (36), for different values of
D, with the hyperbola 1+S+=1/(1+S ), correspond-
ing to the D =0 case (minimum-uncertainty state), also
drawn for reference. This may be immediately compared
to Fig. 8 of Ref. 5. For D/y =0.01 the deviations from a
minimum-uncertainty state appear rather small in this
plot. If instead the product (1+S+)(1+S ) is plotted,
as we have done in Fig. 5, deviations from the ideal value
of 1 are seen to be large even for D/y =0.01, especially
in the region near threshold where squeezing is max-
imum.

2.0
10.0

8.0—

1.5—

6.0—

+
4.0—

0.5— 2.0—

0.0
0.0 0.5

21'/y
1.0

0.0
0.0 0.5

&+s (o)
1.0 1.5

FIG. 3. The on-resonance noise spectrum outside the cavity
in the squeezed quadrature, S (0), as a function of 2~/y for
different values of D /y. Dashed line: D =y; solid line:
D =0.1y; dash-dotted line: D =0.01y.

FIG. 4. The noise in one quadrature, 1+S+(0),vs the other
one, 1+S (0), as 2~/y is scanned from 0 to 1, for different
values of D. A minimum uncertainty state would lie on the
dashed hyperbola, obtained for D =0. The dash-dotted line

corresponds to D =0.01y and the solid line to D =0.1y.
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2.0

1.5—

the study of the interference with the local oscillator of
phase 9(t)/2. For the ordinary (first-order) spectrum of
the output field of the degenerate OPO, we need to evalu-
ate instead

V)+
1.0

I

(/)+

0.5—

C'y (r)—:((a (t +r)a(t))) . (40a)

As before, we can derive a set of coupled equations for
C'y and

0.0
0.0

I

0.5

2'/y
1.0

C,', (r)—= ((e' "+'a(t+1)a(t))) .

These are

(40b)

FIG. 5. The product [1+S+(0)][1+S(0)], which is equal
to 1 for a minimum-uncertainty state, as a function of 2x/y, for
different values of D. Solid line: D =0.1y. Dash-dotted line:
D =0.01@. Dashed line: D =0.001y.

d C'~ = —+C'i +INC'„,
d7

(41a)

C. Spectrum of the output field
d

d7
+D C,', +xC'y

2 aa aa (41b)

The correlation functions C„and C t of Eqs. (21) are

not really what one would need to calculate the spectrum
of the output field alone; rather, they are appropriate to

The initial conditions for ~=0 should be taken from the
steady states calculated in Eqs. (26). The result is

22
((a (t+r)a(t))) =

( A, e ' —+A, ,e
'

)

y 41r +yD )—()

[(y+D +2m)e"' —(y+D —2a. )e "']e1 2]c

4 y2 —4~2+yD
(42)

where A,
&

and A, z are the eigenvalues of the system (41):

X, ,=-,'[ —
y

—D+(4~'+D')'"]

= —,'( —y D+2~)— (43)

1 ~&~2 1 1C g (co)=-
a 0 ~ g g $2+ 2 $2+ 2

CO 2 CO

A, ,A,2(k, +A,2)

~ (A. , +co )(A.~+co )
(44)

after adding the two Lorentzians and normalizing to unit
total area. From the expressions (43) one can see that the
pump-phase diffusion is especially important close to
threshold, where 2x~y and the first Lorentzian on the

and the approximations in Eqs. (42) and (43) hold for
D «~ (first order in D/Ir). Equation (42) may be com-
pared with the corresponding result for D =0 given, for
instance, in Ref. 15. The spectrum obtained from (42) is
a superposition of two Lorentzians, of widths 2~A, &~ and
2~A,2~, or, to first order in D, y+D + 2~ [full width at half
maximum (FWHM)]. (Recall that 2D is the FWHM of
the pump. ) It may be written as

first line of Eq. (44) would become a 5 function if D =0.
(This corresponds to the totally undamped fluctuations of
the "unsqueezed" quadrature of the field. ) The finite
value of D yields a spectrum of finite width as 2~~y.
It is easy to see that in this limit, namely when
2~ —y &&D &&2x, the spectrum is dominated by this first
Lorentzian which has approximately half the width of
the pump, i.e., 2 k, ~

=D. The subtraction of the other
Lorentzian, of width -2y, results in a very slight nar-
rowing of the total spectrum, i.e., a total width slightly
less than D.

V. CONCLUSIONS

We have calculated the influence of classical pump-
phase fluctuations on the characteristic properties of the
light generated by an optical parametric oscillator. A
major qualitative difference with the case D =0 is that we
find that the noise in both quadratures diverges as the
OPO is brought close to the threshold of oscillation.
Among our quantitative results, we have established how
the pump's linewidth enters the correlation functions of
the output light [as exp( D/2), see Eq. (42)]—and the
corresponding broadening of the spectrum of squeezing
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[Eq. (36)]. We have also shown how the optimum value
of 2It/y for squeezing depends on D [Eq. (38}, for small
D/y, and Fig. 3] and how the noise reduction is degrad-
ed as a function of D as well. (It is interesting to note
that maximum squeezing for the intracavity field does
not, in general, correspond to the maximum for the out-
put field, and that the dependence on D is also different
for both. } Finally, we have shown how seriously the
phase diffusion of the pump may prevent the realization
of a minimum-uncertainty state. Essential to our analysis
has been the realization that squeezing is observed
through the interference of the squeezed light with a local
oscillator with correlated phase fluctuations, so that a
correlation function like C ( [Eq. (21)], rather than C')

[Eq. (40}],is the relevant quantity for a squeezing experi-
ment in which phase diffusion of the pump is not negligi-
ble.

APPENDIX

In Eq. (A3), P is any permutation of the integers
1,2, . . . , 2n, and the sum is over all such permutations
[the symmetric group S2„of order (2n)!]. We want to
show that the ensemble average of x (t) obeys then the
equation

—&x }=(Mo DM—) )&x ) + & v (8) } .
d

(A5)

y(t)=e 'x(t) (A6)

We shall follow the derivation in Ref. 17, which applies
here with minor extensions. First, introduce the matrix
exp(Mot), defined by the usual power series and whose in-
verse is clearly exp( Mat—). Then introduce as a new
variable

Suppose we have a stochastic differential equation of
the form

so that

= [MD+i 8(t)M, ]x + v (8)
dt

(Al) & x(t)) =e ' &y(t)) . (A7)

where x and v are, in general, vectors [as in, e.g. , Eq. (15),
where v(8)—:Ae '

J, although we shall drop the vector
indices here to simplify the notation. M0 and M, are
constant matrices which in general do not commute, and
8(t) is a stochastic process, whose derivative 8(t) is 5
correlated and Gaussian:

The stochastic equation obeyed by y ( t) is

dt
=i 8M(t)y+e ' v(8)

introducing a new matrix

(A8)

& 8(t)8(t') }=2D5(t t'), —

& 8(t, ) 8(t2„, ) ) =0,
(A2)

(A3) M(t)=e 'M)e (A9)

1
n

&8(t, ) 8(t2„)}= g D" g 5(tt, (2J) tp(2) ())—.
' PES2„j=1

(A4)

which may not commute with itself at different times, as
a result of which the formal solution of (A8) has to be
written in time-ordered fashion,

oo 'n - Iy(t)=y(0)+ g(i)" f dt, f dt„8(t, ) 8(t„)M(t, ) M(t„)y(0)
n=1

(X)
r+ g (i) f dt) f dt„8(t, ) 8(t„,)M(t, ) M(t„))e "v(8(t„))

n=1 0 0
(A10)

(with the convention to—:t) Equation (.A10) is just the Dyson series obtained by iteration of Eq. (AS).
Consider now the ensemble average value of Eq. (A10). By (A3), we find that in the first sum in Eq. (A10) only the

terms with n even survive. For the second sum we need to consider the average

& 8(t) ) . 8(t„()v(8(t„))} (A 1 1)

with t, ~t2~ ~t„,&t„. Let

8(t„)=8(t„—e)+ f 8(t„+,)dt„+, (A12)
n

for arbitrarily small e Note that, then. , 8(t„—e) is decorrelated from all the 8(t ) appearing in Eq. (Al 1). We can ap-
proximate

v(8(t„))-=v(8(t„—e) )+ f 8(t„+,)dt„+,
n

(A13)
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(the rms size of the last term is finite and of order eD ~d v/d8!„ thus the expansion is justified for sufficiently small e)
Now substitute (A13) into (Al 1):

t„
(8(t() . 8(t„,)v(8(t„)))=(8(t, ) . 8(t„)))(v(8(t„—e)))+ f (8(t) )

. 8(t„,)8(t„+,))dt„+, . (A14)
n

If (v(8(t})) is a continuous function of t, the limit e—+0 may be taken in the first term of (A14) without problem.
Consider then the second term. When it is substituted into Eq. (A10) one obtains an (n + 1)-dimensional integral whose
integrand, by Eqs. (A3) and (A4), is identically zero if n is odd, whereas if n is even, say n =2m, it equals a sum of prod-
ucts of m 5 functions as in Eq. (A4). Note, however, that the variable t„does not appear as the argument of any 5 func-

tions, since there is no 8(t„) in Eq. (A14). The integral over t„ is then, in all the terms in the sum, of the form

t„+e
t. +1 ~& t. +1

n

where jAn The.n, because of the time ordering, tj ~ t„ i
~ t„, we have

t„+e 0 if t„Wt,
f 5( t„+)

—
ti )dt„+

n
t„—t, . (A16)

Thus, at only one point (t„=t ) is the function of t„which appears in the integrand of (A15}different from zero, and at
that point it is finite; therefore, the integral over t„vanishes.

We have shown, therefore, that the second term in (A14) does not contribute to (y ) for any value of eAO We c.an
then in the limit e~O replace (8(t) ) 8(t„ i)v(8(t„))) by (8(t )(8(t„())(v(8(t„)})in the integrand of (A10)
when calculating the average value of y (t), which may then be written as

(y(t)) =y(0)+ f e ' '(v(8(t) )})«,
00 t2n-1+ g ( —1)"f dt, f dt, „(8(t,) 8(t,„))M(t, ). .M(t,„)

n=1 0 0

We now have to deal with

2nx y(0)+ f dt's„+)e
0

0 2n+1 (A17)

t 2n —l 1I„(t)= f dt, —f dt „ , g D" g 5(t , , t , „)M(t—, ) M (t „ )
0 0 "' ~eS2n

(A18)

according to (A4). This has been done by Fox in Ref. 17 in detail, and it is not necessary to go over the details of the
proof here. We can reason by induction as follows. Of the (2n ). permutations (of the subindices 1, . . . , 2n) over which
the sum in (A18) runs, the time ordering of the integrals causes all the ones which do not contain the factor 5(t, tz )to-
vanish. (See Ref. 17 for proof of this assertion. ) There are, as Fox shows, 2n [(2n —2)!]terms in (A18) which do con-
tain the factor 5(t) tz ). They can—, of course, be written as 5(t, —

t& ) times a product of n —1 5 s involving a permuta-
tion of the remaining 2n —2 indices. Each distinct permutation of S2„2, however, appears in 2n identical terms in

(A18): because 5(t, tt ) can be plac—ed in any position relative to the remaining n —1 factors (a total of n possible posi-
tions, giving n identical terms) and because for each position there are in (A18) a term 5(ti tt ) and a term—5(tz t()—
which lead, of course, to the same result twice. Thus we can write (A18) as

I„(t)=f dt, f dt, 5(t, t,)—
0 0

t2n 1
n —1

X f dt, . f "
dt,„2n y D" g 5(t„„, , t„„„,—)M(t, )

. M(t,„)
0 0 pcs j—

12n —1

l t2 —l D"
=D f dt)M (ti )f dt3 '

dt's~ ( g 5(tp(pj)+p tp(t) i)+p)M(ti ) ' ' M( p~ )
0 0 0 ~cs2n —1

(A19)

carrying out the integration over tz (which brings a factor —„since t, is one of the limits of the integral). We see that,
with a simple relabeling of the variables,

I

3 1& 4 2& ' '
& 2n 2n —2

we can ~rite
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'2n —~ 1 n —1

I„(t)=D f dt', M (t', ) f dt, f d?2„2
( P D Q ~(tp(2j) p(pj —)))M(t) ) M(t?n —?)

p p p n —I)( s2n 2

=D f dt', M'(t', )I„,(t', )

which is just of the form necessary to reason by induction, to conclude

Il n —
1

I„(t)=D" f dt', f dt,' . f dt„' ,M'(t', )M'(t,' ) M'(t„' ) .
0 p 0

Then

&y(t))=y(0)+ f e ' '(u(8(t, )))dt,
0

oo I tn I„
+ g (

—1}"D"f 'dt, f" dt„M (t, ) M (t„) y(0)+ f "dt„+,e ""+'&u(8(t„+))))
n=1 0 0

(A20)

(A21)

(A22)

This may be directly compared to Eq. (A10), which was
the formal solution of (A8), to see immediately the equa-
tion that (y (t) ) must satisfy:

—(y(t)) = —DM'(t)(y(t))+e ' (u(8)) (A23)

x(t)=e-
it obeys the equation

dx
i 8(t—)x,

dt

(A24)

(A25)

or, using (A7) to go back to the original variable (x ),
along with (A9),

which is of the form (Al) with M0=0, u =0, M, = —1.
Therefore by (A25)

—(x (t) ) =(M() DM, )(x—(t) )+ (u(8)),d (A5') —
& x (t) )—:—(e '"")= D(e '—"") .

dt dt
(A26)

which is the result we have repeatedly used in the text.
To prove Eq. (17), in particular, we need to calculate the
average of ( u (8) ) when u (8) is proportional to
exp[ i8(t—)]. This is a fairly standard result which may
also be obtained as a special case of (A5') itself. Indeed,
define

Hence

( e
—it)(() )

—i()(0) —Dt (A27)

which is the result used in Eq. (17) in the paper, for the
inhornogeneous term of that equation.
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