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A quantum theory of nondegenerate four-wave mixing is developed and applied to study a highly
excited semiconductor resonator operating below or near the laser threshold. It is found that total
carrier-density pulsations allow coherent effects in semiconductors despite the rapid decay of the
electron-hole correlations. The output spectrum for a nondegenerate four-wave mixing intracavity
experiment is computed and squeezing in the sidemode spectrum is predicted.

I. INTRODUCTION

Ever since four-wave mixing (FWM) was first proposed
by Yuen and Shapiro' (and later by Yurke ) as a way to
produce squeezed states of light, the subject of FWM has
attracted a great deal of attention. ' While the majority
of theoretical work in this area has dealt primarily with
FWM in two-level systems, multiwave mixing in semi-
conductor materials has also been considered. ' In
spite of the fact that buildup of the side modes in mul-
tiwave mixing relies on spontaneous emission to occur,
virtually all theories of these effects in bulk materials
have been semiclassical. The present paper gives a
derivation of the quantized nondegenerate four-wave
mixing (NDFWM) coefficients for a highly excited semi-
conductor material, explicitly taking into account
quantum-noise processes.

In order to analyze the effects of multiwave mixing in
semiconductors, we consider the situation where the opti-
cal field consists of one or two weak probe fields and a
strong pump field. The carrier-density pulsations
coherently scatter light from the strong mode into the
weak modes, with the properties of these coherent effects
depending upon the nonlinear response of the medium.
In most theoretical descriptions of the optical properties
of semiconductors, one supposes that the optical response
of a highly excited semiconductor can be computed using
a linear response theory, for which the material parame-
ters are renormalized and depend parametrically on the
electron-hole pair density. " This approach is best
justified under quasiequilibrium conditions in the
electron-hole system, which is typically established in a
few hundred femtoseconds through carrier-carrier and
carrier-phonon scattering. The dominant Coulomb
scattering causes the electrons and holes to rapidly reach
a quasithermal equilibrium where the electrons and holes
are then described by Fermi-Dirac distributions within
their respective bands. After reaching quasiequilibrium,

the final interband relaxation due to radiative or nonradi-
ative recombination of electron-hole pairs is relatively
slow, typically occurring within hundreds of picoseconds
up to a few nanoseconds. Therefore if we study processes
on time scales of picoseconds the fast relaxation dynam-
ics of the carriers may be adiabatically eliminated, and
the field-matter coherence is then related to total carrier-
density fluctuations rather than the more rapid fluctua-
tions of the individual k states of the electrons and holes.
The details of the calculations are carried out in the Ap-
pendix where we follow methods inspired by standard
two-level calculations to derive a set of coupled-mode
equations from which we calculate NDFWM spectra.
The coupled-mode equations are then used to construct
the appropriate two-time correlations from which we cal-
culate the output field and the amount of squeezing in the
output field resulting from an intracavity NDFWM ex-
periment.

II. MODEL

Nondegenerate four-wave mixing in a semiconductor
medium involves the coupling of two pump photons with
two weak-field photons via the nonlinear semiconductor
medium. The semiconductor is placed in an optical cavi-
ty and subjected to an external coherent pump beam of
frequency v2. Carriers are incoherently introduced into
the semiconductor via an injection current or by optical
pumping at a frequency far above the band gap. The
coherent pump is tuned symmetrically between two adja-
cent cavity modes v, and v3 as shown in Fig. 1. The
strong mode is treated semiclassically while the two
sidemodes are treated quantum mechanically. '

To describe the electrons and holes in the medium we
use the generalized Bloch equations for semiconductors
as derived in Ref. 13. These equations may be simplified
by noting that the rapid intraband scattering destroys
electron-hole correlations on a 100-fs time scale. Provid-
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The first two contributions are given by the usual two-
band model for noninteracting electrons and holes, name-
ly,

A', =g E, (k)aka„, Hk =g Ek(k)b kb
k k

(4)

Dg

FIG. 1. Spectrum of three-mode field relative to the unrenor-
malized band gap Eg. Modes with frequencies v& and v3 are
weak (nonsaturating), while the mode v, is allowed to be arbi-
trarily intense limited only by the constraints of the quasiequili-
brium approximation.

—p = i [8,p]+L,„,—(p ), (2)

~ ~

where H is the total Hamiltonian and L;„, is the quantum
Liouville operator describing the incoherent processes. '

In the incoherent part we include spontaneous emission,
electron-hole scattering, and cavity damping. The model
Hamiltonian for the system is given by

ing the field does not vary much in a carrier-carrier
scattering time, the rapid dephasing causes electrons and
holes to relax into quasithermal equilibrium where the in-
traband carrier distributions are Fermi-Dirac distribu-
tions. In this limit, we neglect all Coulomb effects except
that the system is in the quasiequilibrium state due to
Coulomb intraband scattering. In the quasiequilibrium
regime the properties of the system are parametrically re-
lated to the total carrier density, where the details of the
carrier generation are of no interest as long as the genera-
tion of carriers due to the coherent pump does not inter-
fere with the rapid thermalization process. In this regime
one obtains a simple rate equation for the total electron-
hole-pair density

BX N I(v)= ——+A, +a(v, N)
Bt 7 tv

where ~ is the interband recombination time, and the
terms on the right-hand side describe interband recom-
bination, incoherent carrier generation, and optical car-
rier generation through light absorption, respectively.
This equation may be solved numerically to ensure that
the number of carriers generated by the coherent pump is
small in comparison with the number of incoherently
generated carriers. This is a necessary condition since, in
the quasiequilibrium regime, spectral hole burning is im-
plicitly ignored via the introduction of Fermi distribu-
tions.

We derive our coupled mode equations using the stan-
dard density matrix equations of motion, which we write
in the general form

The Hamiltonian 8f in Eq. (3) describes the free pho-
tons of the nonsaturating modes, and is given by

Bf=v)d )d ( + v3d 3d 3 (5)

where v&, v3 are the frequencies of the side modes, and d,
and d3 are the corresponding creation operators. The
last two terms in Eq. (3) describe the usual dipole cou-
pling between fields and the electron-hole excitations.
For the semiclassical mode we have the Hamiltonian

8„=—g pk 8e 'akb k+H. c. ,
k

where pk is the dipole matrix element, @ is the field am-
plitude, and vz is the frequency of the laser field. The ex-
plicit time dependence of Eq. (6) is eliminated by using
the rotating wave approximation in which case all fre-
quencies are given as detunings from v2. Similarly the di-
pole coupling with the quantum-mechanical mode is
given by the Hamiltonian

H k f —g g (k)(d, +d3 )akb k +H. c.
k

where g(k) is the coupling constant. Since the quantum-
mechanical field modes are damped primarily through
cavity losses, the relaxation terms for the weak modes
can be described by the Liouvillean'

L, (p) =x(2d, pd, d&d~p pd —
~d& )+(1—~3), (8)

where ~ is the cavity damping rate. A linear coupling of
the electron-hole degrees of freedom to the vacuum
modes leads to the Liouvillean'

L«(p)= —g(2b „a„pa„b „akb kb kak—p
k

Pakb —kb —kak )

where I is the radiative recombination rate. The nonra-
diative recombination is characterized with a rate yNR,
assumed to be k independent. Furthermore, charge neu-
trality guarantees that electrons and holes have the same
recombination rate.

For the expectation values of the electron-hole degrees
of freedom we adopt the standard notation"

n, (k) = (a„a„):tr(a„a„p), —

nk(k) =—(b kb k ):—tr(b kb kp),

p(k):—(b „a„)—:tr(b „a„p).

(10a)

(10b)

(10c)

In quasiequilibrium these expectation values are deter-
mined essentially by Coulomb scattering, where the pop-
ulations are given by Fermi-Dirac distributions, and the
polarization takes the form

H=H, +H~+Hf+H„+H, ~ f . (3) P (k) =iPk 6X)2 (k)[1 f, (k) fk (k)], — —(1 la)
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where

X)2(k)= [y —i [e,(k)+eh(k) —v2])

= [y —i [co(k)—v~]I (1 lb)

and y is the intraband Coulomb scattering rate. In gen-
eral, the equation for the polarization is modified by addi-
tional many-body effects, "but since y is the largest re-
laxation rate in the system, we assume that the polariza-
tion adiabatically follows the field fluctuations and ap-
proximate damping of the polarization with a single
damping constant.

A„—:A„+6A +6A„ (14a)

where A„~ is the Rayleigh (zeroth-order) contribution
which gives a 6-function peak spectrum

cesses in the system. It is necessary to incorporate the
quantum noise terms, and hence their correlations A„
and C„, in order to calculate quantum features of the
field, such as squeezing. In the Appendix we obtain a
specific form for the coefficients A„, 8„,C„, and D„. The
coefficient A„, which describes the fluorescence spec-
trum, is given by

III. COUPLED-MODE EQUATIONS
A„z ———2tt5(b, „) gg(k)p'(k)

k

(14b)

—
pf = —A

&
(pf d

&
d

&
d& pf d

~
)
—B& ( d

&
d

~
p—f —d

~ p& d
~

)
dt

+C, (d, d3pf —d3pfd, )+D, (pfd, d,
—d, pfd 3 )+(1~3)+H.c. , (12)

where (1~3) represents the same four terms as before
with 1 and 3 interchanged. Of particular interest are the
equations of motion for the average photon number

(d, d, ) and the combination tone (d, d, ). Using the
equation of motion for the reduced density operator, we
obtain

—(d,d, ) = (A, B, y, ,„ib—, Q)(d—,d, )—+ A,
d

The equation of motion for the total density operator is
given by Eq. (2). We may calculate the reduced field den-
sity operator, which yields the time dependence of the
two quantized fields, by tracing the total density operator
over the electron-hole degrees of freedom. Assuming
that all field amplitudes vary little in the time 1/y, we

may solve the semiconductor equations of motion in

steady state since in this limit the electron-hole polariza-
tion adiabatically follows the field. Using these solutions
we then obtain the slowly varying field-density operator
equation of motion

The second contribution 5 A o, the so-called ordinary res-
onance fluorescence, is given by

5AO=Q lg(k)l 2)2(k)f, (k)fh(k) .
k

(14c)

This term is independent of the excitation mechanism,
and is responsible for the large background contribution
to A„(Fig. 2). The last tertn 5 An &„~ is the coherent con-
tribution due to the carrier-density pulsations which is
given by

5A„„=5A„,h+5A„~+5A„, +5A„h,
where

(14d)

g, (k)+gh(k)
5A„, „=—g 2Phug'(k)2)2(k)

YNR ) e ) h t n

k'
Xg pl', , 8'g(k') f,(k')f„(k'),

k' y

(14e)

g, (k)+g„(k)5A„=Q Juh 6g'(k)l)f(k)
YNR+r, +rh

X g lych Bl Ph 8 g (k')2l, (k'}'
k'

+(C*, D', )(d, d3)+—c.c. , (13a) X [1 f, (k') fh(k—')]— (14f)

—(d, d, ) = (A, B, y„—„ih—Q)(d, ,
—d, )+C,d

5A„,=g Ph Ag*(k)2)2 (k)

+(C3 D3)(dt)d, )+(1—~3) . (13b)

where we have defined hQ as the detuning of the pump
mode from the nearby passive-cavity mode, and y„, is
the total loss in the cavity including internal losses. The
equation of motion for (d 3d, ) is given by Eq. (13a) inter-
changing the subscripts 1 and 3. The coupled equations
(13a) and (13b) contain all of the information about emis-
sion and reabsorption in the system. The real part of
a„=B„—A„ is the absorption coefficient of the mode n,
while the imaginary part of e„ is the dispersive response
for mode n. The coefficient g„=C„—D„ is the semiclas-
sical coupling coefficient, giving rise to the generation of
mode n in the presence of the pump mode vz and the con-
jugate mode n*. The inhomogeneous source terms A„
and C„arise due to the quantum mechanical noise pro- C C ~ +6CO +6C

p ] (ISa)

ge(k)(YNR+l e t~n ) gh(k)Yh
X

(YNR+r, +rh i~. )(r—NR

X g p„*.(.'g (k')XI2(k')[1 f, (k')]f, (k'), —
k'

(14g)

and 6A„& is given by 6A„, with e and h interchanged.
This is identical to the A, coefficient derived by Lindberg
et al. ' where we have defined h„=v„—vz, and X)2(k) is
given by Eq. (11b) and X(k) =y Re[2)2(k)].

The C, coefficient is the inhomogeneous source term
for the combination tone. It is this term which is respon-
sible for squeezing,
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frequencies between the band edge and the chemical po-
tential. The laser threshold for the system is defined by
the gain-equals-loss condition, and in this paper we con-
sider the situation of carrier densities below or near
threshold. The effect of the coherent pump field on the
probe absorption, which is partially responsible for the
NDFWM process, is shown in Fig. 3. As seen in Figs.
3(a) and 3(c), the probe absorption spectrum exhibits
asymmetric dips for pump frequencies either above or
below the chemical potential. When the pump frequency
is near the chemical potential, the coherent dip in the ab-
sorption becomes symmetric, Fig. 3(b). The asymmetry
of the probe absorption is related to the fact that fluctua-
tions in the carrier density simultaneously affect both the
absorption and the index in the active region. In addi-
tion, these figures show a shift as well as a power
broadening of the coherent dip for increasing pump in-
tensities. Both of these features can be seen to originate
from the dependence of the decay constants y, and yI, on
the pump intensity [see Eq. (A8d}].

In addition to the induced absorption gratings there
are also index gratings that arise due to the presence of
the strong pump field. In Fig. 4 we show the dispersive

where C„z is identical to the Rayleigh term (14b) when

v, and v3 are conjugate modes. The remaining contribu-
tions to C„are

5CO= —2g [@king*(k)] 2)2(k) [1—f, (k) —fI, (k)]
k

(15b)

5C„p„i=5C„,I, +5C„q+5C„,+5C„~, (15c)

where

g, (k)+gz(k)
5C„, I,

= —+2@ k6'g'(k)$&(k)
k YNR ye+yh ~ n

X g pk 8g*(k') f, (k')fq(k'),
k' r

(15d)

g, (k)+gI, (k)5C„=Qp„A'g*( k)2) 2( k)

k YNR+ Ye+yh ~ n

Xg ~ p„C~'p„6'g "(k')S,( k')'
k'

X [1—f, (k') fq(k')]— (15e)

5C„,=g p„8g '(k)2)2 (k)
k

(a)
0.8

g, (k)(yNR+y, id, „)——g„(k)y„
X

(YNa+y, +ye &~.—)(YNR
—i~. } 0.6

Re(u ) 04
Qtp

Xg pl, , hg*(k')2)2(k')[I —f,(k')]f, (k'),
k'

(15f} 0.2

and the equation for 5C„ I, is given by 5C„, with e and h

interchanged.
Next, rather than writing down the coefficients B„and

D„what we really need is the coefficient a„=a„
+y„,+ihQ and the coupling coefficient y„. For the
coupling coefficient y„we obtain

~ ~
~ ~ ~ ~ ~

0.2

~ ~

: /
.I

.
I /
'/

-50 250

Re(Mp) 0.1
0!p

(16}

The semiclassical absorption coefficient an is

(17a)an alnc an cob aine +n 100
v~ — E (me V)

where

FIG. 2. Incoherent semiclassical absorption spectrum for
GaAs at T=300 K. The carrier density XO=10" (solid),
2X10" crn ' {dashed), 3X10" cm ' (dot-dashed), 4X10"
cm ' (dotted), Ay=5 meV, AI =0.0006 meV, fiyN&=0. 0001
meV, m, = 1.127m, mz =8.82m, where m is the reduced
e8'ective mass. (b) The corresponding incoherent fluorescence

spectrum.

a,„,=g ~g (k)
~

2)2(k)[1—f, (k) —fq(k)] .
k

In Fig. 2(a} we plot the incoherent absorption spectrum
for different carrier densities near threshold. This figure
clearly shows that for large enough earner densities the
medium exhibits a region of gain (negative absorption) at

g, (k}+gl,(k)
=+pl 6g (k)2)z(k)

k VNR Xe Yh ~ n

X2+ pk, @g'(k') [1 f, (k') f„(k')] .— —, X(k'}
k'
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response Im(a, ) for various pump frequencies. As can be
seen from these figures the dispersive profile is asym-
metric at all pump frequencies. Specifically, at frequen-
cies well below (above) the chemical potential the disper-
sive response exhibits an asymmetric dip (peak) which
shows the same type of power broadening and shift as the
absorption spectrum. At pump frequencies near the
chemical potential the dispersive response appears very
similar to that of a two-level atom which is a consequence
of the corresponding symmetric nature of the absorption
spectrum. Furthermore because of the large asymmetry
of the dispersion term, perfect phase matching of the

sidebands cannot be achieved in a collinear cavity
configuration. This result is of importance later when we
discuss the NDFWM spectrum outside the cavity.

The coupling response ~y, ~, which may be thought of
as the spectrum for FWM between the sidebands, is plot-
ted in Fig. 5. This figure shows that the maximum cou-
pling occurs at 6& =0 that is, for degenerate four-wave
mixing (DFWM). The basic shape of the coupling spec-
trum is the same at all pump frequencies with the peak
value increasing for increasing pump frequencies and in-
tensities. Due to contributions from both the real and
imaginary parts of y„ the width of the coupling spectrum
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FIG. 3. Total absorption coeScient vs pump-probe detuning
5, . The carrier density NO=10' cm ', ~2@@=0.1 (solid), 0.25
(dashed), 0.4 meV (dot-dashed), v2 —Eg =25 meV {a), 75 meV
(b), and 125 rneV (c), and the rest of the parameters are the same
as in Fig. 2.

FIG. 4. Dispersive response vs pump-probe detuning 6&.
The carrier density No = 10" cm ',

~ 2p 6
~

=0. 1 me V (solid),
0.25 meV (dashed), 0.4 rneV (dot-dashed), v2

—E~ =25 meV (a),
75 rneV (b), and 125 meV (c), and the rest of the parameters are
the same as in Fig. 2.
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0.4

0.3
/xJ

Qto

0.2

0
-0.01 0

b, (meV)
0.01

fluorescence in order to obtain squeezing. However, the
coupling spectrum jy, j also plays an important role in
the production of squeezed light. Bearing in mind that y,
is the coefficient for coupling between a number of pho-
tons, as opposed to the fluorescence A, which relates to
emission of single photons, it is interesting to compare
the two spectra. As pointed out by Reid and Walls, in-
creased fluorescence detracts from squeezing. Thus re-
gimes showing large FWM coupling y, with minimal
fluorescence A

&
are promising for the production of

squeezed light. However, the spectrum of the phase-
sensitive noise term C, has a width similar to that of the

0.1

FIG. 5. Coupling response vs pump-probe detuning 6&. The
carrier density NO=10" cm ', j2p@~ =0. 1 meV {solid), 0.25
meV (dashed), 0.4 meV (dot-dashed), v2 —Eg =75 meV, and the
rest of the parameters are the same as in Fig. 2.

Re(A, )
Qy

0.075

(a)

is rather large.
In addition, since the buildup of the sidemodes relies

on spontaneous emission to occur, we must include the
quantum noise correlations A„and C„. In Fig. 2(b) we
show the so-called ordinary (incoherent) fluorescence
spectrum 5Ac for several different carrier densities. As
this figure clearly shows, the fluorescence spectrum ex-
hibits an asymmetric shape which is basically the same at
all carrier densities. While the peak of the spectrum is
mainly determined by the total carrier density, the asym-
metry and large width of the spectrum is due to the large
intrinsic inhomogeneous broadening resulting from the
dispersion of the energy bands. In Fig. 6 we plot the total
fluorescence spectrum for various pump frequencies
which shows that for pump frequencies far enough above
the chemical potential the fluorescence spectrum exhibits
a sharp peak which increases for increasing pump intensi-
ties. At pump frequencies near or below the chemical po-
tential the fluorescence spectrum exhibits an asymmetric
coherent-dip spectrum for sufficiently large Rabi frequen-
cies. This sharp dip is attributed to the nonradiative and
intensity dependent decay processes in the medium which
specifically appear in the terms 5A„, and 5A„&. This is
reminiscent of the coherent-dip spectrum observed in
two-level systems in which the population difference life-
tirne (T, ) greatly exceeds the dipole lifetime (T2). The
situation in semiconductors is similarly characterized by
T, ))T2 since T, is essentially given by the radiative
recombination time (=-ns) while T2 is characterized by
the carrier-carrier scattering time ( —=200 fs).

The behavior of the phase-sensitive term C, is summa-
rized in Fig. 7. The real part of C& is essentially the same
as the coherent contribution to A &, which can be seen in
the similarity of Eqs. (14) and (15) or equivalently Figs. 6
and 7. Because of the similarity in the real part of A

&

and C„we must rely on the imaginary part of C„also
shown in Fig. 7, to overcome the phase insensitive

0.025

0,
(b)

Re(A, )
Qg

0.12

0.04

t~

I

I

iI,
./I
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Re(A, )
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!Ii
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~t y.
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FIG. 6. Resonance fluorescence vs pump-probe detuning 4, .
The carrier density NO=10" cm ', ~2@@!=0. 1 meV {solid),
0.25 meV (dashed), 0.4 meV (dot-dashed), v2 —Eg =25 meV (a),
75 meV (b), and 125 meV (c), and the rest of the parameters are
the same as in Fig. 2.
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Re(C,)

0.025
(a)

gyggl ~ ~ ~

I')
()
~I

fluorescence, therefore we do not expect to obtain squeez-
ing for h, , greater than the width of the fluorescence spec-
trum in Fig. 6.

IV. FOUR-%'AVE MIXING SPECTRUM
-0.025

(b)
0.075

Re(C,) 0.025
(Xp

-0.025

The NDFWM spectrum may be calculated by using
the quantum coupled mode equations (13a) and (13b) to
solve for (d„d„) and (d, d3 }. However, these expecta-
tion values do not represent the experimentally accessible
spectra external to the cavity. In fact the detector sees a
non-5-function spectrum around each cavity mode fre-
quency due to the time varying fluctuations about their
steady-state values. To obtain the low frequency spectra
of the various mode correlations let us first notice that
the coupled mode equations (13a) and (13b) may be
rewritten in the following form:

—(aa)= —A(aa) —(aa)A +D

Re(C,)
ate -0.08

-0.12

~IS++ ~ y ~ ~%e ~ ~ ~

where ar—= (d „d",, 13,d 3 }, (aa )—:(a(0)a (0) ), A is the
drift matrix derivable from Eqs. (13a) and (13b), and D is
the diffusion matrix whose elements consist of the inho-
mogeneous source terms of Eqs. (13a) and (13b). These
matrices have the specific form

0 0

0

-0.02
Otg

-0.04

/'
l r'

IQ

I

a3

0 0 a'
3

(19)

0.08

Im(C, ) 0.04

0

A)+A)

CI +C3

A i+ A i Ci+C3

Ci +C3 A3+ A 3

C) +C3

A3+ A3

~ ~ ~e~~ ~

ljf

-0.04
-0.005 0

6, (meV)
0.005

FIG. 7. Quantum coupling term vs pump-probe detuning b l.
The carrier density %0=10" cm ', j2p@j =0.1 meV (solid),
0.2S meV (dashed), 0.4 meV (dot-dashed), v2 —Eg =25 meV (a),
7S meV (b), 12S meV (c), 40 meV (d), 120 meV (e), and the rest
of the parameters are the same as in Fig. 2.

The spectral matrix can then be written as

S,)(5)=I dt e ' '(a;(t)a, (0))

=[(A —i5I) 'D(A +i5I) '], (20)

where I is the identity matrix. Equation (20) has been de-
rived by several authors, ' ' and the solutions for the ele-
ments of the spectral matrix are

j(a3+i5)j A|+ jg&j A3+(a& —i5)g|(C&+C3)+c.c.
&2t(5) =

j(a, —i5)(a3 i5) y,y—3 j—
(af —i5)g3( A

&
+ A |)+(a& +i5)g&( A3+ A 3 )+(a| +i5)(a3 i5)(C&+—C3)+A+3

$3t(5)=
j(a, —i5)(a3 i5) y,y3 —j—

(2 la)

(2lb)
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where the expression for S~~(6) is given by eV2, (6) with I

interchanged with 3, and the remaining elements are
found using the fact that S,, (5)= I;~ ( —5). The
NDFWM spectrum external to the cavity is then ob-
tained by summing the contributions from both modes 1

and 3.

No

t

120

60
1.8 X 10

(b)

1 X 10

u;E8

t

20

(c)

40

20
0.4

0 — 0

i
b.,)+a,

FIG. 8. Four-wave mixing spectrum in units of ao ' for (a)

v, E, =40 meV, —6,= —0.001 meV, l2v@I=0.2 meV, (b)
NO=10' cm, b, ,

= —0.002 meV, l2pg~ =0.2 meV, (c)
HO=10" cm ', 6&= —0.0001 meV, vz —E~=40 meV. In (a)
No is given in units of cm and in (b) and (c) v2 Es and l2p@-
are both given in meV. The rest of the parameters are the same
as in Fig. 2. The inset in 4,

'c) shows the peak intensity vs the
Rabi frequency where the solid line is for the low energy mode
and the dashed line is for the high energy mode. The x axis of
the inset ranges from 0.1 to 0.15 meV while the y axis ranges
from 0 to 2800 ao '.

As stated earlier, perfect phase matching cannot be
achieved in a collinear cavity configuration due to the
dispersive response of the medium. However, the exter-
nal pump frequency may be adjusted at various intensi-
ties so that it is kept approximately resonant with the
nonlinear dressed pumped cavity. This corresponds to a
detuning of the pump mode from the passive-cavity mode
equal to b 0= —Im[a, (b, , =O)] which would seem to be
the most straightforward way of maximizing the response
of the internal cavity field to the external driving field.
Several graphs of the NDFWM spectrum for this choice
of EQ are shown in Fig. 8. In Figs. 8(a) and 8(b) we plot
the output spectrum for increasing carrier density and
decreasing pump frequency, respectively. Figure 8(a}
shows that as the carrier density in the medium is in-
creased, the sidemode intensity also increases. This
reflects the fact that the absorption decreases while the
background fluorescence 5Ao increases for increasing
carrier densities. Figure 8(b} shows that as we increase
the pump frequency far into the band, the output intensi-
ty decreases rapidly. This feature of the spectrum is also
not very surprising since the absorption increases while
the background fluorescence 5Ao decreases for increas-
ing pump frequency. In addition, both of these graphs
exhibit the same general feature that more light is emit-
ted at ~b, , ~

than at —~b, , ~. In the gain region the asym-
metry reverses and the mode at —~h, ~

has the greatest
intensity. This feature has been observed in traveling
wave amplifiers, ' and it is mainly due to the pump-
induced asymmetry in the absorption spectra which
cause the side modes to have different absorption and re-
fractive index values.

In Fig. 8(c) we plot the output spectrum for increasing
pump intensity which shows a resonant structure at
~2p@ ~

=—O. l meV. This feature is easily understood as the
coinciding of the relaxation oscillation frequency with the
cavity frequency +

~ b, ~. The peak intensity of the
sidemodes as a function of the Rabi frequency is shown in
the inset of Fig. 8(c). As the pump intensity is increased
the relaxation oscillation frequency passes through the
cavity mode and the resonant feature disappears.

V. SQUEEZED STATES

X+ =d+d, X =i(d —d ) . (23)

The variance of an operator is defined to be the expec-

In this section we wish to calculate the amount of
squeezing from an intracavity FWM experiment using a
semiconductor medium. Squeezed light results from a
linear combination of the sideband amplitudes d, and d3.
To detect squeezing, a homodyne detection scheme may
be used wherein the sidemode fields exiting the cavity are
mixed with a local oscillator whose phase is shifted an an-
gle 0 with respect to the strong mode v2. The total am-
plitude d of the squeezed field is given by

d =d, e-'+d,'e' (22)

From this operator we define two conjugate Hermitian
operators
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tation value of its square minus the square of its expecta-
tion value, so using the above de6nitions the variance of
X+ is

V(X+ ) =1+y„„($12(5)+$2,(5)+$3~(5)+4~3(5)

+ I [$13(5)+$31(5)]e "e+c.c. I ),
(25)

V(X+)= I+(didi)+(d3d3)+(d, d3)e

+(dtdt )e2ie (24)
where we have taken the optimal situation of a single-
port cavity. Since the angle 0 is not restricted we may
choose it in such a way as to achieve maximum squeez-
ing. The best squeezing is

where squeezing occurs for V(X+ ) & 1 and perfect
squeezing corresponds to V(X+ }=0. However, Eq. (24}
only describes the squeezing inside the cavity whereas a
detector outside the cavity sees a non-5-function spec-
trum around each cavity mode frequency due to the fluc-
tuations. Therefore, in order to find the squeezing out-
side of the cavity we simply replace the expectation
values with the corresponding spectral quantities. Furth-
ermore, as noted by Collett and Gardiner' ' these spec-
tral quantities are modified by the density of states factor
2y„„describing the transmission through the cavity mir-
ror.

V(X+ ) = 1+y„„[4', 2(5) +$21(5)+$34(5)+$43(5)

—21+13(5)+Z31(5)I], (26)

~here 8 is chosen such that

Re( S»+I» ) Im($, 3+ 'S3, )o( )=
i

i, i( )
13 31 13 31

(27)

In Fig. 9 we plot the squeezing spectrum in the output
field for 8 given by Eq. (27). Figures 9(a) and 9(b) both

V(X~) — I

(Xp

~ ~ ~ ~ ~ ~

0

l

/'

'L,
I~

V(X~} — 1

Qg

-2

-0.001 0
6, (meV)

0.001 (c}

~ ~ ~ ~ ~ ~

V(X+) — 1
0

0|0

V(X+) - 1

(Xg

-3

(b) 0.2 0.4
(

0.6

FIG. 9. Variance with respect to the vacuum [V(X+ ) —I]/C where the cooperativity C =g /y„, y. (a) 5=0, ~pA'~ =0.3 meV,
JV0=10" cm, vz Eg =10 meV (solid), 45 meV—(dashed}, 80 meV (dot-dashed); {h} 5, =0, ~p@=0.3 meV, No=10" cm
v2 —E~ =30 meV (solid), 50 meV (dashed), 80 meV (dot-dashed); (c) 5=0, 51=0, NO=10" crn ', v2 —Eg =50 meV (solid), 65 meV
(dashed), 80 meV (dot-dashed); (d) 5=0, 61=0, v2 —Eg =60 rneV, XO=SX10" cm (solid), 10' cm ' (dashed), 1.2X10" (dot-
dashed) cm



1734 PAUL, LINDBERG, AN, SARGENT, AND KOCH

suggest that by saturating the medium in a DFWM
scheme one can overcome the phase-insensitive fluores-
cence enough to produce squeezing. As mentioned ear-
lier we expected a DFWM or nearly DFWM scheme to
produce the best squeezing result because of the narrow
spectrum of the phase-sensitive noise term C&. In addi-
tion, Fig. 9(b) shows why the use of a cavity is beneficial
in the production of squeezed light. Remembering that
(d idi ) is the spectral average of et&&(5), then we see that
the variance given by Eq. (24) is the average of that in
Fig. 9(b). Keeping these facts in mind we set 5=0 and

5,=0 and plot the variance versus pump intensity in
Figs. 9(c) and 9(d). From both of these figures we con-
clude that the best squeezing is obtained near threshold
N0 —= 10' cm at about 50 meV above the bandgap.
However, since these plots are in units of the inverse of
the cooperativity, it would appear that the best squeezing
occurs in the low-Q cavity limit, which however, cannot
be treated consistently in the present formalism.

VI. CONCLUSION

We have presented a quantum theory of NDFWM for
a highly excited semiconductor in a cavity. Our theory
assumes small intensity fluctuations and our equations
are linear in the sidemode amplitudes. Hence, we do not
take into account any feedback effects of the sideband in-
tensities on the pump. We have calculated the effect of
the strong mode on the sidemode absorption spectrum
and the resonance fluorescence spectrum. Our results
show that these quantities are greatly modified in the
spectral region around the pump, leading to an enhance-
ment of the NDFWM spectrum. The absorption
coefficient as well as the resonance fluorescence shows a
pronounced asymmetric dip for large enough pump in-
tensities. Furthermore, we have found that the asym-
metry in NDFWM spectrum is a result of the corre-
sponding asymmetry in the absorption coefficient and the
dispersive response of the system. The features predicted
have their origin in the scattering of the pump field into
the sidemodes by the carrier density fluctuations. We
compute the squeezing in the sidemode spectrum for a
NDFWM intracavity experiment. Our analysis shows
that a DFWM scheme results in the greatest amount of
squeezing. This feature arises because of the similarity in
the noise terms C, and A, .
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APPENDIX

In this appendix we derive the equations of motion for
the semiconductor-field correlations. Because the semi-
conductor is assumed to be in the quasiequilibrium re-
gime due to the rapid Coulomb scattering, the material

C„(k)= (d„)p "(k)+SC„(k),

D„(k)= (d„)p (k)+SD„(k),

E„(k)= (d„ If, (k)+5E„(k),

H„(k)= (d„)ft, (k)+SH„(k),

(A3a)

(A3b)

where we have let n, (k)~f, (k) and nh(k)~ft, (k) since
the system is assumed to be in the quasiequilibrium re-
gion, where all electron-hole bound states are absent due
to screening. It has been shown' that in the quasiequili-
brium regime the fluctuations of the individual k states
are proportional to the total carrier density fluctuations
in which case the following relations are valid under
steady-state conditions

SE„(k)-=g, (k) g 5E„(k)=g, (k)5E„,
k

5H„(k) =gh(k) g 5H„(k—) =gt, (k)5H„,
k

(A4a)

(A4b)

where the coefficients g, (k) and gh(k) are the leading
coefficients of a Taylor series given by the equation
(a=e, h)

f (k)[1—f (k)]
V ' g f (k')[1—f (k')]

k'

(A4c)

The total carrier-density pulsations 5E„and 5H„are
analogous to the semiclassical population pulsations, and
the quasiequilibrium Eqs. (A4a) and (A4b) illustrate the
fact that the field is correlated with the electron-hole ex-
citations through the total number of carriers or

dynamics reach steady state nearly instantaneously.
Therefore, the equations describing the material dynam-
ics are solved in steady state and inserted into the FWM
coefficients A„, 8„, C„, and D„. As in the familiar two-
level system, we find that the average photon number and
the combination tone couple to expectation values con-
taining various combinations of field and electron-hole
operators. To simplify these coupled equations we intro-
duce the following notation consistent with that of Lind-
berg et al. '

C„(k)—:(d„a&bt & ), D„(k)—= (d„b kak ), (Ala)

E„(k)= (d„a—&a& ), H„(k):—(d„bt kb k ), (Alb)

where C„(k) and D„(k) are the dipole-field correlations
and E„(k) and H„(k) are the electron and hole
population-field correlations.

A standard approach to solving these equations in-
volves factorizing the weakest correlation from these ex-
pectation values by introducing a fluctuation operator 5:

5( Of Q, p, ) = ( Of Q, t, ) —( Of ) ( Q, h ), (A2)

where Of and Q, t, symbolize field and electron-hole
operators, respectively. Using this notation, we can
rewrite Eqs. (Ala) and (A lb) as a factorized contribution
plus a fluctuation contribution, i.e.,
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equivalently the chemical potentials.
Next we derive the equations of motion for 5C„(k),

SD„(k), 5E„,and 5H„. It is straightforward to show that
the equation for ( d„) is not coupled to the equations for
5C„(k), 5D„(k), 5E„, and 5H„. Therefore, we calculate
it separately, and it only contributes to the factorized
part of C„(k) and D„(k), i.e., to the zeroth order of
(d,d, ) and (d, d, ). In addition, since the side modes
are assumed to be weak, we may take g (k) as a small pa-
rameter and drop terms higher than second order in
g(k). Furthermore, we assume that the correlations to
factorization of the field and electron-hole variables only

I

give rise to higher-order effects in g(k) which can be
neglected. Therefore, we ignore correlations like
((d„) Q, „) when m is greater than one, so that the
equations of motion for the fluctuations are derived from
the equation of motion for ( d„):

d—(d„)= (—2y„„+iA„)(d„)+i g g*(k)p (k), (A5)

where 6„ is the detuned frequency v„—v2.

In these approximations, we obtain the following equa-
tions of motion for the fluctuations:

—5C„(k)= —
{y i [—co(k) —6,„]]5C„(k)+i@1",8'[g, (k)SE„+gz(k)SH„]

ig—*(k){[1—f, (k) —f„(k)](d„d„) f, (k—)fq(k) I,
—5D„(k)= —

{y+i [co(k)+6„]I 5D„(k) i pl, 8—[g, (k)SE„+gI,(k)5H„]

+ig (k)[l —f, (k) —f„(k)](d,d3) —ig*(k)[p(k)]

SE„=——id, „+y +I gg, (k)f&(k) 5E„—I gg„(k)f, (k)SH„+i g p„@SC,(k) i g—
pl, @'SD,(k)

k k

+g pl, bg "(k)X)2(k){[I—f, (k) —f~(k)](d„d„)—f, (k)fq(k) j
k

+g pq t'g(k)2) (2k)[1 —f, (k) —fq(k)](d, d3)+Q pqAg "(k)2)2(k)[1—f, (k)]f,(k),
k k

(A6a)

(A6b)

(A6c)

and the equation for 5H„ is given by Eq. (A6c) with 5E„ interchanged with 5H„and e interchanged with h. The last
term in Eq. (A6c) reflects the fact that the fluctuations of electrons and holes in their quasithermal distributions are un-
correlated.

These equations may be simplified since for the small pump-probe detunings under consideration we can rewrite the
complex Lorentzian as

2)2(co(k)+b „)=2)2(k)+id, „[2)~(k)] =-2)~(k) .

If we use this approximation then we can solve these equations in steady state to obtain

SC„(k)=ipl*, 8*2),(k)[g, (k)5E„+g&(k)SH„]—ig "(k)2)2(k) {[1—f, (k) —f„(k)](d„d„)—f, (k)f„(k)),
SD„(k)= ip„62) (k2—)[g,, (k)SE„+g„(k)5H„]+ig(k)2)2(k)[1 f, (k) —fI, (k)]—(d, d3)

+i@I,@ g'(k)[2)~(k)] [1—f, (k) —fq(k)]

Substituting these solutions into Eq. (A6c) leads to the steady-state solution

(A7)

(A8a)

(A8b)

SE„=Q {[1 f, (k) —fl, (k)](—d„d„) f, (k)fq(k) j—
1, (yNR+y, +y~+i~. ) y

2@1*,h*g(k)
+g [1 f, (k) fq(k)](d—, d, )—

I, (yNR+y, +y~+&~. )

~V~&~'i ~@g*(k)+g 2)~(k) [1—f, (k) —fq(k)]
1, (yNR+y, +y~+i~. )

XNR+X +&~
g p„bg*( k)2) (~k)[1 —f, (k)]f,(k)

YNR ye yh ~ n YNR ~ n

g p, „6g*(k)2)~(k)[1 f„( )k]fq( )k, —
YNR y yh ~ yNR ~

/

(A8c)
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where X(k)=yRe[2)2(k)] and we have introduced the
scattering rates

with the definitions (Ala) and (A lb) we can begin to write
down the equation of motion for (d,d, ) and ( d, d 3 )

y =I g f (k)g..(k)+&2lpl, el'2X(k)
k

(A8d) —(d,d, ) = — i gg(k)C, (k)+c.c. —2y„„(d,d, ),d

k

with u, a'=e, h, and e'Wa. The sum yNR+y, +y& is
sometimes referred to as the power-broadened carrier-
density decay constant. Again we obtain the steady-state
equation for 5H„by making the replacements 5E„~SH„
and e~h. In Eq. (A8a) the last term proportional to
g (k) is independent of the pump field and is essentially
determined by the Fermi-Dirac distributions. This is also
true for the second tertn in Eq. (A8b). These contribu-
tions are obtained regardless of the excitation mechanism
for the semiconductor. On the other hand, the first terms
in Eqs. (A8a) and (A8b) areyroportional to the carrier-
density pulsations 5E„and 5H„, and it is exactly these
terms that give rise to the coherent modification of the
FWM coe%cients.

Using the density matrix formalism of Eq. (2) along

and

(A9a)

d—(dtd3 ) =i g g'(k)[Dt(k)+D3(k)] —2y„„(dtd3 ),
(A9b)

where the equation for ( d 3d 3 ) is given by Eq. (A9a) with
the index 1 interchanged with 3. It is a tedious but
straightforward task to substitute the steady-state solu-
tions for C„(k) and D„(k) into Eqs. (A9a) and (A9b).
After this is done a simple comparison with Eqs. (13a)
and (13b) leads to the definitions of the coefficients A„,
8„,C„,and D„.
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