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Model initial-data problem in stimulated Raman scattering

D.J. Kaup
Clarkson University, Potsdam, New York 13699-5815

C. R. Menyuk
Department of Electrical Engineering, University of Maryland, Baltimore, Maryland 21228
(Received 16 February 1990)

With use of a model set of initial data, the scattering data for stimulated Raman scattering are ob-
tained. For a small Stokes envelope, the scattering data consist only of solitons, each of which is
roughly stationary, but with a uniformly growing amplitude. When the Stokes envelope dominates,
the scattering data consist of only a continuous spectrum.

I. INTRODUCTION

In a recent article,"? one of the authors (D.J.K.) and
Steudel® have presented a method of solution for stimu-
lated Raman scattering (SRS). The method of solution
for the general SRS equations, including molecular de-
pletion, was presented in Refs. 1 and 3, with the soliton
solutions being presented and discussed by Steudel.’
When the molecular levels are not significantly depleted,
the equations in Ref. 1 reduce to the normalized set

9,4, =—XA4,, (1a)
3,4, =X*4,, (1b)
9. X+yX=A4,4% , (1c)

where y and 7 are the co-moving coordinates
Y=z, (2a)
T=t—z/u , (2b)

with z being the propagation direction, ¢ the time, and u
the common group velocity of 4, and 4, in the medium.
The quantity X describes the material excitation. The
quantity A, is the envelope of the pump wave, while 4,
is the envelope of the Stokes wave. The quantity y gives
the damping rate of the material excitation due to col-
lisions. Equations (1) were shown to be integrable by Chu
and Scott* when y =0. However, the initial value prob-
lem that they solved was not the one of physical interest.
The physically interesting initial-value problem is where
one is given 4 ,(y=0), 4,(x=0), and X(7=0). It was
recently solved by Kaup? using an infinite-interval inverse
scattering transform (IST) to solve a finite-interval prob-
lem. And most unusually, he found that this solution
could have solitons with time-dependent eigenvalues.!
(This was very remarkable for an integrable system.) As
is well known, all solitons (at least on an infinite interval)
have eigenvalues which are constant in time. So what is
happening in this finite-interval integrable system?

At this point, we should make some remarks concern-
ing SRS solitons>® and how they differ from other soli-
tons. The soliton solution of (1) is

A(7)e'?
A = —
! coshZ ’ (3a)
A,= A(r)tanhZ , (3b)
2 elé
x==1°_ R
coshZ (3c)

where A4 (7) is arbitrary and real, 7 and ¢ are real con-
stants, and

Z=2n)(—ifoTA2(r)d'r. )

In the above, 7 is also the soliton’s eigenvalue. This soli-
ton exists on the background of the Stokes envelope. For
Z large, the pump wave is zero while the Stokes wave is
not. Thus it cannot develop until the pump wave (4,)
has been mode converted into the Stokes wave (A4,).
After this occurs, then the SRS soliton given by (3) could
be expected to be observed. It represents a phase flip on
the Stokes envelope, with a (transient) reversal of the
pump depletion in the region of the phase flip. From (2)
and (4), the SRS soliton moves with velocity

2

ax _ 4"
d = Alqptu’

(5)

which is less than the group velocity u. Thus for any
finite energy in the pump pulse, the SRS soliton then will
always slip toward the back of the pump envelope, even-
tually falling off onto the tail where 42 becomes vanish-
ing small. The SRS soliton effectively dies and vanishes.
Because of this, SRS solitons are called transient soli-
tons.®

In most integrable systems, solvable by IST, initial data
will break up into a number of solitons and a continuum.
By contrast, numerical studies of Eq. (1) in the limit
where Y can be neglected show quite different behav-
ior.”® There are three distinct evolution regimes. In the
first regime, the I regime, the Stokes wave is small com-
pared to the pump wave and grows exponentially. In the
next regime, the transition regime, the Stokes and pump
waves have roughly equal amplitudes. In the final re-
gime, the J regime, the integrated pump intensity de-
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174" while the pump amplitude

creases algebraically as ¥~
/4

develops oscillations whose frequency increases as x!
Indeed, Menyuk® proved that at least the material excita-
tion must always tend toward zero. This behavior is not
solitonlike, but must be consistent with the solution ob-
tained by IST. The J-regime behavior is shown in Figs. 1
and 2 when the Stokes intensity is initially proportional
to the pump intensity.

To compare the results of IST to the known behavior
of the solution, we consider the simple model

A,(x=0)=a(r)cosA , (6a)
A,(x=0)=a(7)sinA , (6b)
X(r=0)=0, (6¢)

where a is real and A is some constant. This case experi-
mentally corresponds to the creation of a pump and a
Stokes envelope whose ratio is constant; a situation
which could be approximately obtained in the laboratory.
It also corresponds to having all scattering data for the
IST vanish at 7=0. Thus it would seem to be a trivial
case at first. But most surprising, the Y evolution of the
initially trivial scattering data blooms instantly into a
countable infinity of solitons, each one of which has an ei-
genvalue which increases in time. And one can obtain a
closed-form solution for the scattering coefficients as well
as for all the soliton parameters. Furthermore, the
scattering data consist of only a countable infinity of soli-
tons. There is no continuous spectrum (also called radia-
tion). The solution is an exact N-soliton solution where N
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FIG. 1. The pump intensity as a function of time at increas-
ing distances in physical units. Pump intensity is measured in
GW/cm? and time is measured in picoseconds. The distances
are sufficiently large that the pump oscillations due to narrow-
ing of the soliton widths are clearly apparent. (This figure is the
same as Fig. 10 of Ref. 8.)
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FIG. 2. The Stokes intensity at the same distances as in Fig.
1. The physical units are also as in Fig. 1. Note that the Stokes
intensity takes on the original shape of the pump intensity but
at a lower intensity. While the number of Stokes photons ulti-
mately equals the number of pump photons, the energy per pho-
ton of the Stokes wave is lower, leading to a lower intensity.
The energy difference goes into the material excitation. (This is
the same as Fig. 11 of Ref. 8.)

is taken to be infinity.

Since all the eigenvalues increase with time, these soli-
tons cannot be transient. So how could one reconcile this
soliton behavior with the physics of SRS described ear-
lier? We shall find that all of these solitons are located
near T =0 and that their widths decrease as y increases.
The accumulation of all these solitons near the origin of
the physical time domain must lead to the observed oscil-
latory behavior of the pump, but a detailed proof remains
to be accomplished.

In Sec. I, we shall briefly review the method of solu-
tion for SRS proposed by Kaup. Then in Sec. III we shall
analyze the scattering data for the Menyuk case, Eq. (6).

II. THE SOLUTION OF SRS BY THE METHOD
OF THE IST

According to Kaup (Ref. 2, Sec. 2), from the initial
data, one constructs the functions

S}z%(ATAI—A;Az), (7a)
S+—éA;_‘A1, (7b)
S_=S% (7c)

at y=0. One defines
A(r)=1(ATA + A7 A,), (8)



1714

which is the total intensity, and the angles 3 and 6 by

S;=Acosf, (9a)

S, = Ae'%inp . (9b)
One next constructs the functions T and g:

=" A(ndr, (10)

= [ Y6

q 2cosBaT(e sinf3) , (11)

where
T
Y(T)= [ “(cosp)(370)dT . (12)

The quantity T is called the “nonlinear time,” and g is
the potential in the well-known Zakharov-Shabat (ZS) ei-
genvalue problem’

(13a)
(13b)

arv, +ibv,=qu, ,
v, —i&=—q*v,,

where § is the spectral parameter. Note that for a finite-
energy pulse, the integral in (10) is bounded by

0<T<T,=["

A(r)dT< o . (14)

Thus the ZS eigenvalue problem is on a finite interval.
Note that it is the nonlinear time T that is on a finite in-
terval and not the linear time 7, which is on the infinite
interval, — o0 <7< 0.

Given g at y=0, one solves (13) on the finite interval,
O<T=T,_. The Jost function ¢(T,y) satisfies (13) and
the boundary condition

1

H(T=0,x=0)= |

(15)

At the other end of the finite interval,
ieT
ae

be 7=

where a and b are called the scattering coefficients. The
conjugate set of scattering coefficients is

%

T, ,x=0)= , (16)

ag)=a**), (17a)

b(&H)=b*(*), (17b)
and these scattering coefficients satisfy

aa+bb=1 (18)

on the real-{ axis.

Given these scattering coefficients, one may recon-
struct the potential g, the Jost function ¢, and also the
angles B and 6.! To do this, one first needs to construct
the function

1 b _;
ifz 19
G(z)= . fc 2° d§ (19)
in the finite interval 0 <z <2T_, where the contour C is

the standard complex-{ contour, which goes over and
above all zeros of a (&) in the upper-half complex-§ plane.
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Then one solves the linear integral equations, '°

_ 1

L(x,y)+ 0 G(x +y)—foxL(x,s)G(s +y)ds=0,
(20a)

Lixy)+ | G(x +y)+ foxlj(x,s)é(s +y)ds=0,

(20b)

for the column matrices L (x,y) and L(x,y) for x >y.
The potential is recovered from

qg(T)=2L(T,T), (21)
and the Jost function (15) is

1] |
= |o|e "= [ 'L(T.90e 5ds . 22)

Thus if we know how b and a evolve in ¥, we can
evaluate G (z) at any Y and thereby be able to construct
the solution for 4, and A4, at any y. The y evolution of
aand bis' 3

[ Sil’lﬁo — Sil’le 2IET
d a=i(cost—cosB Ja — b+——be 7 =,
¢ o & &
(23a)
_ —  sinf, sinB, _ —a¢r
3,6 =—(cosB,, +cosBy)b + a———2ge o=,
¢ 0 & 9
(23b)
where
B.=BT=T,), (24b)

and with similar equations for @ and b. The difficulty
with the above y evolution is that one must know B _(x)
before one can solve (23) for a(y) and b(y). While one
can control B,( ) experimentally, one has no control over
B, (x). In fact, its value is determined by the evolution of
the SRS equation and is not an independent set of data.
However, as noted by Kaup,' since we are working with a
finite-interval problem, one may actually ignore these
terms in (23), because these terms will only affect the
values of G(z) for z=2T_. Since this is outside the
range of physical interest, we may set

B,=0 (25)

in (25) and still obtain correct values for G(z) in the in-
terval 0=z <2T . Thus the y-evolution equations to be
solved are

i sinf3y _
d,a =—l—(1—cosB Ja— b, (26a)
¢ 0 &
— _  sinf3,
9b= Z( 1+cosfy)b + a. (26b)
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Note that if X (1— — o )—0, then by (1), (9), and (11), we
have

3,80=0. @7

Otherwise, if X(y,7— — o) were nonzero, one would
simply integrate with respect to Y for 7— — o to deter-
mine By(x).

We also wish to mention that (26) arises also in
superfluorescence, and the identical equations have also
been given by Steudel.!! Next we shall look at the Men-
yuk initial-value problem as given by (6), obtaining the

solutions for a, b, and G.

III. RESOLUTION OF THE INITIAL-VALUE DATA
INTO SCATTERING DATA

First, we evaluate A4, f3, 0, and y at y=0 from Egs.
(6)—(9). One obtains

A(n)=la[(D]?, (28a)

0(x=0)=6y=m/2, (28b)

B(x=0)=B,=24, (28c)
then by (11) and (12),

y(x=0)=y,=0, (28d)

g(x=0)=0, (29)
since it is given under (6) that

9,rA=0. (30)

As a consequence of (24), it follows that, at Y =0, (13)
only has the trivial solution for the Jost function. Upon
writing it out, from (16) we have the trivial scattering
data

a(y=0)=1,
b(x=0)=0.

(31a)
(31b)

We now evolve these scattering coefficients in y via (28).
The result is

a(x)=1(1—cosBye*¥*+ L(1+cosBy) , (32a)

b(x)= *%(eZ‘X/g—l)sinBO . (32b)

The bound-state spectrum is determined by the zeros
of a in the upper-half § plane. These occur at
X

=— 33
o D —ix 33)

where n is any integer and

1+cosBy

A cosf

2

. (34)

For 0<B,< /2, we have k>0, and all zeros of a(y) lie
in the upper half § plane. Each of these zeros is a bound

state for (13), and each bound state corresponds to a soli-
ton. Thus we have a countable infinity of solitons. If
m/2<B<m (where the Stokes pulse dominates), then
k<0 and all zeros lie in the lower half { plane. Now
there are no bound states and no solitons.

In addition to the bound-state eigenvalue, the scatter-
ing data require a normalization coefficient at each eigen-
value.'® These are

D = b(&,) (35)
" B (L)
&
 ysinB, (36)

Note that even if x <0 (33) is still the zeros of a (&) and
(36) is still valid. We shall return to this point shortly.

In addition to the bound-state spectrum, there is also
the continuous spectrum, or radiation. However, as we
shall now show, the continuous spectrum for « >0 is ab-
sent, while for « <O, the continuous spectrum, is
equivalent to an infinite set of “‘virtual solitons.”

Now let us evaluate G (z). First, observe that in the
upper half § plane, as |§|—> ,a and b both become in-
dependent of §{. Thus for z <0 the contour in (19) may be
pushed out to infinity, giving

G(z)=0 ifz<0. (37)

For z>0, one could close the contour in (19) from
below. Then the value of G (z) would be given as a sum
over all the residues at the zeros of a, plus the contribu-
tion from the essential singularity (cluster point) at £=0.
This latter can be shown to be zero as follows. From (32)
one has

b —isinfy(e?X/¢—1) (38)

a  eX¢(1—cosBy)+(1+cosfBy)
As |£|—0 in the upper half £ plane and for y >0,

E X SinBO

P i —cosB, ’ (39a)
while for |£| —0 in the lower half £ plane and y >0,

b i sin,

b &B—O (39b)

a  l+cosB, '

From (39) it is clear that as |£|—O0, b/a can only be
singular along the real axis. Therefore if we can con-
struct an arbitrary small contour encircling the origin,
which crosses the real axis where b/a can be bounded
uniformly, then the contribution of the cluster point to
G (z) will vanish. A series of such contours is given by

Copm— X

. , (40)
mne'®—ik

where n is any integer and 6 is the real parameter which
rolls out the contours. These contours pass through the
valley between two adjacent poles of b /a. Along the nth
contour,
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—icosf

sin(2mn cos®)~+i sinh(27n sinf)

b/a lcn - sinf3,

It is now rather elementary to show that for all 6
|b/alc > <(5/sinBy)* < oo . (42)
Thus we have

lim

n-—oc

[, dt@/ae’™| -0, 43)

and therefore
G(z)=—i 3 D,e ™ (44)
n=-—o

for z>0. What (44) shows is that for x>0, only the
bound states or solitons contribute to G(z). There is no
radiation or continuous spectrum. That vanished be-
cause there was no contribution from the cluster point.

Now, for k <0, it turns out that (44) is valid for G (z),
although all the zeros of a are in the lower half { plane.
In this case G (z) can first be reduced from (19) to an in-
tegral along the real § axis. This integral, in the infinite-
interval case, is over a continuous spectrum of § with
b/a(f) giving the amplitude of each spectrum com-
ponent. However, this continuous integral can be evalu-
ated as described above, by closing the contour in the
lower half § plane. And the contributions from all the
residues are as in (44), except that now the imaginary
parts of §, are in the lower half plane instead of the
upper half. So for « <0, only the radiation contributes to
G (z). However, this contribution can be given in terms
of a countable infinity of virtual solitons, each of which
has an eigenvalue in the lower half plane.

IV. CONCLUSION AND INTERPRETATION
OF THE SOLUTION

At the moment, it does not seem to be possible to con-
struct the N-soliton solution required for this problem.
But there are some interesting features of the solution
which should be noted. First, let us construct a one-
soliton solution from

G(z)=iDe " (45)
Then from (19) and (21) we have
2iDe 1T
q(T)= T , (46)
1+|D, /29, [e”" —1)?

where 7, is the imaginary part of §,. This soliton shape
differs from the usual ZS soliton because the integrals in
(20) start at zero and not minus infinity. This is the first
different feature.

If we ask where the maximum of this soliton is, from
(46) one readily obtains

an,To=In(1+(29,/D,]*) , 47)

2 sinfB,[sinh?(7n sinf)+cos*(ncosd)]

f

where T, is the location of the soliton’s maximum. From
(33) and (36),

— XK
e e 48
K (n +1y 7 +k? 48
D, 1
29, | | 2«sinB, |’ “9)

where the latter is independent of the index n. As a
consequence of (47) and (49), we have

4n,T,=1In(1+4«*sin’B,) . (50)

In the usual experimental situation, one would have a
smaller Stokes pulse with 3, very small. The 7,7, would
be also very small. The implication of this is the worst
possible situation for an N-soliton configuration. Name-
ly, all solitons are only a small fraction of their own soli-
ton width from the origin (7 =0), with the center of each
soliton located just slightly into the physical region
(T >0). In simple terms, all the solitons are piled on top
of each other somewhere near T'=0. The simple one-
soliton formula (48) indicates that they are centered near
T =0. But one should be careful using this formula, be-
cause in general there are phase shifts when solitons pass
through one another. However, here the solitons cannot
be easily identified and separated because no one soliton
appears to be in front of the rest. Thus we should be
careful in assigning any location to any one of these soli-
tons. The best that we can say is that they are roughly all
within their own soliton’s width of each other.

But the one thing that does change is their width.
They uniformly become narrower as the cell length y is
increased. For small ¥, all eigenvalues are small and all
solitons are very broad. Since the physical region is from
0<T<T,, there is a range of y around y =0 where all
soliton widths are greater than T, (e, 7,7, <<1).
Here the solution for g is more or less constant in T but
increasing in Y. As Y becomes larger, such that
n, T, =1, then the first soliton is almost entirely inside
the physical region, and the solution starts to demon-
strate variations in 7. As ) becomes even larger, more
and more solitons ‘““become active” in the physical region
of 0<T < T_. Thus this solution is consistent with the
observed numerical results.””® In fact, one can see in Fig.
2 the general decrease in the oscillation widths and the
general movement of the oscillations to the rear of the
pulse.

From (48) we can estimate the number of active soli-
tons N at any cell length to be

N=~2yT, ; (51)
o
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the factor of 2 comes from the fact that negative integers
are also allowed. For values of |n|> N, the solitons are
too broad to be sensed.

In conclusion, we have found the Menyuk initial data
to represent a very interesting style of soliton evolution.
The solitons remain almost stationary, but their ampli-
tude grows uniformly. In other soliton systems, the op-
posite occurs.

Note added in proof. Although the main purpose of
our paper was to study a model initial-value problem for
SRS and to investigate the Y evolution of the scattering
data, it has been recently pointed out by Steudel!! that
this solution can also be obtained from the similarity
solution of the sine-Gordon equation. When the damp-
ing is zero and 0 is constant, then (1) can be reduced to'?

3,978="4sinB . (52)

A similarity solution of this equation is B(y, T)=f(4xT),
where f(z) satisfies'?

2f"+f'=sinf . (53)

To obtain the solution for (6), one simply takes the regu-
lar solution of (53) for the initial value of f(0)=2A.

Equation (53) is a special case of the third Painlevé
equation (PIII) (third Painlevé transcendent) whose solu-
tion for the case f =iu has been given by Flaschka and
Newell'* by a singular integral equation. The general
solution for PIII has been given by Fokas, Mugan, and
Ablowitz'® as a transformation on PV, where the solution
of PV is also given by singular integral equations. On the
other hand, we have a solution of (53) which is given by
the well-known Gelfand-Levitan-Marchenko integral
equation (20). Our thanks to Dr. Steudel for pointing out
that our solution can be given by the similarity solution
of (53).
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